Coverage Report

Created: 2023-03-26 07:54

/src/LPM/external.protobuf/include/google/protobuf/stubs/strutil.h
Line
Count
Source (jump to first uncovered line)
1
// Protocol Buffers - Google's data interchange format
2
// Copyright 2008 Google Inc.  All rights reserved.
3
// https://developers.google.com/protocol-buffers/
4
//
5
// Redistribution and use in source and binary forms, with or without
6
// modification, are permitted provided that the following conditions are
7
// met:
8
//
9
//     * Redistributions of source code must retain the above copyright
10
// notice, this list of conditions and the following disclaimer.
11
//     * Redistributions in binary form must reproduce the above
12
// copyright notice, this list of conditions and the following disclaimer
13
// in the documentation and/or other materials provided with the
14
// distribution.
15
//     * Neither the name of Google Inc. nor the names of its
16
// contributors may be used to endorse or promote products derived from
17
// this software without specific prior written permission.
18
//
19
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
// from google3/strings/strutil.h
32
33
#ifndef GOOGLE_PROTOBUF_STUBS_STRUTIL_H__
34
#define GOOGLE_PROTOBUF_STUBS_STRUTIL_H__
35
36
#include <google/protobuf/stubs/common.h>
37
#include <google/protobuf/stubs/stringpiece.h>
38
#include <stdlib.h>
39
40
#include <cstring>
41
#include <google/protobuf/port_def.inc>
42
#include <vector>
43
44
namespace google {
45
namespace protobuf {
46
47
#if defined(_MSC_VER) && _MSC_VER < 1800
48
#define strtoll  _strtoi64
49
#define strtoull _strtoui64
50
#elif defined(__DECCXX) && defined(__osf__)
51
// HP C++ on Tru64 does not have strtoll, but strtol is already 64-bit.
52
#define strtoll strtol
53
#define strtoull strtoul
54
#endif
55
56
// ----------------------------------------------------------------------
57
// ascii_isalnum()
58
//    Check if an ASCII character is alphanumeric.  We can't use ctype's
59
//    isalnum() because it is affected by locale.  This function is applied
60
//    to identifiers in the protocol buffer language, not to natural-language
61
//    strings, so locale should not be taken into account.
62
// ascii_isdigit()
63
//    Like above, but only accepts digits.
64
// ascii_isspace()
65
//    Check if the character is a space character.
66
// ----------------------------------------------------------------------
67
68
0
inline bool ascii_isalnum(char c) {
69
0
  return ('a' <= c && c <= 'z') ||
70
0
         ('A' <= c && c <= 'Z') ||
71
0
         ('0' <= c && c <= '9');
72
0
}
73
74
0
inline bool ascii_isdigit(char c) {
75
0
  return ('0' <= c && c <= '9');
76
0
}
77
78
0
inline bool ascii_isspace(char c) {
79
0
  return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' ||
80
0
      c == '\r';
81
0
}
82
83
0
inline bool ascii_isupper(char c) {
84
0
  return c >= 'A' && c <= 'Z';
85
0
}
86
87
0
inline bool ascii_islower(char c) {
88
0
  return c >= 'a' && c <= 'z';
89
0
}
90
91
0
inline char ascii_toupper(char c) {
92
0
  return ascii_islower(c) ? c - ('a' - 'A') : c;
93
0
}
94
95
0
inline char ascii_tolower(char c) {
96
0
  return ascii_isupper(c) ? c + ('a' - 'A') : c;
97
0
}
98
99
0
inline int hex_digit_to_int(char c) {
100
0
  /* Assume ASCII. */
101
0
  int x = static_cast<unsigned char>(c);
102
0
  if (x > '9') {
103
0
    x += 9;
104
0
  }
105
0
  return x & 0xf;
106
0
}
107
108
// ----------------------------------------------------------------------
109
// HasPrefixString()
110
//    Check if a string begins with a given prefix.
111
// StripPrefixString()
112
//    Given a string and a putative prefix, returns the string minus the
113
//    prefix string if the prefix matches, otherwise the original
114
//    string.
115
// ----------------------------------------------------------------------
116
0
inline bool HasPrefixString(StringPiece str, StringPiece prefix) {
117
0
  return str.size() >= prefix.size() &&
118
0
         memcmp(str.data(), prefix.data(), prefix.size()) == 0;
119
0
}
120
121
inline std::string StripPrefixString(const std::string& str,
122
0
                                     const std::string& prefix) {
123
0
  if (HasPrefixString(str, prefix)) {
124
0
    return str.substr(prefix.size());
125
0
  } else {
126
0
    return str;
127
0
  }
128
0
}
129
130
// ----------------------------------------------------------------------
131
// HasSuffixString()
132
//    Return true if str ends in suffix.
133
// StripSuffixString()
134
//    Given a string and a putative suffix, returns the string minus the
135
//    suffix string if the suffix matches, otherwise the original
136
//    string.
