/src/SockFuzzer/third_party/xnu/bsd/netinet6/nd6.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
3 | | * |
4 | | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | | * |
6 | | * This file contains Original Code and/or Modifications of Original Code |
7 | | * as defined in and that are subject to the Apple Public Source License |
8 | | * Version 2.0 (the 'License'). You may not use this file except in |
9 | | * compliance with the License. The rights granted to you under the License |
10 | | * may not be used to create, or enable the creation or redistribution of, |
11 | | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | | * circumvent, violate, or enable the circumvention or violation of, any |
13 | | * terms of an Apple operating system software license agreement. |
14 | | * |
15 | | * Please obtain a copy of the License at |
16 | | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | | * |
18 | | * The Original Code and all software distributed under the License are |
19 | | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | | * Please see the License for the specific language governing rights and |
24 | | * limitations under the License. |
25 | | * |
26 | | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | | */ |
28 | | |
29 | | /* |
30 | | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
31 | | * All rights reserved. |
32 | | * |
33 | | * Redistribution and use in source and binary forms, with or without |
34 | | * modification, are permitted provided that the following conditions |
35 | | * are met: |
36 | | * 1. Redistributions of source code must retain the above copyright |
37 | | * notice, this list of conditions and the following disclaimer. |
38 | | * 2. Redistributions in binary form must reproduce the above copyright |
39 | | * notice, this list of conditions and the following disclaimer in the |
40 | | * documentation and/or other materials provided with the distribution. |
41 | | * 3. Neither the name of the project nor the names of its contributors |
42 | | * may be used to endorse or promote products derived from this software |
43 | | * without specific prior written permission. |
44 | | * |
45 | | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
46 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
47 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
48 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
49 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
50 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
51 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
52 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
53 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
54 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
55 | | * SUCH DAMAGE. |
56 | | */ |
57 | | |
58 | | /* |
59 | | * XXX |
60 | | * KAME 970409 note: |
61 | | * BSD/OS version heavily modifies this code, related to llinfo. |
62 | | * Since we don't have BSD/OS version of net/route.c in our hand, |
63 | | * I left the code mostly as it was in 970310. -- itojun |
64 | | */ |
65 | | |
66 | | #include <sys/param.h> |
67 | | #include <sys/systm.h> |
68 | | #include <sys/malloc.h> |
69 | | #include <sys/mbuf.h> |
70 | | #include <sys/socket.h> |
71 | | #include <sys/sockio.h> |
72 | | #include <sys/time.h> |
73 | | #include <sys/kernel.h> |
