Coverage Report

Created: 2023-03-26 07:54

/src/LPM/external.protobuf/include/google/protobuf/map.h
Line
Count
Source (jump to first uncovered line)
1
// Protocol Buffers - Google's data interchange format
2
// Copyright 2008 Google Inc.  All rights reserved.
3
// https://developers.google.com/protocol-buffers/
4
//
5
// Redistribution and use in source and binary forms, with or without
6
// modification, are permitted provided that the following conditions are
7
// met:
8
//
9
//     * Redistributions of source code must retain the above copyright
10
// notice, this list of conditions and the following disclaimer.
11
//     * Redistributions in binary form must reproduce the above
12
// copyright notice, this list of conditions and the following disclaimer
13
// in the documentation and/or other materials provided with the
14
// distribution.
15
//     * Neither the name of Google Inc. nor the names of its
16
// contributors may be used to endorse or promote products derived from
17
// this software without specific prior written permission.
18
//
19
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
// This file defines the map container and its helpers to support protobuf maps.
32
//
33
// The Map and MapIterator types are provided by this header file.
34
// Please avoid using other types defined here, unless they are public
35
// types within Map or MapIterator, such as Map::value_type.
36
37
#ifndef GOOGLE_PROTOBUF_MAP_H__
38
#define GOOGLE_PROTOBUF_MAP_H__
39
40
41
#include <functional>
42
#include <initializer_list>
43
#include <iterator>
44
#include <limits>  // To support Visual Studio 2008
45
#include <map>
46
#include <string>
47
#include <type_traits>
48
#include <utility>
49
50
#if defined(__cpp_lib_string_view)
51
#include <string_view>
52
#endif  // defined(__cpp_lib_string_view)
53
54
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__)
55
#include <mach/mach_time.h>
56
#endif
57
58
#include <google/protobuf/stubs/common.h>
59
#include <google/protobuf/arena.h>
60
#include <google/protobuf/generated_enum_util.h>
61
#include <google/protobuf/map_type_handler.h>
62
#include <google/protobuf/port.h>
63
#include <google/protobuf/stubs/hash.h>
64
65
#ifdef SWIG
66
#error "You cannot SWIG proto headers"
67
#endif
68
69
// Must be included last.
70
#include <google/protobuf/port_def.inc>
71
72
namespace google {
73
namespace protobuf {
74
75
template <typename Key, typename T>
76
class Map;
77
78
class MapIterator;
79
80
template <typename Enum>
81
struct is_proto_enum;
82
83
namespace internal {
84
template <typename Derived, typename Key, typename T,
85
          WireFormatLite::FieldType key_wire_type,
86
          WireFormatLite::FieldType value_wire_type>
87
class MapFieldLite;
88
89
template <typename Derived, typename Key, typename T,
90
          WireFormatLite::FieldType key_wire_type,
91
          WireFormatLite::FieldType value_wire_type>
92
class MapField;
93
94
template <typename Key, typename T>
95
class TypeDefinedMapFieldBase;
96
97
class DynamicMapField;
98
99
class GeneratedMessageReflection;
100
101
// re-implement std::allocator to use arena allocator for memory allocation.
102
// Used for Map implementation. Users should not use this class
103
// directly.
104
template <typename U>
105
class MapAllocator {
106
 public:
107
  using value_type = U;
108
  using pointer = value_type*;
109
  using const_pointer = const value_type*;
110
  using reference = value_type&;
111
  using const_reference = const value_type&;
112
  using size_type = size_t;
113
  using difference_type = ptrdiff_t;
114
115
  constexpr MapAllocator() : arena_(nullptr) {}
116
  explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
117
  template <typename X>
118
  MapAllocator(const MapAllocator<X>& allocator)  // NOLINT(runtime/explicit)
119
      : arena_(allocator.arena()) {}
120
121
  // MapAllocator does not support alignments beyond 8. Technically we should
122
  // support up to std::max_align_t, but this fails with ubsan and tcmalloc
123
  // debug allocation logic which assume 8 as default alignment.
124
  static_assert(alignof(value_type) <= 8, "");
125
126
  pointer allocate(size_type n, const void* /* hint */ = nullptr) {
127
    // If arena is not given, malloc needs to be called which doesn't
128
    // construct element object.
129
    if (arena_ == nullptr) {
130
      return static_cast<pointer>(::operator new(n * sizeof(value_type)));
131
    } else {
132
      return reinterpret_cast<pointer>(
133
          Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
134
    }
135
  }
136
137
  void deallocate(pointer p, size_type n) {
138
    if (arena_ == nullptr) {
139
      internal::SizedDelete(p, n * sizeof(value_type));
140
    }
141
  }
142
143
#if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
144
    !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
145
  template <class NodeType, class... Args>
146
  void construct(NodeType* p, Args&&... args) {
147
    // Clang 3.6 doesn't compile static casting to void* directly. (Issue
148
    // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
149
    // not cast away constness". So first the maybe const pointer is casted to
150
    // const void* and after the const void* is const casted.
151
    new (const_cast<void*>(static_cast<const void*>(p)))
152
        NodeType(std::forward<Args>(args)...);
153
  }
154
155
  template <class NodeType>
156
  void destroy(NodeType* p) {
157
    p->~NodeType();
158
  }
159
#else
160
  void construct(pointer p, const_reference t) { new (p) value_type(t); }
161
162
  void destroy(pointer p) { p->~value_type(); }
163
#endif
164
165
  template <typename X>
166
  struct rebind {
167
    using other = MapAllocator<X>;
168
  };
169
170
  template <typename X>
171
  bool operator==(const MapAllocator<X>& other) const {
172
    return arena_ == other.arena_;
173
  }
174
175
  template <typename X>
176
  bool operator!=(const MapAllocator<X>& other) const {
177
    return arena_ != other.arena_;
178
  }
179
180
  // To support Visual Studio 2008
181
  size_type max_size() const {
182
    // parentheses around (std::...:max) prevents macro warning of max()
183
    return (std::numeric_limits<size_type>::max)();
184
  }
185
186
  // To support gcc-4.4, which does not properly
187
  // support templated friend classes
188
  Arena* arena() const { return arena_; }
189
190
 private:
191
  using DestructorSkippable_ = void;
192
  Arena* arena_;
193
};
194
195
template <typename T>
196
using KeyForTree =
197
    typename std::conditional<std::is_scalar<T>::value, T,
198
                              std::reference_wrapper<const T>>::type;
199
200
// Default case: Not transparent.
201
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
202
// only accept `key_type`.