137
// ----------------------------------------------------------------------
138
0
inline bool HasSuffixString(StringPiece str, StringPiece suffix) {
139
0
  return str.size() >= suffix.size() &&
140
0
         memcmp(str.data() + str.size() - suffix.size(), suffix.data(),
141
0
                suffix.size()) == 0;
142
0
}
143
144
inline std::string StripSuffixString(const std::string& str,
145
0
                                     const std::string& suffix) {
146
0
  if (HasSuffixString(str, suffix)) {
147
0
    return str.substr(0, str.size() - suffix.size());
148
0
  } else {
149
0
    return str;
150
0
  }
151
0
}
152
153
// ----------------------------------------------------------------------
154
// ReplaceCharacters
155
//    Replaces any occurrence of the character 'remove' (or the characters
156
//    in 'remove') with the character 'replacewith'.
157
//    Good for keeping html characters or protocol characters (\t) out
158
//    of places where they might cause a problem.
159
// StripWhitespace
160
//    Removes whitespaces from both ends of the given string.
161
// ----------------------------------------------------------------------
162
PROTOBUF_EXPORT void ReplaceCharacters(std::string* s, const char* remove,
163
                                       char replacewith);
164
165
PROTOBUF_EXPORT void StripWhitespace(std::string* s);
166
167
// ----------------------------------------------------------------------
168
// LowerString()
169
// UpperString()
170
// ToUpper()
171
//    Convert the characters in "s" to lowercase or uppercase.  ASCII-only:
172
//    these functions intentionally ignore locale because they are applied to
173
//    identifiers used in the Protocol Buffer language, not to natural-language
174
//    strings.
175
// ----------------------------------------------------------------------
176
177
0
inline void LowerString(std::string* s) {
178
0
  std::string::iterator end = s->end();
179
0
  for (std::string::iterator i = s->begin(); i != end; ++i) {
180
0
    // tolower() changes based on locale.  We don't want this!
181
0
    if ('A' <= *i && *i <= 'Z') *i += 'a' - 'A';
182
0
  }
183
0
}
184
185
0
inline void UpperString(std::string* s) {
186
0
  std::string::iterator end = s->end();
187
0
  for (std::string::iterator i = s->begin(); i != end; ++i) {
188
0
    // toupper() changes based on locale.  We don't want this!
189
0
    if ('a' <= *i && *i <= 'z') *i += 'A' - 'a';
190
0
  }
191
0
}
192
193
0
inline void ToUpper(std::string* s) { UpperString(s); }
194
195
0
inline std::string ToUpper(const std::string& s) {
196
0
  std::string out = s;
197
0
  UpperString(&out);
198
0
  return out;
199
0
}
200
201
// ----------------------------------------------------------------------
202
// StringReplace()
203
//    Give me a string and two patterns "old" and "new", and I replace
204
//    the first instance of "old" in the string with "new", if it
205
//    exists.  RETURN a new string, regardless of whether the replacement
206
//    happened or not.
207
// ----------------------------------------------------------------------
208
209
PROTOBUF_EXPORT std::string StringReplace(const std::string& s,
210
                                          const std::string& oldsub,
211
                                          const std::string& newsub,
212
                                          bool replace_all);
213
214
// ----------------------------------------------------------------------
215
// SplitStringUsing()
216
//    Split a string using a character delimiter. Append the components
217
//    to 'result'.  If there are consecutive delimiters, this function skips
218
//    over all of them.
219
// ----------------------------------------------------------------------
220
PROTOBUF_EXPORT void SplitStringUsing(StringPiece full, const char* delim,
221
                                      std::vector<std::string>* res);
222
223
// Split a string using one or more byte delimiters, presented
224
// as a nul-terminated c string. Append the components to 'result'.
225
// If there are consecutive delimiters, this function will return
226
// corresponding empty strings.  If you want to drop the empty
227
// strings, try SplitStringUsing().
228
//
229
// If "full" is the empty string, yields an empty string as the only value.
230
// ----------------------------------------------------------------------
231
PROTOBUF_EXPORT void SplitStringAllowEmpty(StringPiece full, const char* delim,
232
                                           std::vector<std::string>* result);
233
234
// ----------------------------------------------------------------------
235
// Split()
236
//    Split a string using a character delimiter.
237
// ----------------------------------------------------------------------
238
inline std::vector<std::string> Split(StringPiece full, const char* delim,
239
0
                                      bool skip_empty = true) {
240
0
  std::vector<std::string> result;
241
0
  if (skip_empty) {
242
0
    SplitStringUsing(full, delim, &result);
243
0
  } else {
244
0
    SplitStringAllowEmpty(full, delim, &result);
245
0
  }
246
0
  return result;
247
0
}
248
249
// ----------------------------------------------------------------------
250
// JoinStrings()
251
//    These methods concatenate a vector of strings into a C++ string, using
252
//    the C-string "delim" as a separator between components. There are two
253
//    flavors of the function, one flavor returns the concatenated string,
254
//    another takes a pointer to the target string. In the latter case the
255
//    target string is cleared and overwritten.
256
// ----------------------------------------------------------------------
257
PROTOBUF_EXPORT void JoinStrings(const std::vector<std::string>& components,
258
                                 const char* delim, std::string* result);
259
260
inline std::string JoinStrings(const std::vector<std::string>& components,
261
0
                               const char* delim) {
262
0
  std::string result;
263
0
  JoinStrings(components, delim, &result);
264
0
  return result;
265
0
}
266
267
// ----------------------------------------------------------------------
268
// UnescapeCEscapeSequences()
269
//    Copies "source" to "dest", rewriting C-style escape sequences
270
//    -- '\n', '\r', '\\', '\ooo', etc -- to their ASCII
271
//    equivalents.  "dest" must be sufficiently large to hold all
272
//    the characters in the rewritten string (i.e. at least as large
273
//    as strlen(source) + 1 should be safe, since the replacements
274
//    are always shorter than the original escaped sequences).  It's
275
//    safe for source and dest to be the same.  RETURNS the length
276
//    of dest.