74 | | #include <sys/sysctl.h> |
75 | | #include <sys/errno.h> |
76 | | #include <sys/syslog.h> |
77 | | #include <sys/protosw.h> |
78 | | #include <sys/proc.h> |
79 | | #include <sys/mcache.h> |
80 | | |
81 | | #include <dev/random/randomdev.h> |
82 | | |
83 | | #include <kern/queue.h> |
84 | | #include <kern/zalloc.h> |
85 | | |
86 | | #include <net/if.h> |
87 | | #include <net/if_dl.h> |
88 | | #include <net/if_types.h> |
89 | | #include <net/if_llreach.h> |
90 | | #include <net/route.h> |
91 | | #include <net/dlil.h> |
92 | | #include <net/ntstat.h> |
93 | | #include <net/net_osdep.h> |
94 | | #include <net/nwk_wq.h> |
95 | | |
96 | | #include <netinet/in.h> |
97 | | #include <netinet/in_arp.h> |
98 | | #include <netinet/if_ether.h> |
99 | | #include <netinet6/in6_var.h> |
100 | | #include <netinet/ip6.h> |
101 | | #include <netinet6/ip6_var.h> |
102 | | #include <netinet6/nd6.h> |
103 | | #include <netinet6/scope6_var.h> |
104 | | #include <netinet/icmp6.h> |
105 | | |
106 | | #include <os/log.h> |
107 | | |
108 | | #include "loop.h" |
109 | | |
110 | 408k | #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ |
111 | | #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ |
112 | | |
113 | 0 | #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) |
114 | | |
115 | | /* timer values */ |
116 | | int nd6_prune = 1; /* walk list every 1 seconds */ |
117 | | int nd6_prune_lazy = 5; /* lazily walk list every 5 seconds */ |
118 | | int nd6_delay = 5; /* delay first probe time 5 second */ |
119 | | int nd6_umaxtries = 3; /* maximum unicast query */ |
120 | | int nd6_mmaxtries = 3; /* maximum multicast query */ |
121 | | int nd6_useloopback = 1; /* use loopback interface for local traffic */ |
122 | | int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ |
123 | | |
124 | | /* preventing too many loops in ND option parsing */ |
125 | | int nd6_maxndopt = 10; /* max # of ND options allowed */ |
126 | | |
127 | | int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ |
128 | | |
129 | | #if ND6_DEBUG |
130 | | int nd6_debug = 1; |
131 | | #else |
132 | | int nd6_debug = 0; |
133 | | #endif |
134 | | |
135 | | int nd6_optimistic_dad = ND6_OPTIMISTIC_DAD_DEFAULT; |
136 | | |
137 | | /* for debugging? */ |
138 | | static int nd6_inuse, nd6_allocated; |
139 | | |
140 | | /* |
141 | | * Synchronization notes: |
142 | | * |
143 | | * The global list of ND entries are stored in llinfo_nd6; an entry |
144 | | * gets inserted into the list when the route is created and gets |
145 | | * removed from the list when it is deleted; this is done as part |
146 | | * of RTM_ADD/RTM_RESOLVE/RTM_DELETE in nd6_rtrequest(). |
147 | | * |
148 | | * Because rnh_lock and rt_lock for the entry are held during those |
149 | | * operations, the same locks (and thus lock ordering) must be used |
150 | | * elsewhere to access the relevant data structure fields: |
151 | | * |
152 | | * ln_next, ln_prev, ln_rt |
153 | | * |
154 | | * - Routing lock (rnh_lock) |
155 | | * |
156 | | * ln_hold, ln_asked, ln_expire, ln_state, ln_router, ln_flags, |
157 | | * ln_llreach, ln_lastused |
158 | | * |
159 | | * - Routing entry lock (rt_lock) |
160 | | * |
161 | | * Due to the dependency on rt_lock, llinfo_nd6 has the same lifetime |
162 | | * as the route entry itself. When a route is deleted (RTM_DELETE), |