203
template <typename key_type>
204
struct TransparentSupport {
205
  using hash = std::hash<key_type>;
206
  using less = std::less<key_type>;
207
208
  static bool Equals(const key_type& a, const key_type& b) { return a == b; }
209
210
  template <typename K>
211
  using key_arg = key_type;
212
};
213
214
#if defined(__cpp_lib_string_view)
215
// If std::string_view is available, we add transparent support for std::string
216
// keys. We use std::hash<std::string_view> as it supports the input types we
217
// care about. The lookup functions accept arbitrary `K`. This will include any
218
// key type that is convertible to std::string_view.
219
template <>
220
struct TransparentSupport<std::string> {
221
  static std::string_view ImplicitConvert(std::string_view str) { return str; }
222
  // If the element is not convertible to std::string_view, try to convert to
223
  // std::string first.
224
  // The template makes this overload lose resolution when both have the same
225
  // rank otherwise.
226
  template <typename = void>
227
  static std::string_view ImplicitConvert(const std::string& str) {
228
    return str;
229
  }
230
231
  struct hash : private std::hash<std::string_view> {
232
    using is_transparent = void;
233
234
    template <typename T>
235
    size_t operator()(const T& str) const {
236
      return base()(ImplicitConvert(str));
237
    }
238
239
   private:
240
    const std::hash<std::string_view>& base() const { return *this; }
241
  };
242
  struct less {
243
    using is_transparent = void;
244
245
    template <typename T, typename U>
246
    bool operator()(const T& t, const U& u) const {
247
      return ImplicitConvert(t) < ImplicitConvert(u);
248
    }
249
  };
250
251
  template <typename T, typename U>
252
  static bool Equals(const T& t, const U& u) {
253
    return ImplicitConvert(t) == ImplicitConvert(u);
254
  }
255
256
  template <typename K>
257
  using key_arg = K;
258
};
259
#endif  // defined(__cpp_lib_string_view)
260
261
template <typename Key>
262
using TreeForMap =
263
    std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
264
             MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;
265
266
0
inline bool TableEntryIsEmpty(void* const* table, size_t b) {
267
0
  return table[b] == nullptr;
268
0
}
269
0
inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
270
0
  return table[b] != nullptr && table[b] != table[b ^ 1];
271
0
}
272
0
inline bool TableEntryIsTree(void* const* table, size_t b) {
273
0
  return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
274
0
}
275
0
inline bool TableEntryIsList(void* const* table, size_t b) {
276
0
  return !TableEntryIsTree(table, b);
277
0
}
278
279
// This captures all numeric types.
280
0
inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
281
0
inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
282
0
  return StringSpaceUsedExcludingSelfLong(str);
283
0
}
284
template <typename T,
285
          typename = decltype(std::declval<const T&>().SpaceUsedLong())>
286
size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
287
  return message.SpaceUsedLong() - sizeof(T);
288
}
289
290
constexpr size_t kGlobalEmptyTableSize = 1;
291
PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];
292
293
// Space used for the table, trees, and nodes.
294
// Does not include the indirect space used. Eg the data of a std::string.
295
template <typename Key>
296
PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
297
                                          size_t num_elements,
298
                                          size_t sizeof_node) {
299
  size_t size = 0;
300
  // The size of the table.
301
  size += sizeof(void*) * num_buckets;
302
  // All the nodes.
303
  size += sizeof_node * num_elements;
304
  // For each tree, count the overhead of the those nodes.
305
  // Two buckets at a time because we only care about trees.
306
  for (size_t b = 0; b < num_buckets; b += 2) {
307
    if (internal::TableEntryIsTree(table, b)) {
308
      using Tree = TreeForMap<Key>;
309
      Tree* tree = static_cast<Tree*>(table[b]);
310
      // Estimated cost of the red-black tree nodes, 3 pointers plus a
311
      // bool (plus alignment, so 4 pointers).
312
      size += tree->size() *
313
              (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
314
    }
315
  }
316
  return size;
317
}
318
319
template <typename Map,
320
          typename = typename std::enable_if<
321
              !std::is_scalar<typename Map::key_type>::value ||
322
              !std::is_scalar<typename Map::mapped_type>::value>::type>
323
size_t SpaceUsedInValues(const Map* map) {
324
  size_t size = 0;
325
  for (const auto& v : *map) {
326
    size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
327
            internal::MapValueSpaceUsedExcludingSelfLong(v.second);
328
  }
329
  return size;
330
}
331
332
0
inline size_t SpaceUsedInValues(const void*) { return 0; }
333
334
}  // namespace internal
335
336
// This is the class for Map's internal value_type. Instead of using
337
// std::pair as value_type, we use this class which provides us more control of
338
// its process of construction and destruction.
339
template <typename Key, typename T>
340
struct PROTOBUF_ATTRIBUTE_STANDALONE_DEBUG MapPair {
341
  using first_type = const Key;
342
  using second_type = T;
343
344
  MapPair(const Key& other_first, const T& other_second)
345
      : first(other_first), second(other_second) {}
346
  explicit MapPair(const Key& other_first) : first(other_first), second() {}
347
  explicit MapPair(Key&& other_first)
348
      : first(std::move(other_first)), second() {}
349
  MapPair(const MapPair& other) : first(other.first), second(other.second) {}
350
351
  ~MapPair() {}
352
353
  // Implicitly convertible to std::pair of compatible types.
354
  template <typename T1, typename T2>
355
  operator std::pair<T1, T2>() const {  // NOLINT(runtime/explicit)
356
    return std::pair<T1, T2>(first, second);
357
  }
358
359
  const Key first;
360
  T second;
361
362
 private:
363
  friend class Arena;
364
  friend class Map<Key, T>;
365
};
366
367
// Map is an associative container type used to store protobuf map
368
// fields.  Each Map instance may or may not use a different hash function, a
369
// different iteration order, and so on.  E.g., please don't examine
370
// implementation details to decide if the following would work:
371
//  Map<int, int> m0, m1;
372
//  m0[0] = m1[0] = m0[1] = m1[1] = 0;
373
//  assert(m0.begin()->first == m1.begin()->first);  // Bug!
374
//
375
// Map's interface is similar to std::unordered_map, except that Map is not
376
// designed to play well with exceptions.
