Coverage Report

Created: 2023-03-26 07:54

/src/LPM/external.protobuf/include/google/protobuf/message.h
Line
Count
Source (jump to first uncovered line)
1
// Protocol Buffers - Google's data interchange format
2
// Copyright 2008 Google Inc.  All rights reserved.
3
// https://developers.google.com/protocol-buffers/
4
//
5
// Redistribution and use in source and binary forms, with or without
6
// modification, are permitted provided that the following conditions are
7
// met:
8
//
9
//     * Redistributions of source code must retain the above copyright
10
// notice, this list of conditions and the following disclaimer.
11
//     * Redistributions in binary form must reproduce the above
12
// copyright notice, this list of conditions and the following disclaimer
13
// in the documentation and/or other materials provided with the
14
// distribution.
15
//     * Neither the name of Google Inc. nor the names of its
16
// contributors may be used to endorse or promote products derived from
17
// this software without specific prior written permission.
18
//
19
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
// Author: kenton@google.com (Kenton Varda)
32
//  Based on original Protocol Buffers design by
33
//  Sanjay Ghemawat, Jeff Dean, and others.
34
//
35
// Defines Message, the abstract interface implemented by non-lite
36
// protocol message objects.  Although it's possible to implement this
37
// interface manually, most users will use the protocol compiler to
38
// generate implementations.
39
//
40
// Example usage:
41
//
42
// Say you have a message defined as:
43
//
44
//   message Foo {
45
//     optional string text = 1;
46
//     repeated int32 numbers = 2;
47
//   }
48
//
49
// Then, if you used the protocol compiler to generate a class from the above
50
// definition, you could use it like so:
51
//
52
//   std::string data;  // Will store a serialized version of the message.
53
//
54
//   {
55
//     // Create a message and serialize it.
56
//     Foo foo;
57
//     foo.set_text("Hello World!");
58
//     foo.add_numbers(1);
59
//     foo.add_numbers(5);
60
//     foo.add_numbers(42);
61
//
62
//     foo.SerializeToString(&data);
63
//   }
64
//
65
//   {
66
//     // Parse the serialized message and check that it contains the
67
//     // correct data.
68
//     Foo foo;
69
//     foo.ParseFromString(data);
70
//
71
//     assert(foo.text() == "Hello World!");
72
//     assert(foo.numbers_size() == 3);
73
//     assert(foo.numbers(0) == 1);
74
//     assert(foo.numbers(1) == 5);
75
//     assert(foo.numbers(2) == 42);
76
//   }
77
//
78
//   {
79
//     // Same as the last block, but do it dynamically via the Message
80
//     // reflection interface.
81
//     Message* foo = new Foo;
82
//     const Descriptor* descriptor = foo->GetDescriptor();
83
//
84
//     // Get the descriptors for the fields we're interested in and verify
85
//     // their types.
86
//     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87
//     assert(text_field != nullptr);
88
//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89
//     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90
//     const FieldDescriptor* numbers_field = descriptor->
91
//                                            FindFieldByName("numbers");
92
//     assert(numbers_field != nullptr);
93
//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94
//     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95
//
96
//     // Parse the message.
97
//     foo->ParseFromString(data);
98
//
99
//     // Use the reflection interface to examine the contents.
100
//     const Reflection* reflection = foo->GetReflection();
101
//     assert(reflection->GetString(*foo, text_field) == "Hello World!");
102
//     assert(reflection->FieldSize(*foo, numbers_field) == 3);
103
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106
//
107
//     delete foo;
108
//   }
109
110
#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111
#define GOOGLE_PROTOBUF_MESSAGE_H__
112
113
114
#include <iosfwd>
115
#include <string>
116
#include <type_traits>
117
#include <vector>
118
119
#include <google/protobuf/stubs/casts.h>
120
#include <google/protobuf/stubs/common.h>
121
#include <google/protobuf/arena.h>
122
#include <google/protobuf/port.h>
123
#include <google/protobuf/descriptor.h>
124
#include <google/protobuf/generated_message_reflection.h>
125
#include <google/protobuf/generated_message_util.h>
126
#include <google/protobuf/map.h>  // TODO(b/211442718): cleanup
127
#include <google/protobuf/message_lite.h>
128
129
130
// Must be included last.
131
#include <google/protobuf/port_def.inc>
132
133
#ifdef SWIG
134
#error "You cannot SWIG proto headers"
135
#endif
136
137
namespace google {
138
namespace protobuf {
139
140
// Defined in this file.
141
class Message;
142
class Reflection;
143
class MessageFactory;
144
145
// Defined in other files.
146
class AssignDescriptorsHelper;
147
class DynamicMessageFactory;
148
class GeneratedMessageReflectionTestHelper;
149
class MapKey;
150
class MapValueConstRef;
151
class MapValueRef;
152
class MapIterator;
153
class MapReflectionTester;
154
155
namespace internal {
156
struct DescriptorTable;
157
class MapFieldBase;
158
class SwapFieldHelper;
159
class CachedSize;
160
}  // namespace internal
161
class UnknownFieldSet;  // unknown_field_set.h
162
namespace io {
163
class ZeroCopyInputStream;   // zero_copy_stream.h
164
class ZeroCopyOutputStream;  // zero_copy_stream.h
165
class CodedInputStream;      // coded_stream.h
166
class CodedOutputStream;     // coded_stream.h
167
}  // namespace io
168
namespace python {
169
class MapReflectionFriend;  // scalar_map_container.h
170
class MessageReflectionFriend;
171
}  // namespace python
172
namespace expr {
173
class CelMapReflectionFriend;  // field_backed_map_impl.cc
174
}
175
176
namespace internal {
177
class MapFieldPrinterHelper;  // text_format.cc
178
}
179
namespace util {
180
class MessageDifferencer;
181
}
182
183
184
namespace internal {
185
class ReflectionAccessor;      // message.cc
186
class ReflectionOps;           // reflection_ops.h
187
class MapKeySorter;            // wire_format.cc
188
class WireFormat;              // wire_format.h
189
class MapFieldReflectionTest;  // map_test.cc
190
}  // namespace internal
191
192
template <typename T>
193
class RepeatedField;  // repeated_field.h
194
195
template <typename T>
196
class RepeatedPtrField;  // repeated_field.h
197
198
// A container to hold message metadata.
199
struct Metadata {
200
  const Descriptor* descriptor;
201
  const Reflection* reflection;
202
};
203
204
namespace internal {
205
template <class To>
206
inline To* GetPointerAtOffset(Message* message, uint32_t offset) {
207
  return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
208
}
209
210
template <class To>
211
0
const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) {
212
0
  return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
213
0
                                     offset);
214
0
}
215
216
template <class To>
217
0
const To& GetConstRefAtOffset(const Message& message, uint32_t offset) {
218
0
  return *GetConstPointerAtOffset<To>(&message, offset);
219
0
}
220
221
bool CreateUnknownEnumValues(const FieldDescriptor* field);
222
223
// Returns true if "message" is a descendant of "root".
224
PROTOBUF_EXPORT bool IsDescendant(Message& root, const Message& message);
225
}  // namespace internal
226
227
// Abstract interface for protocol messages.
228
//
229
// See also MessageLite, which contains most every-day operations.  Message
230
// adds descriptors and reflection on top of that.
231
//
232
// The methods of this class that are virtual but not pure-virtual have
233
// default implementations based on reflection.  Message classes which are
234
// optimized for speed will want to override these with faster implementations,
235
// but classes optimized for code size may be happy with keeping them.  See
236
// the optimize_for option in descriptor.proto.
237
//
238
// Users must not derive from this class. Only the protocol compiler and
239
// the internal library are allowed to create subclasses.