163 | | * it is simply removed from the global list but the memory is not |
164 | | * freed until the route itself is freed. |
165 | | */ |
166 | | struct llinfo_nd6 llinfo_nd6 = { |
167 | | .ln_next = &llinfo_nd6, |
168 | | .ln_prev = &llinfo_nd6, |
169 | | }; |
170 | | |
171 | | static lck_grp_attr_t *nd_if_lock_grp_attr = NULL; |
172 | | static lck_grp_t *nd_if_lock_grp = NULL; |
173 | | static lck_attr_t *nd_if_lock_attr = NULL; |
174 | | |
175 | | /* Protected by nd6_mutex */ |
176 | | struct nd_drhead nd_defrouter_list; |
177 | | struct nd_prhead nd_prefix = { .lh_first = 0 }; |
178 | | struct nd_rtihead nd_rti_list; |
179 | | /* |
180 | | * nd6_timeout() is scheduled on a demand basis. nd6_timeout_run is used |
181 | | * to indicate whether or not a timeout has been scheduled. The rnh_lock |
182 | | * mutex is used to protect this scheduling; it is a natural choice given |
183 | | * the work done in the timer callback. Unfortunately, there are cases |
184 | | * when nd6_timeout() needs to be scheduled while rnh_lock cannot be easily |
185 | | * held, due to lock ordering. In those cases, we utilize a "demand" counter |
186 | | * nd6_sched_timeout_want which can be atomically incremented without |
187 | | * having to hold rnh_lock. On places where we acquire rnh_lock, such as |
188 | | * nd6_rtrequest(), we check this counter and schedule the timer if it is |
189 | | * non-zero. The increment happens on various places when we allocate |
190 | | * new ND entries, default routers, prefixes and addresses. |
191 | | */ |
192 | | static int nd6_timeout_run; /* nd6_timeout is scheduled to run */ |
193 | | void nd6_timeout(void *); |
194 | | int nd6_sched_timeout_want; /* demand count for timer to be sched */ |
195 | | static boolean_t nd6_fast_timer_on = FALSE; |
196 | | |
197 | | /* Serialization variables for nd6_service(), protected by rnh_lock */ |
198 | | static boolean_t nd6_service_busy; |
199 | | static void *nd6_service_wc = &nd6_service_busy; |
200 | | static int nd6_service_waiters = 0; |
201 | | |
202 | | int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; |
203 | | static struct sockaddr_in6 all1_sa; |
204 | | |
205 | | static int regen_tmpaddr(struct in6_ifaddr *); |
206 | | extern lck_mtx_t *nd6_mutex; |
207 | | |
208 | | static struct llinfo_nd6 *nd6_llinfo_alloc(zalloc_flags_t); |
209 | | static void nd6_llinfo_free(void *); |
210 | | static void nd6_llinfo_purge(struct rtentry *); |
211 | | static void nd6_llinfo_get_ri(struct rtentry *, struct rt_reach_info *); |
212 | | static void nd6_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *); |
213 | | static void nd6_llinfo_refresh(struct rtentry *); |
214 | | static uint64_t ln_getexpire(struct llinfo_nd6 *); |
215 | | |
216 | | static void nd6_service(void *); |
217 | | void nd6_slowtimo(void *); |
218 | | static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, struct ifnet *); |
219 | | static int nd6_siocgdrlst(void *, int); |
220 | | static int nd6_siocgprlst(void *, int); |
221 | | |
222 | | static void nd6_router_select_rti_entries(struct ifnet *); |
223 | | static void nd6_purge_interface_default_routers(struct ifnet *); |
224 | | static void nd6_purge_interface_rti_entries(struct ifnet *); |
225 | | static void nd6_purge_interface_prefixes(struct ifnet *); |