277
//
278
//    It allows hex sequences \xhh, or generally \xhhhhh with an
279
//    arbitrary number of hex digits, but all of them together must
280
//    specify a value of a single byte (e.g. \x0045 is equivalent
281
//    to \x45, and \x1234 is erroneous).
282
//
283
//    It also allows escape sequences of the form \uhhhh (exactly four
284
//    hex digits, upper or lower case) or \Uhhhhhhhh (exactly eight
285
//    hex digits, upper or lower case) to specify a Unicode code
286
//    point. The dest array will contain the UTF8-encoded version of
287
//    that code-point (e.g., if source contains \u2019, then dest will
288
//    contain the three bytes 0xE2, 0x80, and 0x99).
289
//
290
//    Errors: In the first form of the call, errors are reported with
291
//    LOG(ERROR). The same is true for the second form of the call if
292
//    the pointer to the string std::vector is nullptr; otherwise, error
293
//    messages are stored in the std::vector. In either case, the effect on
294
//    the dest array is not defined, but rest of the source will be
295
//    processed.
296
//    ----------------------------------------------------------------------
297
298
PROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest);
299
PROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest,
300
                                             std::vector<std::string>* errors);
301
302
// ----------------------------------------------------------------------
303
// UnescapeCEscapeString()
304
//    This does the same thing as UnescapeCEscapeSequences, but creates
305
//    a new string. The caller does not need to worry about allocating
306
//    a dest buffer. This should be used for non performance critical
307
//    tasks such as printing debug messages. It is safe for src and dest
308
//    to be the same.
309
//
310
//    The second call stores its errors in a supplied string vector.
311
//    If the string vector pointer is nullptr, it reports the errors with LOG().
312
//
313
//    In the first and second calls, the length of dest is returned. In the
314
//    the third call, the new string is returned.
315
// ----------------------------------------------------------------------
316
317
PROTOBUF_EXPORT int UnescapeCEscapeString(const std::string& src,
318
                                          std::string* dest);
319
PROTOBUF_EXPORT int UnescapeCEscapeString(const std::string& src,
320
                                          std::string* dest,
321
                                          std::vector<std::string>* errors);
322
PROTOBUF_EXPORT std::string UnescapeCEscapeString(const std::string& src);
323
324
// ----------------------------------------------------------------------
325
// CEscape()
326
//    Escapes 'src' using C-style escape sequences and returns the resulting
327
//    string.
328
//
329
//    Escaped chars: \n, \r, \t, ", ', \, and !isprint().
330
// ----------------------------------------------------------------------
331
PROTOBUF_EXPORT std::string CEscape(const std::string& src);
332
333
// ----------------------------------------------------------------------
334
// CEscapeAndAppend()
335
//    Escapes 'src' using C-style escape sequences, and appends the escaped
336
//    string to 'dest'.
337
// ----------------------------------------------------------------------
338
PROTOBUF_EXPORT void CEscapeAndAppend(StringPiece src, std::string* dest);
339
340
namespace strings {
341
// Like CEscape() but does not escape bytes with the upper bit set.
342
PROTOBUF_EXPORT std::string Utf8SafeCEscape(const std::string& src);
343
344
// Like CEscape() but uses hex (\x) escapes instead of octals.
345
PROTOBUF_EXPORT std::string CHexEscape(const std::string& src);
346
}  // namespace strings
347
348
// ----------------------------------------------------------------------
349
// strto32()
350
// strtou32()
351
// strto64()
352
// strtou64()
353
//    Architecture-neutral plug compatible replacements for strtol() and
354
//    strtoul().  Long's have different lengths on ILP-32 and LP-64
355
//    platforms, so using these is safer, from the point of view of
356
//    overflow behavior, than using the standard libc functions.
357
// ----------------------------------------------------------------------
358
PROTOBUF_EXPORT int32_t strto32_adaptor(const char* nptr, char** endptr,
359
                                        int base);
360
PROTOBUF_EXPORT uint32_t strtou32_adaptor(const char* nptr, char** endptr,
361
                                          int base);
362
363
0
inline int32_t strto32(const char *nptr, char **endptr, int base) {
364
0
  if (sizeof(int32_t) == sizeof(long))
365
0
    return strtol(nptr, endptr, base);
366
0
  else
367
0
    return strto32_adaptor(nptr, endptr, base);
368
0
}
369
370
0
inline uint32_t strtou32(const char *nptr, char **endptr, int base) {
371
0
  if (sizeof(uint32_t) == sizeof(unsigned long))
372
0
    return strtoul(nptr, endptr, base);
373
0
  else
374
0
    return strtou32_adaptor(nptr, endptr, base);
375
0
}
376
377
// For now, long long is 64-bit on all the platforms we care about, so these
378
// functions can simply pass the call to strto[u]ll.