240
class PROTOBUF_EXPORT Message : public MessageLite {
241
 public:
242
0
  constexpr Message() {}
243
244
  // Basic Operations ------------------------------------------------
245
246
  // Construct a new instance of the same type.  Ownership is passed to the
247
  // caller.  (This is also defined in MessageLite, but is defined again here
248
  // for return-type covariance.)
249
0
  Message* New() const { return New(nullptr); }
250
251
  // Construct a new instance on the arena. Ownership is passed to the caller
252
  // if arena is a nullptr.
253
  Message* New(Arena* arena) const override = 0;
254
255
  // Make this message into a copy of the given message.  The given message
256
  // must have the same descriptor, but need not necessarily be the same class.
257
  // By default this is just implemented as "Clear(); MergeFrom(from);".
258
  void CopyFrom(const Message& from);
259
260
  // Merge the fields from the given message into this message.  Singular
261
  // fields will be overwritten, if specified in from, except for embedded
262
  // messages which will be merged.  Repeated fields will be concatenated.
263
  // The given message must be of the same type as this message (i.e. the
264
  // exact same class).
265
  virtual void MergeFrom(const Message& from);
266
267
  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
268
  // a nice error message.
269
  void CheckInitialized() const;
270
271
  // Slowly build a list of all required fields that are not set.
272
  // This is much, much slower than IsInitialized() as it is implemented
273
  // purely via reflection.  Generally, you should not call this unless you
274
  // have already determined that an error exists by calling IsInitialized().
275
  void FindInitializationErrors(std::vector<std::string>* errors) const;
276
277
  // Like FindInitializationErrors, but joins all the strings, delimited by
278
  // commas, and returns them.
279
  std::string InitializationErrorString() const override;
280
281
  // Clears all unknown fields from this message and all embedded messages.
282
  // Normally, if unknown tag numbers are encountered when parsing a message,
283
  // the tag and value are stored in the message's UnknownFieldSet and
284
  // then written back out when the message is serialized.  This allows servers
285
  // which simply route messages to other servers to pass through messages
286
  // that have new field definitions which they don't yet know about.  However,
287
  // this behavior can have security implications.  To avoid it, call this
288
  // method after parsing.
289
  //
290
  // See Reflection::GetUnknownFields() for more on unknown fields.
291
  void DiscardUnknownFields();
292
293
  // Computes (an estimate of) the total number of bytes currently used for
294
  // storing the message in memory.  The default implementation calls the
295
  // Reflection object's SpaceUsed() method.
296
  //
297
  // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
298
  // using reflection (rather than the generated code implementation for
299
  // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
300
  // fields defined for the proto.
301
  virtual size_t SpaceUsedLong() const;
302
303
  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
304
0
  int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
305
306
  // Debugging & Testing----------------------------------------------
307
308
  // Generates a human-readable form of this message for debugging purposes.
309
  // Note that the format and content of a debug string is not guaranteed, may
310
  // change without notice, and should not be depended on. Code that does
311
  // anything except display a string to assist in debugging should use
312
  // TextFormat instead.
313
  std::string DebugString() const;
314
  // Like DebugString(), but with less whitespace.
315
  std::string ShortDebugString() const;
316
  // Like DebugString(), but do not escape UTF-8 byte sequences.
317
  std::string Utf8DebugString() const;
318
  // Convenience function useful in GDB.  Prints DebugString() to stdout.
319
  void PrintDebugString() const;
320
321
  // Reflection-based methods ----------------------------------------
322
  // These methods are pure-virtual in MessageLite, but Message provides
323
  // reflection-based default implementations.
324
325
  std::string GetTypeName() const override;
326
  void Clear() override;
327
328
  // Returns whether all required fields have been set. Note that required
329
  // fields no longer exist starting in proto3.
330
  bool IsInitialized() const override;
331
332
  void CheckTypeAndMergeFrom(const MessageLite& other) override;
333
  // Reflective parser
334
  const char* _InternalParse(const char* ptr,
335
                             internal::ParseContext* ctx) override;
336
  size_t ByteSizeLong() const override;
337
  uint8_t* _InternalSerialize(uint8_t* target,
338
                              io::EpsCopyOutputStream* stream) const override;
339
340
 private:
341
  // This is called only by the default implementation of ByteSize(), to
342
  // update the cached size.  If you override ByteSize(), you do not need
343
  // to override this.  If you do not override ByteSize(), you MUST override
344
  // this; the default implementation will crash.
345
  //
346
  // The method is private because subclasses should never call it; only
347
  // override it.  Yes, C++ lets you do that.  Crazy, huh?
348
  virtual void SetCachedSize(int size) const;
349
350
 public:
351
  // Introspection ---------------------------------------------------
352
353
354
  // Get a non-owning pointer to a Descriptor for this message's type.  This
355
  // describes what fields the message contains, the types of those fields, etc.
356
  // This object remains property of the Message.
357
0
  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
358
359
  // Get a non-owning pointer to the Reflection interface for this Message,
360
  // which can be used to read and modify the fields of the Message dynamically
361
  // (in other words, without knowing the message type at compile time).  This
362
  // object remains property of the Message.
363
0
  const Reflection* GetReflection() const { return GetMetadata().reflection; }
364
365
 protected:
366
  // Get a struct containing the metadata for the Message, which is used in turn
367
  // to implement GetDescriptor() and GetReflection() above.
368
  virtual Metadata GetMetadata() const = 0;
369
370
  struct ClassData {
371
    // Note: The order of arguments (to, then from) is chosen so that the ABI
372
    // of this function is the same as the CopyFrom method.  That is, the
373
    // hidden "this" parameter comes first.
374
    void (*copy_to_from)(Message& to, const Message& from_msg);
375
    void (*merge_to_from)(Message& to, const Message& from_msg);
376
  };
377
  // GetClassData() returns a pointer to a ClassData struct which
378
  // exists in global memory and is unique to each subclass.  This uniqueness
379
  // property is used in order to quickly determine whether two messages are
380
  // of the same type.
381
  // TODO(jorg): change to pure virtual
382
0
  virtual const ClassData* GetClassData() const { return nullptr; }
383
384
  // CopyWithSourceCheck calls Clear() and then MergeFrom(), and in debug
385
  // builds, checks that calling Clear() on the destination message doesn't
386
  // alter the source.  It assumes the messages are known to be of the same
387
  // type, and thus uses GetClassData().
388
  static void CopyWithSourceCheck(Message& to, const Message& from);
389
390
  // Fail if "from" is a descendant of "to" as such copy is not allowed.
391
  static void FailIfCopyFromDescendant(Message& to, const Message& from);
392
393
  inline explicit Message(Arena* arena, bool is_message_owned = false)
394
683k
      : MessageLite(arena, is_message_owned) {}
395
  size_t ComputeUnknownFieldsSize(size_t total_size,
396
                                  internal::CachedSize* cached_size) const;
397
  size_t MaybeComputeUnknownFieldsSize(size_t total_size,
398
                                       internal::CachedSize* cached_size) const;
399
400
401
 protected:
402
  static uint64_t GetInvariantPerBuild(uint64_t salt);
403
404
 private:
405
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
406
};
407
408
namespace internal {
409
// Forward-declare interfaces used to implement RepeatedFieldRef.
410
// These are protobuf internals that users shouldn't care about.
411
class RepeatedFieldAccessor;
412
}  // namespace internal
413
414
// Forward-declare RepeatedFieldRef templates. The second type parameter is
415
// used for SFINAE tricks. Users should ignore it.
416
template <typename T, typename Enable = void>
417
class RepeatedFieldRef;
418
419
template <typename T, typename Enable = void>
420
class MutableRepeatedFieldRef;
421
422
// This interface contains methods that can be used to dynamically access
423
// and modify the fields of a protocol message.  Their semantics are
424
// similar to the accessors the protocol compiler generates.