226 | | static void nd6_purge_interface_llinfo(struct ifnet *); |
227 | | |
228 | | static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS; |
229 | | static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS; |
230 | | |
231 | | /* |
232 | | * Insertion and removal from llinfo_nd6 must be done with rnh_lock held. |
233 | | */ |
234 | 0 | #define LN_DEQUEUE(_ln) do { \ |
235 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ |
236 | 0 | RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ |
237 | 0 | (_ln)->ln_next->ln_prev = (_ln)->ln_prev; \ |
238 | 0 | (_ln)->ln_prev->ln_next = (_ln)->ln_next; \ |
239 | 0 | (_ln)->ln_prev = (_ln)->ln_next = NULL; \ |
240 | 0 | (_ln)->ln_flags &= ~ND6_LNF_IN_USE; \ |
241 | 0 | } while (0) |
242 | | |
243 | 22 | #define LN_INSERTHEAD(_ln) do { \ |
244 | 22 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ |
245 | 22 | RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ |
246 | 22 | (_ln)->ln_next = llinfo_nd6.ln_next; \ |
247 | 22 | llinfo_nd6.ln_next = (_ln); \ |
248 | 22 | (_ln)->ln_prev = &llinfo_nd6; \ |
249 | 22 | (_ln)->ln_next->ln_prev = (_ln); \ |
250 | 22 | (_ln)->ln_flags |= ND6_LNF_IN_USE; \ |
251 | 22 | } while (0) |
252 | | |
253 | | static ZONE_DECLARE(llinfo_nd6_zone, "llinfo_nd6", |
254 | | sizeof(struct llinfo_nd6), ZC_ZFREE_CLEARMEM); |
255 | | |
256 | | extern int tvtohz(struct timeval *); |
257 | | |
258 | | static int nd6_init_done; |
259 | | |
260 | | SYSCTL_DECL(_net_inet6_icmp6); |
261 | | |
262 | | SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, |
263 | | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
264 | | nd6_sysctl_drlist, "S,in6_defrouter", ""); |
265 | | |
266 | | SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, |
267 | | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
268 | | nd6_sysctl_prlist, "S,in6_defrouter", ""); |
269 | | |
270 | | SYSCTL_DECL(_net_inet6_ip6); |
271 | | |
272 | | static int ip6_maxchainsent = 0; |
273 | | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, maxchainsent, |
274 | | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxchainsent, 0, |
275 | | "use dlil_output_list"); |
276 | | |
277 | | SYSCTL_DECL(_net_inet6_icmp6); |
278 | | int nd6_process_rti = ND6_PROCESS_RTI_DEFAULT; |
279 | | |
280 | | SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_process_rti, CTLFLAG_RW | CTLFLAG_LOCKED, |
281 | | &nd6_process_rti, 0, |
282 | | "Enable/disable processing of Route Information Option in the " |
283 | | "IPv6 Router Advertisement."); |
284 | | |
285 | | void |
286 | | nd6_init(void) |
287 | 1 | { |
288 | 1 | int i; |
289 | | |
290 | 1 | VERIFY(!nd6_init_done); |
291 | | |
292 | 1 | all1_sa.sin6_family = AF_INET6; |
293 | 1 | all1_sa.sin6_len = sizeof(struct sockaddr_in6); |
294 | 17 | for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) { |
295 | 16 | all1_sa.sin6_addr.s6_addr[i] = 0xff; |
296 | 16 | } |
297 | | |
298 | | /* initialization of the default router list */ |
299 | 1 | TAILQ_INIT(&nd_defrouter_list); |
300 | 1 | TAILQ_INIT(&nd_rti_list); |
301 | | |
302 | 1 | nd_if_lock_grp_attr = lck_grp_attr_alloc_init(); |
303 | 1 | nd_if_lock_grp = lck_grp_alloc_init("nd_if_lock", nd_if_lock_grp_attr); |
304 | 1 | nd_if_lock_attr = lck_attr_alloc_init(); |
305 | | |
306 | 1 | nd6_nbr_init(); |
307 | 1 | nd6_rtr_init(); |