377
template <typename Key, typename T>
378
class Map {
379
 public:
380
  using key_type = Key;
381
  using mapped_type = T;
382
  using value_type = MapPair<Key, T>;
383
384
  using pointer = value_type*;
385
  using const_pointer = const value_type*;
386
  using reference = value_type&;
387
  using const_reference = const value_type&;
388
389
  using size_type = size_t;
390
  using hasher = typename internal::TransparentSupport<Key>::hash;
391
392
  constexpr Map() : elements_(nullptr) {}
393
  explicit Map(Arena* arena) : elements_(arena) {}
394
395
  Map(const Map& other) : Map() { insert(other.begin(), other.end()); }
396
397
  Map(Map&& other) noexcept : Map() {
398
    if (other.arena() != nullptr) {
399
      *this = other;
400
    } else {
401
      swap(other);
402
    }
403
  }
404
405
  Map& operator=(Map&& other) noexcept {
406
    if (this != &other) {
407
      if (arena() != other.arena()) {
408
        *this = other;
409
      } else {
410
        swap(other);
411
      }
412
    }
413
    return *this;
414
  }
415
416
  template <class InputIt>
417
  Map(const InputIt& first, const InputIt& last) : Map() {
418
    insert(first, last);
419
  }
420
421
  ~Map() {}
422
423
 private:
424
  using Allocator = internal::MapAllocator<void*>;
425
426
  // InnerMap is a generic hash-based map.  It doesn't contain any
427
  // protocol-buffer-specific logic.  It is a chaining hash map with the
428
  // additional feature that some buckets can be converted to use an ordered
429
  // container.  This ensures O(lg n) bounds on find, insert, and erase, while
430
  // avoiding the overheads of ordered containers most of the time.
431
  //
432
  // The implementation doesn't need the full generality of unordered_map,
433
  // and it doesn't have it.  More bells and whistles can be added as needed.
434
  // Some implementation details:
435
  // 1. The hash function has type hasher and the equality function
436
  //    equal_to<Key>.  We inherit from hasher to save space
437
  //    (empty-base-class optimization).
438
  // 2. The number of buckets is a power of two.
439
  // 3. Buckets are converted to trees in pairs: if we convert bucket b then
440
  //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
441
  //    the same non-null value iff they are sharing a tree.  (An alternative
442
  //    implementation strategy would be to have a tag bit per bucket.)
443
  // 4. As is typical for hash_map and such, the Keys and Values are always
444
  //    stored in linked list nodes.  Pointers to elements are never invalidated
445
  //    until the element is deleted.
446
  // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
447
  //    a bucket doesn't copy Key-Value pairs.
448
  // 6. Once we've tree-converted a bucket, it is never converted back. However,
449
  //    the items a tree contains may wind up assigned to trees or lists upon a
450
  //    rehash.
451
  // 7. The code requires no C++ features from C++14 or later.
452
  // 8. Mutations to a map do not invalidate the map's iterators, pointers to
453
  //    elements, or references to elements.
454
  // 9. Except for erase(iterator), any non-const method can reorder iterators.
455
  // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
456
  //    is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
457
  //    otherwise. This avoids unnecessary copies of string keys, for example.
458
  class InnerMap : private hasher {
459
   public:
460
    explicit constexpr InnerMap(Arena* arena)
461
        : hasher(),
462
          num_elements_(0),
463
          num_buckets_(internal::kGlobalEmptyTableSize),
464
          seed_(0),
465
          index_of_first_non_null_(internal::kGlobalEmptyTableSize),
466
          table_(const_cast<void**>(internal::kGlobalEmptyTable)),
467
          alloc_(arena) {}
468
469
    ~InnerMap() {
470
      if (alloc_.arena() == nullptr &&
471
          num_buckets_ != internal::kGlobalEmptyTableSize) {
472
        clear();
473
        Dealloc<void*>(table_, num_buckets_);
474
      }
475
    }
476
477
   private:
478
    enum { kMinTableSize = 8 };
479
480
    // Linked-list nodes, as one would expect for a chaining hash table.
481
    struct Node {
482
      value_type kv;
483
      Node* next;
484
    };
485
486
    // Trees. The payload type is a copy of Key, so that we can query the tree
487
    // with Keys that are not in any particular data structure.
488
    // The value is a void* pointing to Node. We use void* instead of Node* to
489
    // avoid code bloat. That way there is only one instantiation of the tree
490
    // class per key type.
491
    using Tree = internal::TreeForMap<Key>;
492
    using TreeIterator = typename Tree::iterator;
493
494
    static Node* NodeFromTreeIterator(TreeIterator it) {
495
      return static_cast<Node*>(it->second);
496
    }
497
498
    // iterator and const_iterator are instantiations of iterator_base.
499
    template <typename KeyValueType>
500
    class iterator_base {
501
     public:
502
      using reference = KeyValueType&;
503
      using pointer = KeyValueType*;
504
505
      // Invariants:
506
      // node_ is always correct. This is handy because the most common
507
      // operations are operator* and operator-> and they only use node_.
508
      // When node_ is set to a non-null value, all the other non-const fields
509
      // are updated to be correct also, but those fields can become stale
510
      // if the underlying map is modified.  When those fields are needed they
511
      // are rechecked, and updated if necessary.
512
      iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}
513
514
      explicit iterator_base(const InnerMap* m) : m_(m) {
515
        SearchFrom(m->index_of_first_non_null_);
516
      }
517
518
      // Any iterator_base can convert to any other.  This is overkill, and we
519
      // rely on the enclosing class to use it wisely.  The standard "iterator
520
      // can convert to const_iterator" is OK but the reverse direction is not.
521
      template <typename U>
522
      explicit iterator_base(const iterator_base<U>& it)
523
          : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
524
525
      iterator_base(Node* n, const InnerMap* m, size_type index)
526
          : node_(n), m_(m), bucket_index_(index) {}
527
528
      iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
529
          : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
530
        // Invariant: iterators that use buckets with trees have an even
531
        // bucket_index_.
532
        GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
533
      }
534
535
      // Advance through buckets, looking for the first that isn't empty.
536
      // If nothing non-empty is found then leave node_ == nullptr.