425
//
426
// To get the Reflection for a given Message, call Message::GetReflection().
427
//
428
// This interface is separate from Message only for efficiency reasons;
429
// the vast majority of implementations of Message will share the same
430
// implementation of Reflection (GeneratedMessageReflection,
431
// defined in generated_message.h), and all Messages of a particular class
432
// should share the same Reflection object (though you should not rely on
433
// the latter fact).
434
//
435
// There are several ways that these methods can be used incorrectly.  For
436
// example, any of the following conditions will lead to undefined
437
// results (probably assertion failures):
438
// - The FieldDescriptor is not a field of this message type.
439
// - The method called is not appropriate for the field's type.  For
440
//   each field type in FieldDescriptor::TYPE_*, there is only one
441
//   Get*() method, one Set*() method, and one Add*() method that is
442
//   valid for that type.  It should be obvious which (except maybe
443
//   for TYPE_BYTES, which are represented using strings in C++).
444
// - A Get*() or Set*() method for singular fields is called on a repeated
445
//   field.
446
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
447
//   field.
448
// - The Message object passed to any method is not of the right type for
449
//   this Reflection object (i.e. message.GetReflection() != reflection).
450
//
451
// You might wonder why there is not any abstract representation for a field
452
// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
453
// returns "const Field&", where "Field" is some class with accessors like
454
// "GetInt32Value()".  The problem is that someone would have to deal with
455
// allocating these Field objects.  For generated message classes, having to
456
// allocate space for an additional object to wrap every field would at least
457
// double the message's memory footprint, probably worse.  Allocating the
458
// objects on-demand, on the other hand, would be expensive and prone to
459
// memory leaks.  So, instead we ended up with this flat interface.
460
class PROTOBUF_EXPORT Reflection final {
461
 public:
462
  // Get the UnknownFieldSet for the message.  This contains fields which
463
  // were seen when the Message was parsed but were not recognized according
464
  // to the Message's definition.
465
  const UnknownFieldSet& GetUnknownFields(const Message& message) const;
466
  // Get a mutable pointer to the UnknownFieldSet for the message.  This
467
  // contains fields which were seen when the Message was parsed but were not
468
  // recognized according to the Message's definition.
469
  UnknownFieldSet* MutableUnknownFields(Message* message) const;
470
471
  // Estimate the amount of memory used by the message object.
472
  size_t SpaceUsedLong(const Message& message) const;
473
474
  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
475
0
  int SpaceUsed(const Message& message) const {
476
0
    return internal::ToIntSize(SpaceUsedLong(message));
477
0
  }
478
479
  // Check if the given non-repeated field is set.
480
  bool HasField(const Message& message, const FieldDescriptor* field) const;
481
482
  // Get the number of elements of a repeated field.
483
  int FieldSize(const Message& message, const FieldDescriptor* field) const;
484
485
  // Clear the value of a field, so that HasField() returns false or
486
  // FieldSize() returns zero.
487
  void ClearField(Message* message, const FieldDescriptor* field) const;
488
489
  // Check if the oneof is set. Returns true if any field in oneof
490
  // is set, false otherwise.
491
  bool HasOneof(const Message& message,
492
                const OneofDescriptor* oneof_descriptor) const;
493
494
  void ClearOneof(Message* message,
495
                  const OneofDescriptor* oneof_descriptor) const;
496
497
  // Returns the field descriptor if the oneof is set. nullptr otherwise.
498
  const FieldDescriptor* GetOneofFieldDescriptor(
499
      const Message& message, const OneofDescriptor* oneof_descriptor) const;
500
501
  // Removes the last element of a repeated field.
502
  // We don't provide a way to remove any element other than the last
503
  // because it invites inefficient use, such as O(n^2) filtering loops
504
  // that should have been O(n).  If you want to remove an element other
505
  // than the last, the best way to do it is to re-arrange the elements
506
  // (using Swap()) so that the one you want removed is at the end, then
507
  // call RemoveLast().
508
  void RemoveLast(Message* message, const FieldDescriptor* field) const;
509
  // Removes the last element of a repeated message field, and returns the
510
  // pointer to the caller.  Caller takes ownership of the returned pointer.
511
  PROTOBUF_NODISCARD Message* ReleaseLast(Message* message,
512
                                          const FieldDescriptor* field) const;
513
514
  // Similar to ReleaseLast() without internal safety and ownershp checks. This
515
  // method should only be used when the objects are on the same arena or paired
516
  // with a call to `UnsafeArenaAddAllocatedMessage`.
517
  Message* UnsafeArenaReleaseLast(Message* message,
518
                                  const FieldDescriptor* field) const;
519
520
  // Swap the complete contents of two messages.
521
  void Swap(Message* message1, Message* message2) const;
522
523
  // Swap fields listed in fields vector of two messages.
524
  void SwapFields(Message* message1, Message* message2,
525
                  const std::vector<const FieldDescriptor*>& fields) const;
526
527
  // Swap two elements of a repeated field.
528
  void SwapElements(Message* message, const FieldDescriptor* field, int index1,
529
                    int index2) const;
530
531
  // Swap without internal safety and ownership checks. This method should only
532
  // be used when the objects are on the same arena.
533
  void UnsafeArenaSwap(Message* lhs, Message* rhs) const;
534
535
  // SwapFields without internal safety and ownership checks. This method should
536
  // only be used when the objects are on the same arena.
537
  void UnsafeArenaSwapFields(
538
      Message* lhs, Message* rhs,
539
      const std::vector<const FieldDescriptor*>& fields) const;
540
541
  // List all fields of the message which are currently set, except for unknown
542
  // fields, but including extension known to the parser (i.e. compiled in).
543
  // Singular fields will only be listed if HasField(field) would return true
544
  // and repeated fields will only be listed if FieldSize(field) would return
545
  // non-zero.  Fields (both normal fields and extension fields) will be listed
546
  // ordered by field number.
547
  // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
548
  // access to fields/extensions unknown to the parser.
549
  void ListFields(const Message& message,
550
                  std::vector<const FieldDescriptor*>* output) const;
551
552
  // Singular field getters ------------------------------------------
553
  // These get the value of a non-repeated field.  They return the default
554
  // value for fields that aren't set.
555
556
  int32_t GetInt32(const Message& message, const FieldDescriptor* field) const;
557
  int64_t GetInt64(const Message& message, const FieldDescriptor* field) const;
558
  uint32_t GetUInt32(const Message& message,
559
                     const FieldDescriptor* field) const;
560
  uint64_t GetUInt64(const Message& message,
561
                     const FieldDescriptor* field) const;
562
  float GetFloat(const Message& message, const FieldDescriptor* field) const;
563
  double GetDouble(const Message& message, const FieldDescriptor* field) const;
564
  bool GetBool(const Message& message, const FieldDescriptor* field) const;
565
  std::string GetString(const Message& message,
566
                        const FieldDescriptor* field) const;
567
  const EnumValueDescriptor* GetEnum(const Message& message,
568
                                     const FieldDescriptor* field) const;
569
570
  // GetEnumValue() returns an enum field's value as an integer rather than
571
  // an EnumValueDescriptor*. If the integer value does not correspond to a
572
  // known value descriptor, a new value descriptor is created. (Such a value
573
  // will only be present when the new unknown-enum-value semantics are enabled
574
  // for a message.)
575
  int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
576
577
  // See MutableMessage() for the meaning of the "factory" parameter.
578
  const Message& GetMessage(const Message& message,
579
                            const FieldDescriptor* field,
580
                            MessageFactory* factory = nullptr) const;
581
582
  // Get a string value without copying, if possible.