308 | | |
309 | 1 | nd6_init_done = 1; |
310 | | |
311 | | /* start timer */ |
312 | | // timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); |
313 | 1 | } |
314 | | |
315 | | static struct llinfo_nd6 * |
316 | | nd6_llinfo_alloc(zalloc_flags_t how) |
317 | 22 | { |
318 | 22 | return zalloc_flags(llinfo_nd6_zone, how | Z_ZERO); |
319 | 22 | } |
320 | | |
321 | | static void |
322 | | nd6_llinfo_free(void *arg) |
323 | 0 | { |
324 | 0 | struct llinfo_nd6 *ln = arg; |
325 | |
|
326 | 0 | if (ln->ln_next != NULL || ln->ln_prev != NULL) { |
327 | 0 | panic("%s: trying to free %p when it is in use", __func__, ln); |
328 | | /* NOTREACHED */ |
329 | 0 | } |
330 | | |
331 | | /* Just in case there's anything there, free it */ |
332 | 0 | if (ln->ln_hold != NULL) { |
333 | 0 | m_freem_list(ln->ln_hold); |
334 | 0 | ln->ln_hold = NULL; |
335 | 0 | } |
336 | | |
337 | | /* Purge any link-layer info caching */ |
338 | 0 | VERIFY(ln->ln_rt->rt_llinfo == ln); |
339 | 0 | if (ln->ln_rt->rt_llinfo_purge != NULL) { |
340 | 0 | ln->ln_rt->rt_llinfo_purge(ln->ln_rt); |
341 | 0 | } |
342 | |
|
343 | 0 | zfree(llinfo_nd6_zone, ln); |
344 | 0 | } |
345 | | |
346 | | static void |
347 | | nd6_llinfo_purge(struct rtentry *rt) |
348 | 0 | { |
349 | 0 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
350 | |
|
351 | 0 | RT_LOCK_ASSERT_HELD(rt); |
352 | 0 | VERIFY(rt->rt_llinfo_purge == nd6_llinfo_purge && ln != NULL); |
353 | | |
354 | 0 | if (ln->ln_llreach != NULL) { |
355 | 0 | RT_CONVERT_LOCK(rt); |
356 | 0 | ifnet_llreach_free(ln->ln_llreach); |
357 | 0 | ln->ln_llreach = NULL; |
358 | 0 | } |
359 | 0 | ln->ln_lastused = 0; |
360 | 0 | } |
361 | | |
362 | | static void |
363 | | nd6_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri) |
364 | 0 | { |
365 | 0 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
366 | 0 | struct if_llreach *lr = ln->ln_llreach; |
367 | |
|
368 | 0 | if (lr == NULL) { |
369 | 0 | bzero(ri, sizeof(*ri)); |
370 | 0 | ri->ri_rssi = IFNET_RSSI_UNKNOWN; |
371 | 0 | ri->ri_lqm = IFNET_LQM_THRESH_OFF; |
372 | 0 | ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN; |
373 | 0 | } else { |
374 | 0 | IFLR_LOCK(lr); |
375 | | /* Export to rt_reach_info structure */ |
376 | 0 | ifnet_lr2ri(lr, ri); |
377 | | /* Export ND6 send expiration (calendar) time */ |
378 | 0 | ri->ri_snd_expire = |
379 | 0 | ifnet_llreach_up2calexp(lr, ln->ln_lastused); |
380 | 0 | IFLR_UNLOCK(lr); |
381 | 0 | } |
382 | 0 | } |
383 | | |
384 | | static void |
385 | | nd6_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri) |
386 | 0 | { |
387 | 0 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
388 | 0 | struct if_llreach *lr = ln->ln_llreach; |
389 | |
|
390 | 0 | if (lr == NULL) { |
391 | 0 | bzero(iflri, sizeof(*iflri)); |
392 | 0 | iflri->iflri_rssi = IFNET_RSSI_UNKNOWN; |
393 | 0 | iflri->iflri_lqm = IFNET_LQM_THRESH_OFF; |
394 | 0 | iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN; |
395 | 0 | } else { |
396 | 0 | IFLR_LOCK(lr); |
397 | | /* Export to ifnet_llreach_info structure */ |
398 | 0 | ifnet_lr2iflri(lr, iflri); |
399 | | /* Export ND6 send expiration (uptime) time */ |
400 | 0 | iflri->iflri_snd_expire = |
401 | 0 | ifnet_llreach_up2upexp(lr, ln->ln_lastused); |
402 | 0 | IFLR_UNLOCK(lr); |
403 | 0 | } |
404 | 0 | } |
405 | | |