379
0
inline int64_t strto64(const char *nptr, char **endptr, int base) {
380
0
  static_assert(sizeof(int64_t) == sizeof(long long),
381
0
                "sizeof int64_t is not sizeof long long");
382
0
  return strtoll(nptr, endptr, base);
383
0
}
384
385
0
inline uint64_t strtou64(const char *nptr, char **endptr, int base) {
386
0
  static_assert(sizeof(uint64_t) == sizeof(unsigned long long),
387
0
                "sizeof uint64_t is not sizeof unsigned long long");
388
0
  return strtoull(nptr, endptr, base);
389
0
}
390
391
// ----------------------------------------------------------------------
392
// safe_strtob()
393
// safe_strto32()
394
// safe_strtou32()
395
// safe_strto64()
396
// safe_strtou64()
397
// safe_strtof()
398
// safe_strtod()
399
// ----------------------------------------------------------------------
400
PROTOBUF_EXPORT bool safe_strtob(StringPiece str, bool* value);
401
402
PROTOBUF_EXPORT bool safe_strto32(const std::string& str, int32_t* value);
403
PROTOBUF_EXPORT bool safe_strtou32(const std::string& str, uint32_t* value);
404
0
inline bool safe_strto32(const char* str, int32_t* value) {
405
0
  return safe_strto32(std::string(str), value);
406
0
}
407
0
inline bool safe_strto32(StringPiece str, int32_t* value) {
408
0
  return safe_strto32(str.ToString(), value);
409
0
}
410
0
inline bool safe_strtou32(const char* str, uint32_t* value) {
411
0
  return safe_strtou32(std::string(str), value);
412
0
}
413
0
inline bool safe_strtou32(StringPiece str, uint32_t* value) {
414
0
  return safe_strtou32(str.ToString(), value);
415
0
}
416
417
PROTOBUF_EXPORT bool safe_strto64(const std::string& str, int64_t* value);
418
PROTOBUF_EXPORT bool safe_strtou64(const std::string& str, uint64_t* value);
419
0
inline bool safe_strto64(const char* str, int64_t* value) {
420
0
  return safe_strto64(std::string(str), value);
421
0
}
422
0
inline bool safe_strto64(StringPiece str, int64_t* value) {
423
0
  return safe_strto64(str.ToString(), value);
424
0
}
425
0
inline bool safe_strtou64(const char* str, uint64_t* value) {
426
0
  return safe_strtou64(std::string(str), value);
427
0
}
428
0
inline bool safe_strtou64(StringPiece str, uint64_t* value) {
429
0
  return safe_strtou64(str.ToString(), value);
430
0
}
431
432
PROTOBUF_EXPORT bool safe_strtof(const char* str, float* value);
433
PROTOBUF_EXPORT bool safe_strtod(const char* str, double* value);
434
0
inline bool safe_strtof(const std::string& str, float* value) {
435
0
  return safe_strtof(str.c_str(), value);
436
0
}
437
0
inline bool safe_strtod(const std::string& str, double* value) {
438
0
  return safe_strtod(str.c_str(), value);
439
0
}
440
0
inline bool safe_strtof(StringPiece str, float* value) {
441
0
  return safe_strtof(str.ToString(), value);
442
0
}
443
0
inline bool safe_strtod(StringPiece str, double* value) {
444
0
  return safe_strtod(str.ToString(), value);
445
0
}
446
447
// ----------------------------------------------------------------------
448
// FastIntToBuffer()
449
// FastHexToBuffer()
450
// FastHex64ToBuffer()
451
// FastHex32ToBuffer()
452
// FastTimeToBuffer()
453
//    These are intended for speed.  FastIntToBuffer() assumes the
454
//    integer is non-negative.  FastHexToBuffer() puts output in
455
//    hex rather than decimal.  FastTimeToBuffer() puts the output
456
//    into RFC822 format.
457
//
458
//    FastHex64ToBuffer() puts a 64-bit unsigned value in hex-format,
459
//    padded to exactly 16 bytes (plus one byte for '\0')
460
//
461
//    FastHex32ToBuffer() puts a 32-bit unsigned value in hex-format,
462
//    padded to exactly 8 bytes (plus one byte for '\0')
463
//
464
//       All functions take the output buffer as an arg.
465
//    They all return a pointer to the beginning of the output,
466
//    which may not be the beginning of the input buffer.
467
// ----------------------------------------------------------------------
468
469
// Suggested buffer size for FastToBuffer functions.  Also works with
470
// DoubleToBuffer() and FloatToBuffer().
471
static const int kFastToBufferSize = 32;
472
473
PROTOBUF_EXPORT char* FastInt32ToBuffer(int32_t i, char* buffer);
474
PROTOBUF_EXPORT char* FastInt64ToBuffer(int64_t i, char* buffer);
475
char* FastUInt32ToBuffer(uint32_t i, char* buffer);  // inline below
476
char* FastUInt64ToBuffer(uint64_t i, char* buffer);  // inline below
477
PROTOBUF_EXPORT char* FastHexToBuffer(int i, char* buffer);
478
PROTOBUF_EXPORT char* FastHex64ToBuffer(uint64_t i, char* buffer);
479
PROTOBUF_EXPORT char* FastHex32ToBuffer(uint32_t i, char* buffer);
480
481
// at least 22 bytes long
482
0
inline char* FastIntToBuffer(int i, char* buffer) {
483
0
  return (sizeof(i) == 4 ?