583
  //
584
  // GetString() necessarily returns a copy of the string.  This can be
585
  // inefficient when the std::string is already stored in a std::string object
586
  // in the underlying message.  GetStringReference() will return a reference to
587
  // the underlying std::string in this case.  Otherwise, it will copy the
588
  // string into *scratch and return that.
589
  //
590
  // Note:  It is perfectly reasonable and useful to write code like:
591
  //     str = reflection->GetStringReference(message, field, &str);
592
  //   This line would ensure that only one copy of the string is made
593
  //   regardless of the field's underlying representation.  When initializing
594
  //   a newly-constructed string, though, it's just as fast and more
595
  //   readable to use code like:
596
  //     std::string str = reflection->GetString(message, field);
597
  const std::string& GetStringReference(const Message& message,
598
                                        const FieldDescriptor* field,
599
                                        std::string* scratch) const;
600
601
602
  // Singular field mutators -----------------------------------------
603
  // These mutate the value of a non-repeated field.
604
605
  void SetInt32(Message* message, const FieldDescriptor* field,
606
                int32_t value) const;
607
  void SetInt64(Message* message, const FieldDescriptor* field,
608
                int64_t value) const;
609
  void SetUInt32(Message* message, const FieldDescriptor* field,
610
                 uint32_t value) const;
611
  void SetUInt64(Message* message, const FieldDescriptor* field,
612
                 uint64_t value) const;
613
  void SetFloat(Message* message, const FieldDescriptor* field,
614
                float value) const;
615
  void SetDouble(Message* message, const FieldDescriptor* field,
616
                 double value) const;
617
  void SetBool(Message* message, const FieldDescriptor* field,
618
               bool value) const;
619
  void SetString(Message* message, const FieldDescriptor* field,
620
                 std::string value) const;
621
  void SetEnum(Message* message, const FieldDescriptor* field,
622
               const EnumValueDescriptor* value) const;
623
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
624
  // For proto3 this is just setting the enum field to the value specified, for
625
  // proto2 it's more complicated. If value is a known enum value the field is
626
  // set as usual. If the value is unknown then it is added to the unknown field
627
  // set. Note this matches the behavior of parsing unknown enum values.
628
  // If multiple calls with unknown values happen than they are all added to the
629
  // unknown field set in order of the calls.
630
  void SetEnumValue(Message* message, const FieldDescriptor* field,
631
                    int value) const;
632
633
  // Get a mutable pointer to a field with a message type.  If a MessageFactory
634
  // is provided, it will be used to construct instances of the sub-message;
635
  // otherwise, the default factory is used.  If the field is an extension that
636
  // does not live in the same pool as the containing message's descriptor (e.g.
637
  // it lives in an overlay pool), then a MessageFactory must be provided.
638
  // If you have no idea what that meant, then you probably don't need to worry
639
  // about it (don't provide a MessageFactory).  WARNING:  If the
640
  // FieldDescriptor is for a compiled-in extension, then
641
  // factory->GetPrototype(field->message_type()) MUST return an instance of
642
  // the compiled-in class for this type, NOT DynamicMessage.
643
  Message* MutableMessage(Message* message, const FieldDescriptor* field,
644
                          MessageFactory* factory = nullptr) const;
645
646
  // Replaces the message specified by 'field' with the already-allocated object
647
  // sub_message, passing ownership to the message.  If the field contained a
648
  // message, that message is deleted.  If sub_message is nullptr, the field is
649
  // cleared.
650
  void SetAllocatedMessage(Message* message, Message* sub_message,
651
                           const FieldDescriptor* field) const;
652
653
  // Similar to `SetAllocatedMessage`, but omits all internal safety and
654
  // ownership checks.  This method should only be used when the objects are on
655
  // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
656
  void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
657
                                      const FieldDescriptor* field) const;
658
659
  // Releases the message specified by 'field' and returns the pointer,
660
  // ReleaseMessage() will return the message the message object if it exists.
661
  // Otherwise, it may or may not return nullptr.  In any case, if the return
662
  // value is non-null, the caller takes ownership of the pointer.
663
  // If the field existed (HasField() is true), then the returned pointer will
664
  // be the same as the pointer returned by MutableMessage().
665
  // This function has the same effect as ClearField().
666
  PROTOBUF_NODISCARD Message* ReleaseMessage(
667
      Message* message, const FieldDescriptor* field,
668
      MessageFactory* factory = nullptr) const;
669
670
  // Similar to `ReleaseMessage`, but omits all internal safety and ownership
671
  // checks.  This method should only be used when the objects are on the same
672
  // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
673
  Message* UnsafeArenaReleaseMessage(Message* message,
674
                                     const FieldDescriptor* field,
675
                                     MessageFactory* factory = nullptr) const;
676
677
678
  // Repeated field getters ------------------------------------------
679
  // These get the value of one element of a repeated field.
680
681
  int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
682
                           int index) const;
683
  int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
684
                           int index) const;
685
  uint32_t GetRepeatedUInt32(const Message& message,
686
                             const FieldDescriptor* field, int index) const;
687
  uint64_t GetRepeatedUInt64(const Message& message,
688
                             const FieldDescriptor* field, int index) const;
689
  float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
690
                         int index) const;
691
  double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
692
                           int index) const;
693
  bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
694
                       int index) const;
695
  std::string GetRepeatedString(const Message& message,
696
                                const FieldDescriptor* field, int index) const;
697
  const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
698
                                             const FieldDescriptor* field,
699
                                             int index) const;
700
  // GetRepeatedEnumValue() returns an enum field's value as an integer rather
701
  // than an EnumValueDescriptor*. If the integer value does not correspond to a
702
  // known value descriptor, a new value descriptor is created. (Such a value
703
  // will only be present when the new unknown-enum-value semantics are enabled
704
  // for a message.)
705
  int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
706
                           int index) const;
707
  const Message& GetRepeatedMessage(const Message& message,
708
                                    const FieldDescriptor* field,
709
                                    int index) const;
710
711
  // See GetStringReference(), above.
712
  const std::string& GetRepeatedStringReference(const Message& message,
713
                                                const FieldDescriptor* field,
714
                                                int index,
715
                                                std::string* scratch) const;
716
717
718
  // Repeated field mutators -----------------------------------------
719
  // These mutate the value of one element of a repeated field.
720
721
  void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
722
                        int index, int32_t value) const;
723
  void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
724
                        int index, int64_t value) const;
725
  void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
726
                         int index, uint32_t value) const;
727
  void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
728
                         int index, uint64_t value) const;
729
  void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
730
                        int index, float value) const;
731
  void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
732
                         int index, double value) const;
733
  void SetRepeatedBool(Message* message, const FieldDescriptor* field,
734
                       int index, bool value) const;
735
  void SetRepeatedString(Message* message, const FieldDescriptor* field,
736
                         int index, std::string value) const;
737
  void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
738
                       int index, const EnumValueDescriptor* value) const;
739
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
740
  // For proto3 this is just setting the enum field to the value specified, for
741
  // proto2 it's more complicated. If value is a known enum value the field is
742
  // set as usual. If the value is unknown then it is added to the unknown field
743
  // set. Note this matches the behavior of parsing unknown enum values.
744
  // If multiple calls with unknown values happen than they are all added to the
745
  // unknown field set in order of the calls.
746
  void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
747
                            int index, int value) const;
748
  // Get a mutable pointer to an element of a repeated field with a message
749
  // type.
750
  Message* MutableRepeatedMessage(Message* message,
751
                                  const FieldDescriptor* field,
752
                                  int index) const;
753
754
755
  // Repeated field adders -------------------------------------------
756
  // These add an element to a repeated field.