406 | | static void |
407 | | nd6_llinfo_refresh(struct rtentry *rt) |
408 | 0 | { |
409 | 0 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
410 | 0 | uint64_t timenow = net_uptime(); |
411 | | /* |
412 | | * Can't refresh permanent, static or entries that are |
413 | | * not direct host entries |
414 | | */ |
415 | 0 | if (!ln || ln->ln_expire == 0 || |
416 | 0 | (rt->rt_flags & RTF_STATIC) || |
417 | 0 | !(rt->rt_flags & RTF_LLINFO)) { |
418 | 0 | return; |
419 | 0 | } |
420 | | |
421 | 0 | if ((ln->ln_state > ND6_LLINFO_INCOMPLETE) && |
422 | 0 | (ln->ln_state < ND6_LLINFO_PROBE)) { |
423 | 0 | if (ln->ln_expire > timenow) { |
424 | 0 | ln_setexpire(ln, timenow); |
425 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); |
426 | 0 | } |
427 | 0 | } |
428 | 0 | return; |
429 | 0 | } |
430 | | |
431 | | const char * |
432 | | ndcache_state2str(short ndp_state) |
433 | 0 | { |
434 | 0 | const char *ndp_state_str = "UNKNOWN"; |
435 | 0 | switch (ndp_state) { |
436 | 0 | case ND6_LLINFO_PURGE: |
437 | 0 | ndp_state_str = "ND6_LLINFO_PURGE"; |
438 | 0 | break; |
439 | 0 | case ND6_LLINFO_NOSTATE: |
440 | 0 | ndp_state_str = "ND6_LLINFO_NOSTATE"; |
441 | 0 | break; |
442 | 0 | case ND6_LLINFO_INCOMPLETE: |
443 | 0 | ndp_state_str = "ND6_LLINFO_INCOMPLETE"; |
444 | 0 | break; |
445 | 0 | case ND6_LLINFO_REACHABLE: |
446 | 0 | ndp_state_str = "ND6_LLINFO_REACHABLE"; |
447 | 0 | break; |
448 | 0 | case ND6_LLINFO_STALE: |
449 | 0 | ndp_state_str = "ND6_LLINFO_STALE"; |
450 | 0 | break; |
451 | 0 | case ND6_LLINFO_DELAY: |
452 | 0 | ndp_state_str = "ND6_LLINFO_DELAY"; |
453 | 0 | break; |
454 | 0 | case ND6_LLINFO_PROBE: |
455 | 0 | ndp_state_str = "ND6_LLINFO_PROBE"; |
456 | 0 | break; |
457 | 0 | default: |
458 | | /* Init'd to UNKNOWN */ |
459 | 0 | break; |
460 | 0 | } |
461 | 0 | return ndp_state_str; |
462 | 0 | } |
463 | | |
464 | | void |
465 | | ln_setexpire(struct llinfo_nd6 *ln, uint64_t expiry) |
466 | 7.93k | { |
467 | 7.93k | ln->ln_expire = expiry; |
468 | 7.93k | } |
469 | | |
470 | | static uint64_t |
471 | | ln_getexpire(struct llinfo_nd6 *ln) |
472 | 0 | { |
473 | 0 | struct timeval caltime; |
474 | 0 | uint64_t expiry; |
475 | |
|
476 | 0 | if (ln->ln_expire != 0) { |
477 | 0 | struct rtentry *rt = ln->ln_rt; |
478 | |
|
479 | 0 | VERIFY(rt != NULL); |
480 | | /* account for system time change */ |
481 | 0 | getmicrotime(&caltime); |
482 | |
|
483 | 0 | rt->base_calendartime += |
484 | 0 | NET_CALCULATE_CLOCKSKEW(caltime, |
485 | 0 | rt->base_calendartime, net_uptime(), rt->base_uptime); |
486 | |
|
487 | 0 | expiry = rt->base_calendartime + |
488 | 0 | ln->ln_expire - rt->base_uptime; |
489 | 0 | } else { |
490 | 0 | expiry = 0; |
491 | 0 | } |
492 | 0 | return expiry; |
493 | 0 | } |
494 | | |
495 | | void |
496 | | nd6_ifreset(struct ifnet *ifp) |
497 | 1 | { |
498 | 1 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
499 | 1 | VERIFY(NULL != ndi); |
500 | 1 | VERIFY(ndi->initialized); |
501 | | |
502 | 1 | LCK_MTX_ASSERT(&ndi->lock, LCK_MTX_ASSERT_OWNED); |
503 | 1 | ndi->linkmtu = ifp->if_mtu; |
504 | 1 | ndi->chlim = IPV6_DEFHLIM; |
505 | 1 | ndi->basereachable = REACHABLE_TIME; |
506 | 1 | ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable); |
507 | 1 | ndi->retrans = RETRANS_TIMER; |
508 | 1 | } |
509 | | |
510 | | void |