484
0
          FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer));
485
0
}
486
0
inline char* FastUIntToBuffer(unsigned int i, char* buffer) {
487
0
  return (sizeof(i) == 4 ?
488
0
          FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer));
489
0
}
490
0
inline char* FastLongToBuffer(long i, char* buffer) {
491
0
  return (sizeof(i) == 4 ?
492
0
          FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer));
493
0
}
494
0
inline char* FastULongToBuffer(unsigned long i, char* buffer) {
495
0
  return (sizeof(i) == 4 ?
496
0
          FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer));
497
0
}
498
499
// ----------------------------------------------------------------------
500
// FastInt32ToBufferLeft()
501
// FastUInt32ToBufferLeft()
502
// FastInt64ToBufferLeft()
503
// FastUInt64ToBufferLeft()
504
//
505
// Like the Fast*ToBuffer() functions above, these are intended for speed.
506
// Unlike the Fast*ToBuffer() functions, however, these functions write
507
// their output to the beginning of the buffer (hence the name, as the
508
// output is left-aligned).  The caller is responsible for ensuring that
509
// the buffer has enough space to hold the output.
510
//
511
// Returns a pointer to the end of the string (i.e. the null character
512
// terminating the string).
513
// ----------------------------------------------------------------------
514
515
PROTOBUF_EXPORT char* FastInt32ToBufferLeft(int32_t i, char* buffer);
516
PROTOBUF_EXPORT char* FastUInt32ToBufferLeft(uint32_t i, char* buffer);
517
PROTOBUF_EXPORT char* FastInt64ToBufferLeft(int64_t i, char* buffer);
518
PROTOBUF_EXPORT char* FastUInt64ToBufferLeft(uint64_t i, char* buffer);
519
520
// Just define these in terms of the above.
521
0
inline char* FastUInt32ToBuffer(uint32_t i, char* buffer) {
522
0
  FastUInt32ToBufferLeft(i, buffer);
523
0
  return buffer;
524
0
}
525
0
inline char* FastUInt64ToBuffer(uint64_t i, char* buffer) {
526
0
  FastUInt64ToBufferLeft(i, buffer);
527
0
  return buffer;
528
0
}
529
530
0
inline std::string SimpleBtoa(bool value) { return value ? "true" : "false"; }
531
532
// ----------------------------------------------------------------------
533
// SimpleItoa()
534
//    Description: converts an integer to a string.
535
//
536
//    Return value: string
537
// ----------------------------------------------------------------------
538
PROTOBUF_EXPORT std::string SimpleItoa(int i);
539
PROTOBUF_EXPORT std::string SimpleItoa(unsigned int i);
540
PROTOBUF_EXPORT std::string SimpleItoa(long i);
541
PROTOBUF_EXPORT std::string SimpleItoa(unsigned long i);
542
PROTOBUF_EXPORT std::string SimpleItoa(long long i);
543
PROTOBUF_EXPORT std::string SimpleItoa(unsigned long long i);
544
545
// ----------------------------------------------------------------------
546
// SimpleDtoa()
547
// SimpleFtoa()
548
// DoubleToBuffer()
549
// FloatToBuffer()
550
//    Description: converts a double or float to a string which, if
551
//    passed to NoLocaleStrtod(), will produce the exact same original double
552
//    (except in case of NaN; all NaNs are considered the same value).
553
//    We try to keep the string short but it's not guaranteed to be as
554
//    short as possible.
555
//
556
//    DoubleToBuffer() and FloatToBuffer() write the text to the given
557
//    buffer and return it.  The buffer must be at least
558
//    kDoubleToBufferSize bytes for doubles and kFloatToBufferSize
559
//    bytes for floats.  kFastToBufferSize is also guaranteed to be large
560
//    enough to hold either.
561
//
562
//    Return value: string
563
// ----------------------------------------------------------------------
564
PROTOBUF_EXPORT std::string SimpleDtoa(double value);
565
PROTOBUF_EXPORT std::string SimpleFtoa(float value);
566
567
PROTOBUF_EXPORT char* DoubleToBuffer(double i, char* buffer);
568
PROTOBUF_EXPORT char* FloatToBuffer(float i, char* buffer);
569
570
// In practice, doubles should never need more than 24 bytes and floats
571
// should never need more than 14 (including null terminators), but we
572
// overestimate to be safe.
573
static const int kDoubleToBufferSize = 32;
574
static const int kFloatToBufferSize = 24;
575
576
namespace strings {
577
578
enum PadSpec {
579
  NO_PAD = 1,
580
  ZERO_PAD_2,
581
  ZERO_PAD_3,
582
  ZERO_PAD_4,
583
  ZERO_PAD_5,
584
  ZERO_PAD_6,
585
  ZERO_PAD_7,
586
  ZERO_PAD_8,
587
  ZERO_PAD_9,
588
  ZERO_PAD_10,
589
  ZERO_PAD_11,
590
  ZERO_PAD_12,
591
  ZERO_PAD_13,
592
  ZERO_PAD_14,
593
  ZERO_PAD_15,
594
  ZERO_PAD_16,
595
};
596
597
struct Hex {
598
  uint64_t value;
599
  enum PadSpec spec;
600
  template <class Int>
601
  explicit Hex(Int v, PadSpec s = NO_PAD)
602
      : spec(s) {
603
    // Prevent sign-extension by casting integers to
604
    // their unsigned counterparts.