757
758
  void AddInt32(Message* message, const FieldDescriptor* field,
759
                int32_t value) const;
760
  void AddInt64(Message* message, const FieldDescriptor* field,
761
                int64_t value) const;
762
  void AddUInt32(Message* message, const FieldDescriptor* field,
763
                 uint32_t value) const;
764
  void AddUInt64(Message* message, const FieldDescriptor* field,
765
                 uint64_t value) const;
766
  void AddFloat(Message* message, const FieldDescriptor* field,
767
                float value) const;
768
  void AddDouble(Message* message, const FieldDescriptor* field,
769
                 double value) const;
770
  void AddBool(Message* message, const FieldDescriptor* field,
771
               bool value) const;
772
  void AddString(Message* message, const FieldDescriptor* field,
773
                 std::string value) const;
774
  void AddEnum(Message* message, const FieldDescriptor* field,
775
               const EnumValueDescriptor* value) const;
776
  // Add an integer value to a repeated enum field rather than
777
  // EnumValueDescriptor. For proto3 this is just setting the enum field to the
778
  // value specified, for proto2 it's more complicated. If value is a known enum
779
  // value the field is set as usual. If the value is unknown then it is added
780
  // to the unknown field set. Note this matches the behavior of parsing unknown
781
  // enum values. If multiple calls with unknown values happen than they are all
782
  // added to the unknown field set in order of the calls.
783
  void AddEnumValue(Message* message, const FieldDescriptor* field,
784
                    int value) const;
785
  // See MutableMessage() for comments on the "factory" parameter.
786
  Message* AddMessage(Message* message, const FieldDescriptor* field,
787
                      MessageFactory* factory = nullptr) const;
788
789
  // Appends an already-allocated object 'new_entry' to the repeated field
790
  // specified by 'field' passing ownership to the message.
791
  void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
792
                           Message* new_entry) const;
793
794
  // Similar to AddAllocatedMessage() without internal safety and ownership
795
  // checks. This method should only be used when the objects are on the same
796
  // arena or paired with a call to `UnsafeArenaReleaseLast`.
797
  void UnsafeArenaAddAllocatedMessage(Message* message,
798
                                      const FieldDescriptor* field,
799
                                      Message* new_entry) const;
800
801
802
  // Get a RepeatedFieldRef object that can be used to read the underlying
803
  // repeated field. The type parameter T must be set according to the
804
  // field's cpp type. The following table shows the mapping from cpp type
805
  // to acceptable T.
806
  //
807
  //   field->cpp_type()      T
808
  //   CPPTYPE_INT32        int32_t
809
  //   CPPTYPE_UINT32       uint32_t
810
  //   CPPTYPE_INT64        int64_t
811
  //   CPPTYPE_UINT64       uint64_t
812
  //   CPPTYPE_DOUBLE       double
813
  //   CPPTYPE_FLOAT        float
814
  //   CPPTYPE_BOOL         bool
815
  //   CPPTYPE_ENUM         generated enum type or int32_t
816
  //   CPPTYPE_STRING       std::string
817
  //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
818
  //
819
  // A RepeatedFieldRef object can be copied and the resulted object will point
820
  // to the same repeated field in the same message. The object can be used as
821
  // long as the message is not destroyed.
822
  //
823
  // Note that to use this method users need to include the header file
824
  // "reflection.h" (which defines the RepeatedFieldRef class templates).
825
  template <typename T>
826
  RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
827
                                          const FieldDescriptor* field) const;
828
829
  // Like GetRepeatedFieldRef() but return an object that can also be used
830
  // manipulate the underlying repeated field.
831
  template <typename T>
832
  MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
833
      Message* message, const FieldDescriptor* field) const;
834
835
  // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
836
  // access. The following repeated field accessors will be removed in the
837
  // future.
838
  //
839
  // Repeated field accessors  -------------------------------------------------
840
  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
841
  // access to the data in a RepeatedField.  The methods below provide aggregate
842
  // access by exposing the RepeatedField object itself with the Message.
843
  // Applying these templates to inappropriate types will lead to an undefined
844
  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
845
  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
846
  //
847
  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
848
849
  // DEPRECATED. Please use GetRepeatedFieldRef().
850
  //
851
  // for T = Cord and all protobuf scalar types except enums.
852
  template <typename T>
853
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
854
  const RepeatedField<T>& GetRepeatedField(const Message& msg,
855
                                           const FieldDescriptor* d) const {
856
    return GetRepeatedFieldInternal<T>(msg, d);
857
  }
858
859
  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
860
  //
861
  // for T = Cord and all protobuf scalar types except enums.
862
  template <typename T>
863
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
864
  RepeatedField<T>* MutableRepeatedField(Message* msg,
865
                                         const FieldDescriptor* d) const {
866
    return MutableRepeatedFieldInternal<T>(msg, d);
867
  }
868
869
  // DEPRECATED. Please use GetRepeatedFieldRef().
870
  //
871
  // for T = std::string, google::protobuf::internal::StringPieceField
872
  //         google::protobuf::Message & descendants.
873
  template <typename T>
874
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
875
  const RepeatedPtrField<T>& GetRepeatedPtrField(
876
      const Message& msg, const FieldDescriptor* d) const {
877
    return GetRepeatedPtrFieldInternal<T>(msg, d);
878
  }
879
880
  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
881
  //
882
  // for T = std::string, google::protobuf::internal::StringPieceField
883
  //         google::protobuf::Message & descendants.
884
  template <typename T>
885
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
886
  RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
887
                                               const FieldDescriptor* d) const {
888
    return MutableRepeatedPtrFieldInternal<T>(msg, d);
889
  }
890
891
  // Extensions ----------------------------------------------------------------
892
893
  // Try to find an extension of this message type by fully-qualified field
894
  // name.  Returns nullptr if no extension is known for this name or number.
895
  const FieldDescriptor* FindKnownExtensionByName(
896
      const std::string& name) const;
897
898
  // Try to find an extension of this message type by field number.
899
  // Returns nullptr if no extension is known for this name or number.
900
  const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
901
902
  // Feature Flags -------------------------------------------------------------
903
904
  // Does this message support storing arbitrary integer values in enum fields?
905
  // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
906
  // take arbitrary integer values, and the legacy GetEnum() getter will
907
  // dynamically create an EnumValueDescriptor for any integer value without
908
  // one. If |false|, setting an unknown enum value via the integer-based
909
  // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
910
  //
911
  // Generic code that uses reflection to handle messages with enum fields
912
  // should check this flag before using the integer-based setter, and either
913
  // downgrade to a compatible value or use the UnknownFieldSet if not. For
914
  // example:
915
  //
916
  //   int new_value = GetValueFromApplicationLogic();
917
  //   if (reflection->SupportsUnknownEnumValues()) {
918
  //     reflection->SetEnumValue(message, field, new_value);
919
  //   } else {
920
  //     if (field_descriptor->enum_type()->
921
  //             FindValueByNumber(new_value) != nullptr) {
922
  //       reflection->SetEnumValue(message, field, new_value);
923
  //     } else if (emit_unknown_enum_values) {
924
  //       reflection->MutableUnknownFields(message)->AddVarint(
925
  //           field->number(), new_value);
926
  //     } else {
927
  //       // convert value to a compatible/default value.
928
  //       new_value = CompatibleDowngrade(new_value);
929
  //       reflection->SetEnumValue(message, field, new_value);
930
  //     }
931
  //   }
932
  bool SupportsUnknownEnumValues() const;
933
934
  // Returns the MessageFactory associated with this message.  This can be
935
  // useful for determining if a message is a generated message or not, for
936
  // example:
937
  //   if (message->GetReflection()->GetMessageFactory() ==
938
  //       google::protobuf::MessageFactory::generated_factory()) {
939
  //     // This is a generated message.
940
  //   }
941
  // It can also be used to create more messages of this type, though
942
  // Message::New() is an easier way to accomplish this.