537
      void SearchFrom(size_type start_bucket) {
538
        GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
539
               m_->table_[m_->index_of_first_non_null_] != nullptr);
540
        node_ = nullptr;
541
        for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
542
             bucket_index_++) {
543
          if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
544
            node_ = static_cast<Node*>(m_->table_[bucket_index_]);
545
            break;
546
          } else if (m_->TableEntryIsTree(bucket_index_)) {
547
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
548
            GOOGLE_DCHECK(!tree->empty());
549
            node_ = NodeFromTreeIterator(tree->begin());
550
            break;
551
          }
552
        }
553
      }
554
555
      reference operator*() const { return node_->kv; }
556
      pointer operator->() const { return &(operator*()); }
557
558
      friend bool operator==(const iterator_base& a, const iterator_base& b) {
559
        return a.node_ == b.node_;
560
      }
561
      friend bool operator!=(const iterator_base& a, const iterator_base& b) {
562
        return a.node_ != b.node_;
563
      }
564
565
      iterator_base& operator++() {
566
        if (node_->next == nullptr) {
567
          TreeIterator tree_it;
568
          const bool is_list = revalidate_if_necessary(&tree_it);
569
          if (is_list) {
570
            SearchFrom(bucket_index_ + 1);
571
          } else {
572
            GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
573
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
574
            if (++tree_it == tree->end()) {
575
              SearchFrom(bucket_index_ + 2);
576
            } else {
577
              node_ = NodeFromTreeIterator(tree_it);
578
            }
579
          }
580
        } else {
581
          node_ = node_->next;
582
        }
583
        return *this;
584
      }
585
586
      iterator_base operator++(int /* unused */) {
587
        iterator_base tmp = *this;
588
        ++*this;
589
        return tmp;
590
      }
591
592
      // Assumes node_ and m_ are correct and non-null, but other fields may be
593
      // stale.  Fix them as needed.  Then return true iff node_ points to a
594
      // Node in a list.  If false is returned then *it is modified to be
595
      // a valid iterator for node_.
596
      bool revalidate_if_necessary(TreeIterator* it) {
597
        GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
598
        // Force bucket_index_ to be in range.
599
        bucket_index_ &= (m_->num_buckets_ - 1);
600
        // Common case: the bucket we think is relevant points to node_.
601
        if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
602
        // Less common: the bucket is a linked list with node_ somewhere in it,
603
        // but not at the head.
604
        if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
605
          Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
606
          while ((l = l->next) != nullptr) {
607
            if (l == node_) {
608
              return true;
609
            }
610
          }
611
        }
612
        // Well, bucket_index_ still might be correct, but probably
613
        // not.  Revalidate just to be sure.  This case is rare enough that we
614
        // don't worry about potential optimizations, such as having a custom
615
        // find-like method that compares Node* instead of the key.
616
        iterator_base i(m_->find(node_->kv.first, it));
617
        bucket_index_ = i.bucket_index_;
618
        return m_->TableEntryIsList(bucket_index_);
619
      }
620
621
      Node* node_;
622
      const InnerMap* m_;
623
      size_type bucket_index_;
624
    };
625
626
   public:
627
    using iterator = iterator_base<value_type>;
628
    using const_iterator = iterator_base<const value_type>;
629
630
    Arena* arena() const { return alloc_.arena(); }
631
632
    void Swap(InnerMap* other) {
633
      std::swap(num_elements_, other->num_elements_);
634
      std::swap(num_buckets_, other->num_buckets_);
635
      std::swap(seed_, other->seed_);
636
      std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
637
      std::swap(table_, other->table_);
638
      std::swap(alloc_, other->alloc_);
639
    }
640
641
    iterator begin() { return iterator(this); }
642
    iterator end() { return iterator(); }
643
    const_iterator begin() const { return const_iterator(this); }
644
    const_iterator end() const { return const_iterator(); }
645
646
    void clear() {
647
      for (size_type b = 0; b < num_buckets_; b++) {
648
        if (TableEntryIsNonEmptyList(b)) {
649
          Node* node = static_cast<Node*>(table_[b]);
650
          table_[b] = nullptr;
651
          do {
652
            Node* next = node->next;
653
            DestroyNode(node);
654
            node = next;
655
          } while (node != nullptr);
656
        } else if (TableEntryIsTree(b)) {
657
          Tree* tree = static_cast<Tree*>(table_[b]);
658
          GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
659
          table_[b] = table_[b + 1] = nullptr;
660
          typename Tree::iterator tree_it = tree->begin();
661
          do {
662
            Node* node = NodeFromTreeIterator(tree_it);
663
            typename Tree::iterator next = tree_it;
664
            ++next;
665
            tree->erase(tree_it);
666
            DestroyNode(node);
667
            tree_it = next;
668
          } while (tree_it != tree->end());
669
          DestroyTree(tree);
670
          b++;
671
        }
672
      }
673
      num_elements_ = 0;
674
      index_of_first_non_null_ = num_buckets_;
675
    }
676
677
    const hasher& hash_function() const { return *this; }
678
679
    static size_type max_size() {
680
      return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
681
    }
682
    size_type size() const { return num_elements_; }
683
    bool empty() const { return size() == 0; }
684
685
    template <typename K>
686
    iterator find(const K& k) {
687
      return iterator(FindHelper(k).first);
688
    }
689
690
    template <typename K>
691
    const_iterator find(const K& k) const {
692
      return FindHelper(k).first;
693
    }
694
695
    // Inserts a new element into the container if there is no element with the
696
    // key in the container.
697
    // The new element is:
698
    //  (1) Constructed in-place with the given args, if mapped_type is not
699
    //      arena constructible.
700
    //  (2) Constructed in-place with the arena and then assigned with a
701
    //      mapped_type temporary constructed with the given args, otherwise.
702
    template <typename K, typename... Args>
703
    std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
704
      return ArenaAwareTryEmplace(Arena::is_arena_constructable<mapped_type>(),
705
                                  std::forward<K>(k),
706
                                  std::forward<Args>(args)...);
707
    }
708
709
    // Inserts the key into the map, if not present. In that case, the value
710
    // will be value initialized.
711
    template <typename K>
712
    std::pair<iterator, bool> insert(K&& k) {
713
      return try_emplace(std::forward<K>(k));
714
    }
715
716
    template <typename K>
717
    value_type& operator[](K&& k) {
718
      return *try_emplace(std::forward<K>(k)).first;
719
    }
720
721
    void erase(iterator it) {
722
      GOOGLE_DCHECK_EQ(it.m_, this);
723
      typename Tree::iterator tree_it;
724
      const bool is_list = it.revalidate_if_necessary(&tree_it);
725
      size_type b = it.bucket_index_;
726
      Node* const item = it.node_;
727
      if (is_list) {
728
        GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
729
        Node* head = static_cast<Node*>(table_[b]);
730
        head = EraseFromLinkedList(item, head);
731
        table_[b] = static_cast<void*>(head);
732
      } else {
733
        GOOGLE_DCHECK(TableEntryIsTree(b));
734
        Tree* tree = static_cast<Tree*>(table_[b]);
735
        tree->erase(tree_it);
736
        if (tree->empty()) {
737
          // Force b to be the minimum of b and b ^ 1.  This is important
738
          // only because we want index_of_first_non_null_ to be correct.