511 | | nd6_ifattach(struct ifnet *ifp) |
512 | 1 | { |
513 | 1 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
514 | | |
515 | 1 | VERIFY(NULL != ndi); |
516 | 1 | if (!ndi->initialized) { |
517 | 1 | lck_mtx_init(&ndi->lock, nd_if_lock_grp, nd_if_lock_attr); |
518 | 1 | ndi->flags = ND6_IFF_PERFORMNUD; |
519 | 1 | ndi->flags |= ND6_IFF_DAD; |
520 | 1 | ndi->initialized = TRUE; |
521 | 1 | } |
522 | | |
523 | 1 | lck_mtx_lock(&ndi->lock); |
524 | | |
525 | 1 | if (!(ifp->if_flags & IFF_MULTICAST)) { |
526 | 0 | ndi->flags |= ND6_IFF_IFDISABLED; |
527 | 0 | } |
528 | | |
529 | 1 | nd6_ifreset(ifp); |
530 | 1 | lck_mtx_unlock(&ndi->lock); |
531 | 1 | nd6_setmtu(ifp); |
532 | | |
533 | 1 | nd6log0(info, |
534 | 1 | "Reinit'd ND information for interface %s\n", |
535 | 1 | if_name(ifp)); |
536 | 1 | return; |
537 | 1 | } |
538 | | |
539 | | #if 0 |
540 | | /* |
541 | | * XXX Look more into this. Especially since we recycle ifnets and do delayed |
542 | | * cleanup |
543 | | */ |
544 | | void |
545 | | nd6_ifdetach(struct nd_ifinfo *nd) |
546 | | { |
547 | | /* XXX destroy nd's lock? */ |
548 | | FREE(nd, M_IP6NDP); |
549 | | } |
550 | | #endif |
551 | | |
552 | | void |
553 | | nd6_setmtu(struct ifnet *ifp) |
554 | 1 | { |
555 | 1 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
556 | 1 | u_int32_t oldmaxmtu, maxmtu; |
557 | | |
558 | 1 | if ((NULL == ndi) || (FALSE == ndi->initialized)) { |
559 | 0 | return; |
560 | 0 | } |
561 | | |
562 | 1 | lck_mtx_lock(&ndi->lock); |
563 | 1 | oldmaxmtu = ndi->maxmtu; |
564 | | |
565 | | /* |
566 | | * The ND level maxmtu is somewhat redundant to the interface MTU |
567 | | * and is an implementation artifact of KAME. Instead of hard- |
568 | | * limiting the maxmtu based on the interface type here, we simply |
569 | | * take the if_mtu value since SIOCSIFMTU would have taken care of |
570 | | * the sanity checks related to the maximum MTU allowed for the |
571 | | * interface (a value that is known only by the interface layer), |
572 | | * by sending the request down via ifnet_ioctl(). The use of the |
573 | | * ND level maxmtu and linkmtu are done via IN6_LINKMTU() which |
574 | | * does further checking against if_mtu. |
575 | | */ |
576 | 1 | maxmtu = ndi->maxmtu = ifp->if_mtu; |
577 | | |
578 | | /* |
579 | | * Decreasing the interface MTU under IPV6 minimum MTU may cause |
580 | | * undesirable situation. We thus notify the operator of the change |
581 | | * explicitly. The check for oldmaxmtu is necessary to restrict the |
582 | | * log to the case of changing the MTU, not initializing it. |
583 | | */ |
584 | 1 | if (oldmaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { |
585 | 0 | log(LOG_NOTICE, "nd6_setmtu: " |
586 | 0 | "new link MTU on %s (%u) is too small for IPv6\n", |
587 | 0 | if_name(ifp), (uint32_t)ndi->maxmtu); |
588 | 0 | } |
589 | 1 | ndi->linkmtu = ifp->if_mtu; |
590 | 1 | lck_mtx_unlock(&ndi->lock); |
591 | | |
592 | | /* also adjust in6_maxmtu if necessary. */ |
593 | 1 | if (maxmtu > in6_maxmtu) { |
594 | 1 | in6_setmaxmtu(); |
595 | 1 | } |
596 | 1 | } |
597 | | |
598 | | void |
599 | | nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) |
600 | 30.9k | { |
601 | 30.9k | bzero(ndopts, sizeof(*ndopts)); |
602 | 30.9k | ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; |
603 | 30.9k | ndopts->nd_opts_last = |