943
  MessageFactory* GetMessageFactory() const;
944
945
 private:
946
  template <typename T>
947
  const RepeatedField<T>& GetRepeatedFieldInternal(
948
      const Message& message, const FieldDescriptor* field) const;
949
  template <typename T>
950
  RepeatedField<T>* MutableRepeatedFieldInternal(
951
      Message* message, const FieldDescriptor* field) const;
952
  template <typename T>
953
  const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
954
      const Message& message, const FieldDescriptor* field) const;
955
  template <typename T>
956
  RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
957
      Message* message, const FieldDescriptor* field) const;
958
  // Obtain a pointer to a Repeated Field Structure and do some type checking:
959
  //   on field->cpp_type(),
960
  //   on field->field_option().ctype() (if ctype >= 0)
961
  //   of field->message_type() (if message_type != nullptr).
962
  // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
963
  void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
964
                                FieldDescriptor::CppType, int ctype,
965
                                const Descriptor* message_type) const;
966
967
  const void* GetRawRepeatedField(const Message& message,
968
                                  const FieldDescriptor* field,
969
                                  FieldDescriptor::CppType cpptype, int ctype,
970
                                  const Descriptor* message_type) const;
971
972
  // The following methods are used to implement (Mutable)RepeatedFieldRef.
973
  // A Ref object will store a raw pointer to the repeated field data (obtained
974
  // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
975
  // RepeatedFieldAccessor) which will be used to access the raw data.
976
977
  // Returns a raw pointer to the repeated field
978
  //
979
  // "cpp_type" and "message_type" are deduced from the type parameter T passed
980
  // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
981
  // "message_type" should be set to its descriptor. Otherwise "message_type"
982
  // should be set to nullptr. Implementations of this method should check
983
  // whether "cpp_type"/"message_type" is consistent with the actual type of the
984
  // field. We use 1 routine rather than 2 (const vs mutable) because it is
985
  // protected and it doesn't change the message.
986
  void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
987
                          FieldDescriptor::CppType cpp_type,
988
                          const Descriptor* message_type) const;
989
990
  // The returned pointer should point to a singleton instance which implements
991
  // the RepeatedFieldAccessor interface.
992
  const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
993
      const FieldDescriptor* field) const;
994
995
  // Lists all fields of the message which are currently set, except for unknown
996
  // fields and stripped fields. See ListFields for details.
997
  void ListFieldsOmitStripped(
998
      const Message& message,
999
      std::vector<const FieldDescriptor*>* output) const;
1000
1001
0
  bool IsMessageStripped(const Descriptor* descriptor) const {
1002
0
    return schema_.IsMessageStripped(descriptor);
1003
0
  }
1004
1005
  friend class TextFormat;
1006
1007
  void ListFieldsMayFailOnStripped(
1008
      const Message& message, bool should_fail,
1009
      std::vector<const FieldDescriptor*>* output) const;
1010
1011
  // Returns true if the message field is backed by a LazyField.
1012
  //
1013
  // A message field may be backed by a LazyField without the user annotation
1014
  // ([lazy = true]). While the user-annotated LazyField is lazily verified on
1015
  // first touch (i.e. failure on access rather than parsing if the LazyField is
1016
  // not initialized), the inferred LazyField is eagerly verified to avoid lazy
1017
  // parsing error at the cost of lower efficiency. When reflecting a message
1018
  // field, use this API instead of checking field->options().lazy().
1019
0
  bool IsLazyField(const FieldDescriptor* field) const {
1020
0
    return IsLazilyVerifiedLazyField(field) ||
1021
0
           IsEagerlyVerifiedLazyField(field);
1022
0
  }
1023
1024
  // Returns true if the field is lazy extension. It is meant to allow python
1025
  // reparse lazy field until b/157559327 is fixed.
1026
  bool IsLazyExtension(const Message& message,
1027
                       const FieldDescriptor* field) const;
1028
1029
  bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
1030
  bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;
1031
1032
  friend class FastReflectionMessageMutator;
1033
  friend bool internal::IsDescendant(Message& root, const Message& message);
1034
1035
  const Descriptor* const descriptor_;
1036
  const internal::ReflectionSchema schema_;
1037
  const DescriptorPool* const descriptor_pool_;
1038
  MessageFactory* const message_factory_;
1039
1040
  // Last non weak field index. This is an optimization when most weak fields
1041
  // are at the end of the containing message. If a message proto doesn't
1042
  // contain weak fields, then this field equals descriptor_->field_count().
1043
  int last_non_weak_field_index_;
1044
1045
  template <typename T, typename Enable>
1046
  friend class RepeatedFieldRef;
1047
  template <typename T, typename Enable>
1048
  friend class MutableRepeatedFieldRef;
1049
  friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
1050
  friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
1051
  friend class DynamicMessageFactory;
1052
  friend class GeneratedMessageReflectionTestHelper;
1053
  friend class python::MapReflectionFriend;
1054
  friend class python::MessageReflectionFriend;
1055
  friend class util::MessageDifferencer;
1056
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
1057
  friend class expr::CelMapReflectionFriend;
1058
  friend class internal::MapFieldReflectionTest;
1059
  friend class internal::MapKeySorter;
1060
  friend class internal::WireFormat;
1061
  friend class internal::ReflectionOps;
1062
  friend class internal::SwapFieldHelper;
1063
  // Needed for implementing text format for map.
1064
  friend class internal::MapFieldPrinterHelper;
1065
1066
  Reflection(const Descriptor* descriptor,
1067
             const internal::ReflectionSchema& schema,
1068
             const DescriptorPool* pool, MessageFactory* factory);
1069
1070
  // Special version for specialized implementations of string.  We can't
1071
  // call MutableRawRepeatedField directly here because we don't have access to
1072
  // FieldOptions::* which are defined in descriptor.pb.h.  Including that
1073
  // file here is not possible because it would cause a circular include cycle.
1074
  // We use 1 routine rather than 2 (const vs mutable) because it is private
1075
  // and mutable a repeated string field doesn't change the message.
1076
  void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
1077
                                 bool is_string) const;
1078
1079
  friend class MapReflectionTester;
1080
  // Returns true if key is in map. Returns false if key is not in map field.
1081
  bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
1082
                      const MapKey& key) const;
1083
1084
  // If key is in map field: Saves the value pointer to val and returns
1085
  // false. If key in not in map field: Insert the key into map, saves
1086
  // value pointer to val and returns true. Users are able to modify the
1087
  // map value by MapValueRef.
1088
  bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
1089
                              const MapKey& key, MapValueRef* val) const;
1090
1091
  // If key is in map field: Saves the value pointer to val and returns true.
1092
  // Returns false if key is not in map field. Users are NOT able to modify
1093
  // the value by MapValueConstRef.
1094
  bool LookupMapValue(const Message& message, const FieldDescriptor* field,
1095
                      const MapKey& key, MapValueConstRef* val) const;
1096
  bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
1097
                      MapValueRef*) const = delete;
1098
1099
  // Delete and returns true if key is in the map field. Returns false
1100
  // otherwise.
1101
  bool DeleteMapValue(Message* message, const FieldDescriptor* field,
1102
                      const MapKey& key) const;
1103
1104
  // Returns a MapIterator referring to the first element in the map field.
1105
  // If the map field is empty, this function returns the same as
1106
  // reflection::MapEnd. Mutation to the field may invalidate the iterator.
1107
  MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
1108
1109
  // Returns a MapIterator referring to the theoretical element that would
1110
  // follow the last element in the map field. It does not point to any
1111
  // real element. Mutation to the field may invalidate the iterator.
1112
  MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
1113
1114
  // Get the number of <key, value> pair of a map field. The result may be
1115
  // different from FieldSize which can have duplicate keys.
1116
  int MapSize(const Message& message, const FieldDescriptor* field) const;
1117
1118
  // Help method for MapIterator.