739
          b &= ~static_cast<size_type>(1);
740
          DestroyTree(tree);
741
          table_[b] = table_[b + 1] = nullptr;
742
        }
743
      }
744
      DestroyNode(item);
745
      --num_elements_;
746
      if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
747
        while (index_of_first_non_null_ < num_buckets_ &&
748
               table_[index_of_first_non_null_] == nullptr) {
749
          ++index_of_first_non_null_;
750
        }
751
      }
752
    }
753
754
    size_t SpaceUsedInternal() const {
755
      return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
756
                                             num_elements_, sizeof(Node));
757
    }
758
759
   private:
760
    template <typename K, typename... Args>
761
    std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) {
762
      std::pair<const_iterator, size_type> p = FindHelper(k);
763
      // Case 1: key was already present.
764
      if (p.first.node_ != nullptr)
765
        return std::make_pair(iterator(p.first), false);
766
      // Case 2: insert.
767
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
768
        p = FindHelper(k);
769
      }
770
      const size_type b = p.second;  // bucket number
771
      // If K is not key_type, make the conversion to key_type explicit.
772
      using TypeToInit = typename std::conditional<
773
          std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
774
          key_type>::type;
775
      Node* node = Alloc<Node>(1);
776
      // Even when arena is nullptr, CreateInArenaStorage is still used to
777
      // ensure the arena of submessage will be consistent. Otherwise,
778
      // submessage may have its own arena when message-owned arena is enabled.
779
      // Note: This only works if `Key` is not arena constructible.
780
      Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
781
                                  alloc_.arena(),
782
                                  static_cast<TypeToInit>(std::forward<K>(k)));
783
      // Note: if `T` is arena constructible, `Args` needs to be empty.
784
      Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena(),
785
                                  std::forward<Args>(args)...);
786
787
      iterator result = InsertUnique(b, node);
788
      ++num_elements_;
789
      return std::make_pair(result, true);
790
    }
791
792
    // A helper function to perform an assignment of `mapped_type`.
793
    // If the first argument is true, then it is a regular assignment.
794
    // Otherwise, we first create a temporary and then perform an assignment.
795
    template <typename V>
796
    static void AssignMapped(std::true_type, mapped_type& mapped, V&& v) {
797
      mapped = std::forward<V>(v);
798
    }
799
    template <typename... Args>
800
    static void AssignMapped(std::false_type, mapped_type& mapped,
801
                             Args&&... args) {
802
      mapped = mapped_type(std::forward<Args>(args)...);
803
    }
804
805
    // Case 1: `mapped_type` is arena constructible. A temporary object is
806
    // created and then (if `Args` are not empty) assigned to a mapped value
807
    // that was created with the arena.
808
    template <typename K>
809
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k) {
810
      // case 1.1: "default" constructed (e.g. from arena only).
811
      return TryEmplaceInternal(std::forward<K>(k));
812
    }
813
    template <typename K, typename... Args>
814
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k,
815
                                                   Args&&... args) {
816
      // case 1.2: "default" constructed + copy/move assignment
817
      auto p = TryEmplaceInternal(std::forward<K>(k));
818
      if (p.second) {
819
        AssignMapped(std::is_same<void(typename std::decay<Args>::type...),
820
                                  void(mapped_type)>(),
821
                     p.first->second, std::forward<Args>(args)...);
822
      }
823
      return p;
824
    }
825
    // Case 2: `mapped_type` is not arena constructible. Using in-place
826
    // construction.
827
    template <typename... Args>
828
    std::pair<iterator, bool> ArenaAwareTryEmplace(std::false_type,
829
                                                   Args&&... args) {
830
      return TryEmplaceInternal(std::forward<Args>(args)...);
831
    }
832
833
    const_iterator find(const Key& k, TreeIterator* it) const {
834
      return FindHelper(k, it).first;
835
    }
836
    template <typename K>
837
    std::pair<const_iterator, size_type> FindHelper(const K& k) const {
838
      return FindHelper(k, nullptr);
839
    }
840
    template <typename K>
841
    std::pair<const_iterator, size_type> FindHelper(const K& k,
842
                                                    TreeIterator* it) const {
843
      size_type b = BucketNumber(k);
844
      if (TableEntryIsNonEmptyList(b)) {
845
        Node* node = static_cast<Node*>(table_[b]);
846
        do {
847
          if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
848
            return std::make_pair(const_iterator(node, this, b), b);
849
          } else {
850
            node = node->next;
851
          }
852
        } while (node != nullptr);
853
      } else if (TableEntryIsTree(b)) {
854
        GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
855
        b &= ~static_cast<size_t>(1);
856
        Tree* tree = static_cast<Tree*>(table_[b]);
857
        auto tree_it = tree->find(k);
858
        if (tree_it != tree->end()) {
859
          if (it != nullptr) *it = tree_it;
860
          return std::make_pair(const_iterator(tree_it, this, b), b);
861
        }
862
      }
863
      return std::make_pair(end(), b);
864
    }
865
866
    // Insert the given Node in bucket b.  If that would make bucket b too big,
867
    // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
868
    // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
869
    // bucket.  num_elements_ is not modified.
870
    iterator InsertUnique(size_type b, Node* node) {
871
      GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
872
             table_[index_of_first_non_null_] != nullptr);
873
      // In practice, the code that led to this point may have already
874
      // determined whether we are inserting into an empty list, a short list,
875
      // or whatever.  But it's probably cheap enough to recompute that here;
876
      // it's likely that we're inserting into an empty or short list.
877
      iterator result;
878
      GOOGLE_DCHECK(find(node->kv.first) == end());
879
      if (TableEntryIsEmpty(b)) {
880
        result = InsertUniqueInList(b, node);
881
      } else if (TableEntryIsNonEmptyList(b)) {
882
        if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
883
          TreeConvert(b);
884
          result = InsertUniqueInTree(b, node);
885
          GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
886
        } else {
887
          // Insert into a pre-existing list.  This case cannot modify
888
          // index_of_first_non_null_, so we skip the code to update it.
889
          return InsertUniqueInList(b, node);
890
        }
891
      } else {
892
        // Insert into a pre-existing tree.  This case cannot modify
893
        // index_of_first_non_null_, so we skip the code to update it.
894
        return InsertUniqueInTree(b, node);
895
      }
896
      // parentheses around (std::min) prevents macro expansion of min(...)
897
      index_of_first_non_null_ =
898
          (std::min)(index_of_first_non_null_, result.bucket_index_);
899
      return result;
900
    }
901
902
    // Returns whether we should insert after the head of the list. For
903
    // non-optimized builds, we randomly decide whether to insert right at the
904
    // head of the list or just after the head. This helps add a little bit of
905
    // non-determinism to the map ordering.
906
    bool ShouldInsertAfterHead(void* node) {
907
#ifdef NDEBUG
908
      (void)node;
909
      return false;
910
#else
911
      // Doing modulo with a prime mixes the bits more.