605
#ifdef LANG_CXX11
606
    static_assert(
607
        sizeof(v) == 1 || sizeof(v) == 2 || sizeof(v) == 4 || sizeof(v) == 8,
608
        "Unknown integer type");
609
#endif
610
    value = sizeof(v) == 1 ? static_cast<uint8_t>(v)
611
          : sizeof(v) == 2 ? static_cast<uint16_t>(v)
612
          : sizeof(v) == 4 ? static_cast<uint32_t>(v)
613
          : static_cast<uint64_t>(v);
614
  }
615
};
616
617
struct PROTOBUF_EXPORT AlphaNum {
618
  const char *piece_data_;  // move these to string_ref eventually
619
  size_t piece_size_;       // move these to string_ref eventually
620
621
  char digits[kFastToBufferSize];
622
623
  // No bool ctor -- bools convert to an integral type.
624
  // A bool ctor would also convert incoming pointers (bletch).
625
626
  AlphaNum(int i32)
627
      : piece_data_(digits),
628
0
        piece_size_(FastInt32ToBufferLeft(i32, digits) - &digits[0]) {}
629
  AlphaNum(unsigned int u32)
630
      : piece_data_(digits),
631
0
        piece_size_(FastUInt32ToBufferLeft(u32, digits) - &digits[0]) {}
632
  AlphaNum(long long i64)
633
      : piece_data_(digits),
634
0
        piece_size_(FastInt64ToBufferLeft(i64, digits) - &digits[0]) {}
635
  AlphaNum(unsigned long long u64)
636
      : piece_data_(digits),
637
0
        piece_size_(FastUInt64ToBufferLeft(u64, digits) - &digits[0]) {}
638
639
  // Note: on some architectures, "long" is only 32 bits, not 64, but the
640
  // performance hit of using FastInt64ToBufferLeft to handle 32-bit values
641
  // is quite minor.
642
  AlphaNum(long i64)
643
      : piece_data_(digits),
644
0
        piece_size_(FastInt64ToBufferLeft(i64, digits) - &digits[0]) {}
645
  AlphaNum(unsigned long u64)
646
      : piece_data_(digits),
647
0
        piece_size_(FastUInt64ToBufferLeft(u64, digits) - &digits[0]) {}
648
649
  AlphaNum(float f)
650
0
    : piece_data_(digits), piece_size_(strlen(FloatToBuffer(f, digits))) {}
651
  AlphaNum(double f)
652
0
    : piece_data_(digits), piece_size_(strlen(DoubleToBuffer(f, digits))) {}
653
654
  AlphaNum(Hex hex);
655
656
  AlphaNum(const char* c_str)
657
0
      : piece_data_(c_str), piece_size_(strlen(c_str)) {}
658
  // TODO: Add a string_ref constructor, eventually
659
  // AlphaNum(const StringPiece &pc) : piece(pc) {}
660
661
  AlphaNum(const std::string& str)
662
0
      : piece_data_(str.data()), piece_size_(str.size()) {}
663
664
  AlphaNum(StringPiece str)
665
0
      : piece_data_(str.data()), piece_size_(str.size()) {}
666
667
0
  size_t size() const { return piece_size_; }
668
0
  const char *data() const { return piece_data_; }
669
670
 private:
671
  // Use ":" not ':'
672
  AlphaNum(char c);  // NOLINT(runtime/explicit)
673
674
  // Disallow copy and assign.
675
  AlphaNum(const AlphaNum&);
676
  void operator=(const AlphaNum&);
677
};
678
679
}  // namespace strings
680
681
using strings::AlphaNum;
682
683
// ----------------------------------------------------------------------
684
// StrCat()
685
//    This merges the given strings or numbers, with no delimiter.  This
686
//    is designed to be the fastest possible way to construct a string out
687
//    of a mix of raw C strings, strings, bool values,
688
//    and numeric values.
689
//
690
//    Don't use this for user-visible strings.  The localization process
691
//    works poorly on strings built up out of fragments.
692
//
693
//    For clarity and performance, don't use StrCat when appending to a
694
//    string.  In particular, avoid using any of these (anti-)patterns:
695
//      str.append(StrCat(...)
696
//      str += StrCat(...)
697
//      str = StrCat(str, ...)
698
//    where the last is the worse, with the potential to change a loop
699
//    from a linear time operation with O(1) dynamic allocations into a
700
//    quadratic time operation with O(n) dynamic allocations.  StrAppend
701
//    is a better choice than any of the above, subject to the restriction
702
//    of StrAppend(&str, a, b, c, ...) that none of the a, b, c, ... may
703
//    be a reference into str.