1119
  friend class MapIterator;
1120
  friend class WireFormatForMapFieldTest;
1121
  internal::MapFieldBase* MutableMapData(Message* message,
1122
                                         const FieldDescriptor* field) const;
1123
1124
  const internal::MapFieldBase* GetMapData(const Message& message,
1125
                                           const FieldDescriptor* field) const;
1126
1127
  template <class T>
1128
  const T& GetRawNonOneof(const Message& message,
1129
                          const FieldDescriptor* field) const;
1130
  template <class T>
1131
  T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
1132
1133
  template <typename Type>
1134
  const Type& GetRaw(const Message& message,
1135
                     const FieldDescriptor* field) const;
1136
  template <typename Type>
1137
  inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
1138
  template <typename Type>
1139
  const Type& DefaultRaw(const FieldDescriptor* field) const;
1140
1141
  const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
1142
1143
  inline const uint32_t* GetHasBits(const Message& message) const;
1144
  inline uint32_t* MutableHasBits(Message* message) const;
1145
  inline uint32_t GetOneofCase(const Message& message,
1146
                               const OneofDescriptor* oneof_descriptor) const;
1147
  inline uint32_t* MutableOneofCase(
1148
      Message* message, const OneofDescriptor* oneof_descriptor) const;
1149
0
  inline bool HasExtensionSet(const Message& /* message */) const {
1150
0
    return schema_.HasExtensionSet();
1151
0
  }
1152
  const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
1153
  internal::ExtensionSet* MutableExtensionSet(Message* message) const;
1154
1155
  const internal::InternalMetadata& GetInternalMetadata(
1156
      const Message& message) const;
1157
1158
  internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
1159
1160
  inline bool IsInlined(const FieldDescriptor* field) const;
1161
1162
  inline bool HasBit(const Message& message,
1163
                     const FieldDescriptor* field) const;
1164
  inline void SetBit(Message* message, const FieldDescriptor* field) const;
1165
  inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1166
  inline void SwapBit(Message* message1, Message* message2,
1167
                      const FieldDescriptor* field) const;
1168
1169
  inline const uint32_t* GetInlinedStringDonatedArray(
1170
      const Message& message) const;
1171
  inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const;
1172
  inline bool IsInlinedStringDonated(const Message& message,
1173
                                     const FieldDescriptor* field) const;
1174
  inline void SwapInlinedStringDonated(Message* lhs, Message* rhs,
1175
                                       const FieldDescriptor* field) const;
1176
1177
  // Shallow-swap fields listed in fields vector of two messages. It is the
1178
  // caller's responsibility to make sure shallow swap is safe.
1179
  void UnsafeShallowSwapFields(
1180
      Message* message1, Message* message2,
1181
      const std::vector<const FieldDescriptor*>& fields) const;
1182
1183
  // This function only swaps the field. Should swap corresponding has_bit
1184
  // before or after using this function.
1185
  void SwapField(Message* message1, Message* message2,
1186
                 const FieldDescriptor* field) const;
1187
1188
  // Unsafe but shallow version of SwapField.
1189
  void UnsafeShallowSwapField(Message* message1, Message* message2,
1190
                              const FieldDescriptor* field) const;
1191
1192
  template <bool unsafe_shallow_swap>
1193
  void SwapFieldsImpl(Message* message1, Message* message2,
1194
                      const std::vector<const FieldDescriptor*>& fields) const;
1195
1196
  template <bool unsafe_shallow_swap>
1197
  void SwapOneofField(Message* lhs, Message* rhs,
1198
                      const OneofDescriptor* oneof_descriptor) const;
1199
1200
  inline bool HasOneofField(const Message& message,
1201
                            const FieldDescriptor* field) const;
1202
  inline void SetOneofCase(Message* message,
1203
                           const FieldDescriptor* field) const;
1204
  inline void ClearOneofField(Message* message,
1205
                              const FieldDescriptor* field) const;
1206
1207
  template <typename Type>
1208
  inline const Type& GetField(const Message& message,
1209
                              const FieldDescriptor* field) const;
1210
  template <typename Type>
1211
  inline void SetField(Message* message, const FieldDescriptor* field,
1212
                       const Type& value) const;
1213
  template <typename Type>
1214
  inline Type* MutableField(Message* message,
1215
                            const FieldDescriptor* field) const;
1216
  template <typename Type>
1217
  inline const Type& GetRepeatedField(const Message& message,
1218
                                      const FieldDescriptor* field,
1219
                                      int index) const;
1220
  template <typename Type>
1221
  inline const Type& GetRepeatedPtrField(const Message& message,
1222
                                         const FieldDescriptor* field,
1223
                                         int index) const;
1224
  template <typename Type>
1225
  inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1226
                               int index, Type value) const;
1227
  template <typename Type>
1228
  inline Type* MutableRepeatedField(Message* message,
1229
                                    const FieldDescriptor* field,
1230
                                    int index) const;
1231
  template <typename Type>
1232
  inline void AddField(Message* message, const FieldDescriptor* field,
1233
                       const Type& value) const;
1234
  template <typename Type>
1235
  inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1236
1237
  int GetExtensionNumberOrDie(const Descriptor* type) const;
1238
1239
  // Internal versions of EnumValue API perform no checking. Called after checks
1240
  // by public methods.
1241
  void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1242
                            int value) const;
1243
  void SetRepeatedEnumValueInternal(Message* message,
1244
                                    const FieldDescriptor* field, int index,
1245
                                    int value) const;
1246
  void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1247
                            int value) const;
1248
1249
  friend inline  // inline so nobody can call this function.
1250
      void
1251
      RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1252
  friend inline const char* ParseLenDelim(int field_number,
1253
                                          const FieldDescriptor* field,
1254
                                          Message* msg,
1255
                                          const Reflection* reflection,
1256
                                          const char* ptr,
1257
                                          internal::ParseContext* ctx);
1258
  friend inline const char* ParsePackedField(const FieldDescriptor* field,
1259
                                             Message* msg,
1260
                                             const Reflection* reflection,
1261
                                             const char* ptr,
1262
                                             internal::ParseContext* ctx);
1263
1264
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1265
};
1266
1267
// Abstract interface for a factory for message objects.
1268
class PROTOBUF_EXPORT MessageFactory {
1269
 public:
1270
0
  inline MessageFactory() {}
1271
  virtual ~MessageFactory();
1272
1273
  // Given a Descriptor, gets or constructs the default (prototype) Message
1274
  // of that type.  You can then call that message's New() method to construct
1275
  // a mutable message of that type.
1276
  //
1277
  // Calling this method twice with the same Descriptor returns the same
1278
  // object.  The returned object remains property of the factory.  Also, any
1279
  // objects created by calling the prototype's New() method share some data
1280
  // with the prototype, so these must be destroyed before the MessageFactory
1281
  // is destroyed.
1282
  //
1283
  // The given descriptor must outlive the returned message, and hence must
1284
  // outlive the MessageFactory.
1285
  //
1286
  // Some implementations do not support all types.  GetPrototype() will
1287
  // return nullptr if the descriptor passed in is not supported.
1288
  //
1289
  // This method may or may not be thread-safe depending on the implementation.
1290
  // Each implementation should document its own degree thread-safety.
1291
  virtual const Message* GetPrototype(const Descriptor* type) = 0;
1292
1293
  // Gets a MessageFactory which supports all generated, compiled-in messages.
1294
  // In other words, for any compiled-in type FooMessage, the following is true:
1295
  //   MessageFactory::generated_factory()->GetPrototype(
1296
  //     FooMessage::descriptor()) == FooMessage::default_instance()
1297
  // This factory supports all types which are found in
1298
  // DescriptorPool::generated_pool().  If given a descriptor from any other
1299
  // pool, GetPrototype() will return nullptr.  (You can also check if a
1300
  // descriptor is for a generated message by checking if
1301
  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1302
  //
1303
  // This factory is 100% thread-safe; calling GetPrototype() does not modify
1304
  // any shared data.