912
      return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
913
#endif
914
    }
915
916
    // Helper for InsertUnique.  Handles the case where bucket b is a
917
    // not-too-long linked list.
918
    iterator InsertUniqueInList(size_type b, Node* node) {
919
      if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
920
        Node* first = static_cast<Node*>(table_[b]);
921
        node->next = first->next;
922
        first->next = node;
923
        return iterator(node, this, b);
924
      }
925
926
      node->next = static_cast<Node*>(table_[b]);
927
      table_[b] = static_cast<void*>(node);
928
      return iterator(node, this, b);
929
    }
930
931
    // Helper for InsertUnique.  Handles the case where bucket b points to a
932
    // Tree.
933
    iterator InsertUniqueInTree(size_type b, Node* node) {
934
      GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
935
      // Maintain the invariant that node->next is null for all Nodes in Trees.
936
      node->next = nullptr;
937
      return iterator(
938
          static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
939
          this, b & ~static_cast<size_t>(1));
940
    }
941
942
    // Returns whether it did resize.  Currently this is only used when
943
    // num_elements_ increases, though it could be used in other situations.
944
    // It checks for load too low as well as load too high: because any number
945
    // of erases can occur between inserts, the load could be as low as 0 here.
946
    // Resizing to a lower size is not always helpful, but failing to do so can
947
    // destroy the expected big-O bounds for some operations. By having the
948
    // policy that sometimes we resize down as well as up, clients can easily
949
    // keep O(size()) = O(number of buckets) if they want that.
950
    bool ResizeIfLoadIsOutOfRange(size_type new_size) {
951
      const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
952
      const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
953
      const size_type lo_cutoff = hi_cutoff / 4;
954
      // We don't care how many elements are in trees.  If a lot are,
955
      // we may resize even though there are many empty buckets.  In
956
      // practice, this seems fine.
957
      if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
958
        if (num_buckets_ <= max_size() / 2) {
959
          Resize(num_buckets_ * 2);
960
          return true;
961
        }
962
      } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
963
                                        num_buckets_ > kMinTableSize)) {
964
        size_type lg2_of_size_reduction_factor = 1;
965
        // It's possible we want to shrink a lot here... size() could even be 0.
966
        // So, estimate how much to shrink by making sure we don't shrink so
967
        // much that we would need to grow the table after a few inserts.
968
        const size_type hypothetical_size = new_size * 5 / 4 + 1;
969
        while ((hypothetical_size << lg2_of_size_reduction_factor) <
970
               hi_cutoff) {
971
          ++lg2_of_size_reduction_factor;
972
        }
973
        size_type new_num_buckets = std::max<size_type>(
974
            kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
975
        if (new_num_buckets != num_buckets_) {
976
          Resize(new_num_buckets);
977
          return true;
978
        }
979
      }
980
      return false;
981
    }
982
983
    // Resize to the given number of buckets.
984
    void Resize(size_t new_num_buckets) {
985
      if (num_buckets_ == internal::kGlobalEmptyTableSize) {
986
        // This is the global empty array.
987
        // Just overwrite with a new one. No need to transfer or free anything.
988
        num_buckets_ = index_of_first_non_null_ = kMinTableSize;
989
        table_ = CreateEmptyTable(num_buckets_);
990
        seed_ = Seed();
991
        return;
992
      }
993
994
      GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
995
      void** const old_table = table_;
996
      const size_type old_table_size = num_buckets_;
997
      num_buckets_ = new_num_buckets;
998
      table_ = CreateEmptyTable(num_buckets_);
999
      const size_type start = index_of_first_non_null_;
1000
      index_of_first_non_null_ = num_buckets_;
1001
      for (size_type i = start; i < old_table_size; i++) {
1002
        if (internal::TableEntryIsNonEmptyList(old_table, i)) {
1003
          TransferList(old_table, i);
1004
        } else if (internal::TableEntryIsTree(old_table, i)) {
1005
          TransferTree(old_table, i++);
1006
        }
1007
      }
1008
      Dealloc<void*>(old_table, old_table_size);
1009
    }
1010
1011
    void TransferList(void* const* table, size_type index) {
1012
      Node* node = static_cast<Node*>(table[index]);
1013
      do {
1014
        Node* next = node->next;
1015
        InsertUnique(BucketNumber(node->kv.first), node);
1016
        node = next;
1017
      } while (node != nullptr);
1018
    }
1019
1020
    void TransferTree(void* const* table, size_type index) {
1021
      Tree* tree = static_cast<Tree*>(table[index]);
1022
      typename Tree::iterator tree_it = tree->begin();
1023
      do {
1024
        InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
1025
                     NodeFromTreeIterator(tree_it));
1026
      } while (++tree_it != tree->end());
1027
      DestroyTree(tree);
1028
    }
1029
1030
    Node* EraseFromLinkedList(Node* item, Node* head) {
1031
      if (head == item) {
1032
        return head->next;
1033
      } else {
1034
        head->next = EraseFromLinkedList(item, head->next);
1035
        return head;
1036
      }
1037
    }
1038
1039
    bool TableEntryIsEmpty(size_type b) const {
1040
      return internal::TableEntryIsEmpty(table_, b);
1041
    }
1042
    bool TableEntryIsNonEmptyList(size_type b) const {
1043
      return internal::TableEntryIsNonEmptyList(table_, b);
1044
    }
1045
    bool TableEntryIsTree(size_type b) const {
1046
      return internal::TableEntryIsTree(table_, b);
1047
    }
1048
    bool TableEntryIsList(size_type b) const {
1049
      return internal::TableEntryIsList(table_, b);
1050
    }
1051
1052
    void TreeConvert(size_type b) {
1053
      GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
1054
      Tree* tree =
1055
          Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
1056
                              typename Tree::allocator_type(alloc_));
1057
      size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
1058
      GOOGLE_DCHECK_EQ(count, tree->size());
1059
      table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
1060
    }
1061
1062
    // Copy a linked list in the given bucket to a tree.
1063
    // Returns the number of things it copied.
1064
    size_type CopyListToTree(size_type b, Tree* tree) {
1065
      size_type count = 0;
1066
      Node* node = static_cast<Node*>(table_[b]);
1067
      while (node != nullptr) {
1068
        tree->insert({node->kv.first, node});
1069
        ++count;
1070
        Node* next = node->next;
1071
        node->next = nullptr;
1072
        node = next;
1073
      }
1074
      return count;
1075
    }
1076
1077
    // Return whether table_[b] is a linked list that seems awfully long.
1078
    // Requires table_[b] to point to a non-empty linked list.