704
// ----------------------------------------------------------------------
705
706
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b);
707
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
708
                                   const AlphaNum& c);
709
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
710
                                   const AlphaNum& c, const AlphaNum& d);
711
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
712
                                   const AlphaNum& c, const AlphaNum& d,
713
                                   const AlphaNum& e);
714
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
715
                                   const AlphaNum& c, const AlphaNum& d,
716
                                   const AlphaNum& e, const AlphaNum& f);
717
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
718
                                   const AlphaNum& c, const AlphaNum& d,
719
                                   const AlphaNum& e, const AlphaNum& f,
720
                                   const AlphaNum& g);
721
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
722
                                   const AlphaNum& c, const AlphaNum& d,
723
                                   const AlphaNum& e, const AlphaNum& f,
724
                                   const AlphaNum& g, const AlphaNum& h);
725
PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
726
                                   const AlphaNum& c, const AlphaNum& d,
727
                                   const AlphaNum& e, const AlphaNum& f,
728
                                   const AlphaNum& g, const AlphaNum& h,
729
                                   const AlphaNum& i);
730
731
0
inline std::string StrCat(const AlphaNum& a) {
732
0
  return std::string(a.data(), a.size());
733
0
}
734
735
// ----------------------------------------------------------------------
736
// StrAppend()
737
//    Same as above, but adds the output to the given string.
738
//    WARNING: For speed, StrAppend does not try to check each of its input
739
//    arguments to be sure that they are not a subset of the string being
740
//    appended to.  That is, while this will work:
741
//
742
//    string s = "foo";
743
//    s += s;
744
//
745
//    This will not (necessarily) work:
746
//
747
//    string s = "foo";
748
//    StrAppend(&s, s);
749
//
750
//    Note: while StrCat supports appending up to 9 arguments, StrAppend
751
//    is currently limited to 4.  That's rarely an issue except when
752
//    automatically transforming StrCat to StrAppend, and can easily be
753
//    worked around as consecutive calls to StrAppend are quite efficient.
754
// ----------------------------------------------------------------------
755
756
PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a);
757
PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a,
758
                               const AlphaNum& b);
759
PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a,
760
                               const AlphaNum& b, const AlphaNum& c);
761
PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a,
762
                               const AlphaNum& b, const AlphaNum& c,
763
                               const AlphaNum& d);
764
765
// ----------------------------------------------------------------------
766
// Join()
767
//    These methods concatenate a range of components into a C++ string, using
768
//    the C-string "delim" as a separator between components.
769
// ----------------------------------------------------------------------
770
template <typename Iterator>
771
void Join(Iterator start, Iterator end, const char* delim,
772
          std::string* result) {
773
  for (Iterator it = start; it != end; ++it) {
774
    if (it != start) {
775
      result->append(delim);
776
    }
777
    StrAppend(result, *it);
778
  }
779
}
780
781
template <typename Range>
782
std::string Join(const Range& components, const char* delim) {
783
  std::string result;
784
  Join(components.begin(), components.end(), delim, &result);
785
  return result;
786
}
787
788
// ----------------------------------------------------------------------
789
// ToHex()
790
//    Return a lower-case hex string representation of the given integer.
791
// ----------------------------------------------------------------------
792
PROTOBUF_EXPORT std::string ToHex(uint64_t num);
793
794
// ----------------------------------------------------------------------
795
// GlobalReplaceSubstring()
796
//    Replaces all instances of a substring in a string.  Does nothing
797
//    if 'substring' is empty.  Returns the number of replacements.
798
//
799
//    NOTE: The string pieces must not overlap s.
800
// ----------------------------------------------------------------------
801
PROTOBUF_EXPORT int GlobalReplaceSubstring(const std::string& substring,
802
                                           const std::string& replacement,
803
                                           std::string* s);
804
805
// ----------------------------------------------------------------------
806
// Base64Unescape()
807
//    Converts "src" which is encoded in Base64 to its binary equivalent and
808
//    writes it to "dest". If src contains invalid characters, dest is cleared
809
//    and the function returns false. Returns true on success.
810
// ----------------------------------------------------------------------
811
PROTOBUF_EXPORT bool Base64Unescape(StringPiece src, std::string* dest);
812
813
// ----------------------------------------------------------------------
814
// WebSafeBase64Unescape()
815
//    This is a variation of Base64Unescape which uses '-' instead of '+', and
816
//    '_' instead of '/'. src is not null terminated, instead specify len. I
817
//    recommend that slen<szdest, but we honor szdest anyway.
818
//    RETURNS the length of dest, or -1 if src contains invalid chars.
819
820
//    The variation that stores into a string clears the string first, and
821
//    returns false (with dest empty) if src contains invalid chars; for
822
//    this version src and dest must be different strings.
823
// ----------------------------------------------------------------------
824
PROTOBUF_EXPORT int WebSafeBase64Unescape(const char* src, int slen, char* dest,
825
                                          int szdest);
826
PROTOBUF_EXPORT bool WebSafeBase64Unescape(StringPiece src, std::string* dest);
827
828
// Return the length to use for the output buffer given to the base64 escape
829
// routines. Make sure to use the same value for do_padding in both.
830
// This function may return incorrect results if given input_len values that
831
// are extremely high, which should happen rarely.
832
PROTOBUF_EXPORT int CalculateBase64EscapedLen(int input_len, bool do_padding);
833
// Use this version when calling Base64Escape without a do_padding arg.