1305
  //
1306
  // This factory is a singleton.  The caller must not delete the object.
1307
  static MessageFactory* generated_factory();
1308
1309
  // For internal use only:  Registers a .proto file at static initialization
1310
  // time, to be placed in generated_factory.  The first time GetPrototype()
1311
  // is called with a descriptor from this file, |register_messages| will be
1312
  // called, with the file name as the parameter.  It must call
1313
  // InternalRegisterGeneratedMessage() (below) to register each message type
1314
  // in the file.  This strange mechanism is necessary because descriptors are
1315
  // built lazily, so we can't register types by their descriptor until we
1316
  // know that the descriptor exists.  |filename| must be a permanent string.
1317
  static void InternalRegisterGeneratedFile(
1318
      const google::protobuf::internal::DescriptorTable* table);
1319
1320
  // For internal use only:  Registers a message type.  Called only by the
1321
  // functions which are registered with InternalRegisterGeneratedFile(),
1322
  // above.
1323
  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1324
                                               const Message* prototype);
1325
1326
1327
 private:
1328
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1329
};
1330
1331
#define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
1332
  template <>                                                      \
1333
  PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
1334
  Reflection::GetRepeatedFieldInternal<TYPE>(                      \
1335
      const Message& message, const FieldDescriptor* field) const; \
1336
                                                                   \
1337
  template <>                                                      \
1338
  PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
1339
  Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
1340
      Message * message, const FieldDescriptor* field) const;
1341
1342
DECLARE_GET_REPEATED_FIELD(int32_t)
1343
DECLARE_GET_REPEATED_FIELD(int64_t)
1344
DECLARE_GET_REPEATED_FIELD(uint32_t)
1345
DECLARE_GET_REPEATED_FIELD(uint64_t)
1346
DECLARE_GET_REPEATED_FIELD(float)
1347
DECLARE_GET_REPEATED_FIELD(double)
1348
DECLARE_GET_REPEATED_FIELD(bool)
1349
1350
#undef DECLARE_GET_REPEATED_FIELD
1351
1352
// Tries to downcast this message to a generated message type.  Returns nullptr
1353
// if this class is not an instance of T.  This works even if RTTI is disabled.
1354
//
1355
// This also has the effect of creating a strong reference to T that will
1356
// prevent the linker from stripping it out at link time.  This can be important
1357
// if you are using a DynamicMessageFactory that delegates to the generated
1358
// factory.
1359
template <typename T>
1360
const T* DynamicCastToGenerated(const Message* from) {
1361
  // Compile-time assert that T is a generated type that has a
1362
  // default_instance() accessor, but avoid actually calling it.
1363
  const T& (*get_default_instance)() = &T::default_instance;
1364
  (void)get_default_instance;
1365
1366
  // Compile-time assert that T is a subclass of google::protobuf::Message.
1367
  const Message* unused = static_cast<T*>(nullptr);
1368
  (void)unused;
1369
1370
#if PROTOBUF_RTTI
1371
  return dynamic_cast<const T*>(from);
1372
#else
1373
  bool ok = from != nullptr &&
1374
            T::default_instance().GetReflection() == from->GetReflection();
1375
  return ok ? down_cast<const T*>(from) : nullptr;
1376
#endif
1377
}
1378
1379
template <typename T>
1380
T* DynamicCastToGenerated(Message* from) {
1381
  const Message* message_const = from;
1382
  return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1383
}
1384
1385
// Call this function to ensure that this message's reflection is linked into
1386
// the binary:
1387
//
1388
//   google::protobuf::LinkMessageReflection<pkg::FooMessage>();
1389
//
1390
// This will ensure that the following lookup will succeed:
1391
//
1392
//   DescriptorPool::generated_pool()->FindMessageTypeByName("pkg.FooMessage");
1393
//
1394
// As a side-effect, it will also guarantee that anything else from the same
1395
// .proto file will also be available for lookup in the generated pool.
1396
//
1397
// This function does not actually register the message, so it does not need
1398
// to be called before the lookup.  However it does need to occur in a function
1399
// that cannot be stripped from the binary (ie. it must be reachable from main).
1400
//
1401
// Best practice is to call this function as close as possible to where the
1402
// reflection is actually needed.  This function is very cheap to call, so you
1403
// should not need to worry about its runtime overhead except in the tightest
1404
// of loops (on x86-64 it compiles into two "mov" instructions).
1405
template <typename T>
1406
void LinkMessageReflection() {
1407
  internal::StrongReference(T::default_instance);
1408
}
1409
1410
// =============================================================================
1411
// Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
1412
// specializations for <std::string>, <StringPieceField> and <Message> and
1413
// handle everything else with the default template which will match any type
1414
// having a method with signature "static const google::protobuf::Descriptor*
1415
// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1416
1417
template <>
1418
inline const RepeatedPtrField<std::string>&
1419
Reflection::GetRepeatedPtrFieldInternal<std::string>(
1420
0
    const Message& message, const FieldDescriptor* field) const {
1421
0
  return *static_cast<RepeatedPtrField<std::string>*>(
1422
0
      MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1423
0
}
1424
1425
template <>
1426
inline RepeatedPtrField<std::string>*
1427
Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1428
0
    Message* message, const FieldDescriptor* field) const {
1429
0
  return static_cast<RepeatedPtrField<std::string>*>(
1430
0
      MutableRawRepeatedString(message, field, true));
1431
0
}
1432
1433
1434
// -----
1435
1436
template <>
1437
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1438
0
    const Message& message, const FieldDescriptor* field) const {
1439
0
  return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1440
0
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1441
0
}
1442
1443
template <>
1444
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1445
0
    Message* message, const FieldDescriptor* field) const {
1446
0
  return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1447
0
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1448
0
}
1449
1450
template <typename PB>
1451
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1452
    const Message& message, const FieldDescriptor* field) const {
1453
  return *static_cast<const RepeatedPtrField<PB>*>(
1454
      GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1455
                          PB::default_instance().GetDescriptor()));
1456
}
1457
1458
template <typename PB>
1459
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1460
    Message* message, const FieldDescriptor* field) const {
1461
  return static_cast<RepeatedPtrField<PB>*>(
1462
      MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1463
                              -1, PB::default_instance().GetDescriptor()));
1464
}
1465
1466
template <typename Type>
1467
const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
1468
  return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
1469
}
1470
1471
uint32_t Reflection::GetOneofCase(
1472
0
    const Message& message, const OneofDescriptor* oneof_descriptor) const {
1473
0
  GOOGLE_DCHECK(!oneof_descriptor->is_synthetic());
1474
0
  return internal::GetConstRefAtOffset<uint32_t>(
1475
0
      message, schema_.GetOneofCaseOffset(oneof_descriptor));
1476
0
}
1477
1478
bool Reflection::HasOneofField(const Message& message,
1479
0
                               const FieldDescriptor* field) const {
1480
0
  return (GetOneofCase(message, field->containing_oneof()) ==
1481
0
          static_cast<uint32_t>(field->number()));
1482
0
}
1483
1484
template <typename Type>
1485
const Type& Reflection::GetRaw(const Message& message,
1486
                               const FieldDescriptor* field) const {
1487
  GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field))
1488
      << "Field = " << field->full_name();
1489
  return internal::GetConstRefAtOffset<Type>(message,
1490
                                             schema_.GetFieldOffset(field));
1491
}
1492
}  // namespace protobuf
1493
}  // namespace google
1494
1495
#include <google/protobuf/port_undef.inc>
1496
1497
#endif  // GOOGLE_PROTOBUF_MESSAGE_H__