1079
    bool TableEntryIsTooLong(size_type b) {
1080
      const size_type kMaxLength = 8;
1081
      size_type count = 0;
1082
      Node* node = static_cast<Node*>(table_[b]);
1083
      do {
1084
        ++count;
1085
        node = node->next;
1086
      } while (node != nullptr);
1087
      // Invariant: no linked list ever is more than kMaxLength in length.
1088
      GOOGLE_DCHECK_LE(count, kMaxLength);
1089
      return count >= kMaxLength;
1090
    }
1091
1092
    template <typename K>
1093
    size_type BucketNumber(const K& k) const {
1094
      // We xor the hash value against the random seed so that we effectively
1095
      // have a random hash function.
1096
      uint64_t h = hash_function()(k) ^ seed_;
1097
1098
      // We use the multiplication method to determine the bucket number from
1099
      // the hash value. The constant kPhi (suggested by Knuth) is roughly
1100
      // (sqrt(5) - 1) / 2 * 2^64.
1101
      constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
1102
      return ((kPhi * h) >> 32) & (num_buckets_ - 1);
1103
    }
1104
1105
    // Return a power of two no less than max(kMinTableSize, n).
1106
    // Assumes either n < kMinTableSize or n is a power of two.
1107
    size_type TableSize(size_type n) {
1108
      return n < static_cast<size_type>(kMinTableSize)
1109
                 ? static_cast<size_type>(kMinTableSize)
1110
                 : n;
1111
    }
1112
1113
    // Use alloc_ to allocate an array of n objects of type U.
1114
    template <typename U>
1115
    U* Alloc(size_type n) {
1116
      using alloc_type = typename Allocator::template rebind<U>::other;
1117
      return alloc_type(alloc_).allocate(n);
1118
    }
1119
1120
    // Use alloc_ to deallocate an array of n objects of type U.
1121
    template <typename U>
1122
    void Dealloc(U* t, size_type n) {
1123
      using alloc_type = typename Allocator::template rebind<U>::other;
1124
      alloc_type(alloc_).deallocate(t, n);
1125
    }
1126
1127
    void DestroyNode(Node* node) {
1128
      if (alloc_.arena() == nullptr) {
1129
        delete node;
1130
      }
1131
    }
1132
1133
    void DestroyTree(Tree* tree) {
1134
      if (alloc_.arena() == nullptr) {
1135
        delete tree;
1136
      }
1137
    }
1138
1139
    void** CreateEmptyTable(size_type n) {
1140
      GOOGLE_DCHECK(n >= kMinTableSize);
1141
      GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
1142
      void** result = Alloc<void*>(n);
1143
      memset(result, 0, n * sizeof(result[0]));
1144
      return result;
1145
    }
1146
1147
    // Return a randomish value.
1148
    size_type Seed() const {
1149
      // We get a little bit of randomness from the address of the map. The
1150
      // lower bits are not very random, due to alignment, so we discard them
1151
      // and shift the higher bits into their place.
1152
      size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
1153
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC)
1154
#if defined(__APPLE__)
1155
      // Use a commpage-based fast time function on Apple environments (MacOS,
1156
      // iOS, tvOS, watchOS, etc).
1157
      s += mach_absolute_time();
1158
#elif defined(__x86_64__) && defined(__GNUC__)
1159
      uint32_t hi, lo;
1160
      asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
1161
      s += ((static_cast<uint64_t>(hi) << 32) | lo);
1162
#elif defined(__aarch64__) && defined(__GNUC__)
1163
      // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the
1164
      // system timer. It runs at a different frequency than the CPU's, but is
1165
      // the best source of time-based entropy we get.
1166
      uint64_t virtual_timer_value;
1167
      asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
1168
      s += virtual_timer_value;
1169
#endif
1170
#endif  // !defined(GOOGLE_PROTOBUF_NO_RDTSC)
1171
      return s;
1172
    }
1173
1174
    friend class Arena;
1175
    using InternalArenaConstructable_ = void;
1176
    using DestructorSkippable_ = void;
1177
1178
    size_type num_elements_;
1179
    size_type num_buckets_;
1180
    size_type seed_;
1181
    size_type index_of_first_non_null_;
1182
    void** table_;  // an array with num_buckets_ entries
1183
    Allocator alloc_;
1184
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
1185
  };  // end of class InnerMap
1186
1187
  template <typename LookupKey>
1188
  using key_arg = typename internal::TransparentSupport<
1189
      key_type>::template key_arg<LookupKey>;
1190
1191
 public:
1192
  // Iterators
1193
  class const_iterator {
1194
    using InnerIt = typename InnerMap::const_iterator;
1195
1196
   public:
1197
    using iterator_category = std::forward_iterator_tag;
1198
    using value_type = typename Map::value_type;
1199
    using difference_type = ptrdiff_t;
1200
    using pointer = const value_type*;
1201
    using reference = const value_type&;
1202
1203
    const_iterator() {}
1204
    explicit const_iterator(const InnerIt& it) : it_(it) {}
1205
1206
    const_reference operator*() const { return *it_; }
1207
    const_pointer operator->() const { return &(operator*()); }
1208
1209
    const_iterator& operator++() {
1210
      ++it_;
1211
      return *this;
1212
    }
1213
    const_iterator operator++(int) { return const_iterator(it_++); }
1214
1215
    friend bool operator==(const const_iterator& a, const const_iterator& b) {
1216
      return a.it_ == b.it_;
1217
    }
1218
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
1219
      return !(a == b);
1220
    }
1221
1222
   private:
1223
    InnerIt it_;
1224
  };
1225
1226
  class iterator {
1227
    using InnerIt = typename InnerMap::iterator;
1228
1229
   public:
1230
    using iterator_category = std::forward_iterator_tag;
1231
    using value_type = typename Map::value_type;
1232
    using difference_type = ptrdiff_t;
1233
    using pointer = value_type*;
1234
    using reference = value_type&;
1235
1236
    iterator() {}
1237
    explicit iterator(const InnerIt& it) : it_(it) {}
1238
1239
    reference operator*() const { return *it_; }
1240
    pointer operator->() const { return &(operator*()); }
1241
1242
    iterator& operator++() {
1243
      ++it_;
1244
      return *this;
1245
    }
1246
    iterator operator++(int) { return iterator(it_++); }
1247
1248
    // Allow implicit conversion to const_iterator.