834
PROTOBUF_EXPORT int CalculateBase64EscapedLen(int input_len);
835
836
// ----------------------------------------------------------------------
837
// Base64Escape()
838
// WebSafeBase64Escape()
839
//    Encode "src" to "dest" using base64 encoding.
840
//    src is not null terminated, instead specify len.
841
//    'dest' should have at least CalculateBase64EscapedLen() length.
842
//    RETURNS the length of dest.
843
//    The WebSafe variation use '-' instead of '+' and '_' instead of '/'
844
//    so that we can place the out in the URL or cookies without having
845
//    to escape them.  It also has an extra parameter "do_padding",
846
//    which when set to false will prevent padding with "=".
847
// ----------------------------------------------------------------------
848
PROTOBUF_EXPORT int Base64Escape(const unsigned char* src, int slen, char* dest,
849
                                 int szdest);
850
PROTOBUF_EXPORT int WebSafeBase64Escape(const unsigned char* src, int slen,
851
                                        char* dest, int szdest,
852
                                        bool do_padding);
853
// Encode src into dest with padding.
854
PROTOBUF_EXPORT void Base64Escape(StringPiece src, std::string* dest);
855
// Encode src into dest web-safely without padding.
856
PROTOBUF_EXPORT void WebSafeBase64Escape(StringPiece src, std::string* dest);
857
// Encode src into dest web-safely with padding.
858
PROTOBUF_EXPORT void WebSafeBase64EscapeWithPadding(StringPiece src,
859
                                                    std::string* dest);
860
861
PROTOBUF_EXPORT void Base64Escape(const unsigned char* src, int szsrc,
862
                                  std::string* dest, bool do_padding);
863
PROTOBUF_EXPORT void WebSafeBase64Escape(const unsigned char* src, int szsrc,
864
                                         std::string* dest, bool do_padding);
865
866
0
inline bool IsValidCodePoint(uint32_t code_point) {
867
0
  return code_point < 0xD800 ||
868
0
         (code_point >= 0xE000 && code_point <= 0x10FFFF);
869
0
}
870
871
static const int UTFmax = 4;
872
// ----------------------------------------------------------------------
873
// EncodeAsUTF8Char()
874
//  Helper to append a Unicode code point to a string as UTF8, without bringing
875
//  in any external dependencies. The output buffer must be as least 4 bytes
876
//  large.
877
// ----------------------------------------------------------------------
878
PROTOBUF_EXPORT int EncodeAsUTF8Char(uint32_t code_point, char* output);
879
880
// ----------------------------------------------------------------------
881
// UTF8FirstLetterNumBytes()
882
//   Length of the first UTF-8 character.
883
// ----------------------------------------------------------------------
884
PROTOBUF_EXPORT int UTF8FirstLetterNumBytes(const char* src, int len);
885
886
// From google3/third_party/absl/strings/escaping.h
887
888
// ----------------------------------------------------------------------
889
// CleanStringLineEndings()
890
//   Clean up a multi-line string to conform to Unix line endings.
891
//   Reads from src and appends to dst, so usually dst should be empty.
892
//
893
//   If there is no line ending at the end of a non-empty string, it can
894
//   be added automatically.
895
//
896
//   Four different types of input are correctly handled:
897
//
898
//     - Unix/Linux files: line ending is LF: pass through unchanged
899
//
900
//     - DOS/Windows files: line ending is CRLF: convert to LF
901
//
902
//     - Legacy Mac files: line ending is CR: convert to LF
903
//
904
//     - Garbled files: random line endings: convert gracefully
905
//                      lonely CR, lonely LF, CRLF: convert to LF
906
//
907
//   @param src The multi-line string to convert
908
//   @param dst The converted string is appended to this string
909
//   @param auto_end_last_line Automatically terminate the last line
910
//
911
//   Limitations:
912
//
913
//     This does not do the right thing for CRCRLF files created by
914
//     broken programs that do another Unix->DOS conversion on files
915
//     that are already in CRLF format.  For this, a two-pass approach
916
//     brute-force would be needed that
917
//
918
//       (1) determines the presence of LF (first one is ok)
919
//       (2) if yes, removes any CR, else convert every CR to LF
920
PROTOBUF_EXPORT void CleanStringLineEndings(const std::string& src,
921
                                            std::string* dst,
922
                                            bool auto_end_last_line);
923
924
// Same as above, but transforms the argument in place.
925
PROTOBUF_EXPORT void CleanStringLineEndings(std::string* str,
926
                                            bool auto_end_last_line);
927
928
namespace strings {
929
0
inline bool EndsWith(StringPiece text, StringPiece suffix) {
930
0
  return suffix.empty() ||
931
0
      (text.size() >= suffix.size() &&
932
0
       memcmp(text.data() + (text.size() - suffix.size()), suffix.data(),
933
0
              suffix.size()) == 0);
934
0
}
935
}  // namespace strings
936
937
namespace internal {
938
939
// A locale-independent version of the standard strtod(), which always
940
// uses a dot as the decimal separator.
941
double NoLocaleStrtod(const char* str, char** endptr);
942
943
}  // namespace internal
944
945
}  // namespace protobuf
946
}  // namespace google
947
948
#include <google/protobuf/port_undef.inc>
949
950
#endif  // GOOGLE_PROTOBUF_STUBS_STRUTIL_H__