1249
    operator const_iterator() const {  // NOLINT(runtime/explicit)
1250
      return const_iterator(typename InnerMap::const_iterator(it_));
1251
    }
1252
1253
    friend bool operator==(const iterator& a, const iterator& b) {
1254
      return a.it_ == b.it_;
1255
    }
1256
    friend bool operator!=(const iterator& a, const iterator& b) {
1257
      return !(a == b);
1258
    }
1259
1260
   private:
1261
    friend class Map;
1262
1263
    InnerIt it_;
1264
  };
1265
1266
  iterator begin() { return iterator(elements_.begin()); }
1267
  iterator end() { return iterator(elements_.end()); }
1268
  const_iterator begin() const { return const_iterator(elements_.begin()); }
1269
  const_iterator end() const { return const_iterator(elements_.end()); }
1270
  const_iterator cbegin() const { return begin(); }
1271
  const_iterator cend() const { return end(); }
1272
1273
  // Capacity
1274
  size_type size() const { return elements_.size(); }
1275
  bool empty() const { return size() == 0; }
1276
1277
  // Element access
1278
  template <typename K = key_type>
1279
  T& operator[](const key_arg<K>& key) {
1280
    return elements_[key].second;
1281
  }
1282
  template <
1283
      typename K = key_type,
1284
      // Disable for integral types to reduce code bloat.
1285
      typename = typename std::enable_if<!std::is_integral<K>::value>::type>
1286
  T& operator[](key_arg<K>&& key) {
1287
    return elements_[std::forward<K>(key)].second;
1288
  }
1289
1290
  template <typename K = key_type>
1291
  const T& at(const key_arg<K>& key) const {
1292
    const_iterator it = find(key);
1293
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
1294
    return it->second;
1295
  }
1296
1297
  template <typename K = key_type>
1298
  T& at(const key_arg<K>& key) {
1299
    iterator it = find(key);
1300
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
1301
    return it->second;
1302
  }
1303
1304
  // Lookup
1305
  template <typename K = key_type>
1306
  size_type count(const key_arg<K>& key) const {
1307
    return find(key) == end() ? 0 : 1;
1308
  }
1309
1310
  template <typename K = key_type>
1311
  const_iterator find(const key_arg<K>& key) const {
1312
    return const_iterator(elements_.find(key));
1313
  }
1314
  template <typename K = key_type>
1315
  iterator find(const key_arg<K>& key) {
1316
    return iterator(elements_.find(key));
1317
  }
1318
1319
  template <typename K = key_type>
1320
  bool contains(const key_arg<K>& key) const {
1321
    return find(key) != end();
1322
  }
1323
1324
  template <typename K = key_type>
1325
  std::pair<const_iterator, const_iterator> equal_range(
1326
      const key_arg<K>& key) const {
1327
    const_iterator it = find(key);
1328
    if (it == end()) {
1329
      return std::pair<const_iterator, const_iterator>(it, it);
1330
    } else {
1331
      const_iterator begin = it++;
1332
      return std::pair<const_iterator, const_iterator>(begin, it);
1333
    }
1334
  }
1335
1336
  template <typename K = key_type>
1337
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
1338
    iterator it = find(key);
1339
    if (it == end()) {
1340
      return std::pair<iterator, iterator>(it, it);
1341
    } else {
1342
      iterator begin = it++;
1343
      return std::pair<iterator, iterator>(begin, it);
1344
    }
1345
  }
1346
1347
  // insert
1348
  template <typename K, typename... Args>
1349
  std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
1350
    auto p =
1351
        elements_.try_emplace(std::forward<K>(k), std::forward<Args>(args)...);
1352
    return std::pair<iterator, bool>(iterator(p.first), p.second);
1353
  }
1354
  std::pair<iterator, bool> insert(const value_type& value) {
1355
    return try_emplace(value.first, value.second);
1356
  }
1357
  std::pair<iterator, bool> insert(value_type&& value) {
1358
    return try_emplace(value.first, std::move(value.second));
1359
  }
1360
  template <typename... Args>
1361
  std::pair<iterator, bool> emplace(Args&&... args) {
1362
    return insert(value_type(std::forward<Args>(args)...));
1363
  }
1364
  template <class InputIt>
1365
  void insert(InputIt first, InputIt last) {
1366
    for (; first != last; ++first) {
1367
      try_emplace(first->first, first->second);
1368
    }
1369
  }
1370
  void insert(std::initializer_list<value_type> values) {
1371
    insert(values.begin(), values.end());
1372
  }
1373
1374
  // Erase and clear
1375
  template <typename K = key_type>
1376
  size_type erase(const key_arg<K>& key) {
1377
    iterator it = find(key);
1378
    if (it == end()) {
1379
      return 0;
1380
    } else {
1381
      erase(it);
1382
      return 1;
1383
    }
1384
  }
1385
  iterator erase(iterator pos) {
1386
    iterator i = pos++;
1387
    elements_.erase(i.it_);
1388
    return pos;
1389
  }
1390
  void erase(iterator first, iterator last) {
1391
    while (first != last) {
1392
      first = erase(first);
1393
    }
1394
  }
1395
  void clear() { elements_.clear(); }
1396
1397
  // Assign
1398
  Map& operator=(const Map& other) {
1399
    if (this != &other) {
1400
      clear();
1401
      insert(other.begin(), other.end());
1402
    }
1403
    return *this;
1404
  }
1405
1406
  void swap(Map& other) {
1407
    if (arena() == other.arena()) {
1408
      InternalSwap(other);
1409
    } else {
1410
      // TODO(zuguang): optimize this. The temporary copy can be allocated
1411
      // in the same arena as the other message, and the "other = copy" can
1412
      // be replaced with the fast-path swap above.
1413
      Map copy = *this;
1414
      *this = other;
1415
      other = copy;
1416
    }
1417
  }
1418
1419
  void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }
1420
1421
  // Access to hasher.  Currently this returns a copy, but it may
1422
  // be modified to return a const reference in the future.
1423
  hasher hash_function() const { return elements_.hash_function(); }
1424
1425
  size_t SpaceUsedExcludingSelfLong() const {
1426
    if (empty()) return 0;
1427
    return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
1428
  }
1429
1430
 private:
1431
  Arena* arena() const { return elements_.arena(); }
1432
  InnerMap elements_;
1433
1434
  friend class Arena;
1435
  using InternalArenaConstructable_ = void;
1436
  using DestructorSkippable_ = void;
1437
  template <typename Derived, typename K, typename V,
1438
            internal::WireFormatLite::FieldType key_wire_type,
1439
            internal::WireFormatLite::FieldType value_wire_type>
1440
  friend class internal::MapFieldLite;
1441
};
1442
1443
}  // namespace protobuf
1444
}  // namespace google
1445
1446
#include <google/protobuf/port_undef.inc>
1447
1448
#endif  // GOOGLE_PROTOBUF_MAP_H__