604 | 30.9k | (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); |
605 | | |
606 | 30.9k | if (icmp6len == 0) { |
607 | 10.9k | ndopts->nd_opts_done = 1; |
608 | 10.9k | ndopts->nd_opts_search = NULL; |
609 | 10.9k | } |
610 | 30.9k | } |
611 | | |
612 | | /* |
613 | | * Take one ND option. |
614 | | */ |
615 | | struct nd_opt_hdr * |
616 | | nd6_option(union nd_opts *ndopts) |
617 | 33.9k | { |
618 | 33.9k | struct nd_opt_hdr *nd_opt; |
619 | 33.9k | int olen; |
620 | | |
621 | 33.9k | if (!ndopts) { |
622 | 0 | panic("ndopts == NULL in nd6_option\n"); |
623 | 0 | } |
624 | 33.9k | if (!ndopts->nd_opts_last) { |
625 | 0 | panic("uninitialized ndopts in nd6_option\n"); |
626 | 0 | } |
627 | 33.9k | if (!ndopts->nd_opts_search) { |
628 | 0 | return NULL; |
629 | 0 | } |
630 | 33.9k | if (ndopts->nd_opts_done) { |
631 | 0 | return NULL; |
632 | 0 | } |
633 | | |
634 | 33.9k | nd_opt = ndopts->nd_opts_search; |
635 | | |
636 | | /* make sure nd_opt_len is inside the buffer */ |
637 | 33.9k | if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { |
638 | 26 | bzero(ndopts, sizeof(*ndopts)); |
639 | 26 | return NULL; |
640 | 26 | } |
641 | | |
642 | 33.9k | olen = nd_opt->nd_opt_len << 3; |
643 | 33.9k | if (olen == 0) { |
644 | | /* |
645 | | * Message validation requires that all included |
646 | | * options have a length that is greater than zero. |
647 | | */ |
648 | 154 | bzero(ndopts, sizeof(*ndopts)); |
649 | 154 | return NULL; |
650 | 154 | } |
651 | | |
652 | 33.7k | ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); |
653 | 33.7k | if (ndopts->nd_opts_search > ndopts->nd_opts_last) { |
654 | | /* option overruns the end of buffer, invalid */ |
655 | 11.1k | bzero(ndopts, sizeof(*ndopts)); |
656 | 11.1k | return NULL; |
657 | 22.6k | } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { |
658 | | /* reached the end of options chain */ |
659 | 8.66k | ndopts->nd_opts_done = 1; |
660 | 8.66k | ndopts->nd_opts_search = NULL; |
661 | 8.66k | } |
662 | 22.6k | return nd_opt; |
663 | 33.7k | } |
664 | | |
665 | | /* |
666 | | * Parse multiple ND options. |
667 | | * This function is much easier to use, for ND routines that do not need |
668 | | * multiple options of the same type. |
669 | | */ |
670 | | int |
671 | | nd6_options(union nd_opts *ndopts) |
672 | 30.9k | { |
673 | 30.9k | struct nd_opt_hdr *nd_opt; |
674 | 30.9k | int i = 0; |
675 | | |
676 | 30.9k | if (ndopts == NULL) { |
677 | 0 | panic("ndopts == NULL in nd6_options"); |
678 | 0 | } |
679 | 30.9k | if (ndopts->nd_opts_last == NULL) { |
680 | 0 | panic("uninitialized ndopts in nd6_options"); |
681 | 0 | } |
682 | 30.9k | if (ndopts->nd_opts_search == NULL) { |
683 | 10.9k | return 0; |
684 | 10.9k | } |
685 | | |
686 | 33.9k | while (1) { |
687 | 33.9k | nd_opt = nd6_option(ndopts); |
688 | 33.9k | if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { |
689 | | /* |
690 | | * Message validation requires that all included |
691 | | * options have a length that is greater than zero. |
692 | | */ |
693 | 11.3k | icmp6stat.icp6s_nd_badopt++; |
694 | 11.3k | bzero(ndopts, sizeof(*ndopts)); |
695 | 11.3k | return -1; |
696 | 11.3k | } |
697 | | |
698 | 22.6k | if (nd_opt == NULL) { |
699 | 0 | goto skip1; |
700 | 0 | } |
701 | | |
702 | 22.6k | switch (nd_opt->nd_opt_type) { |
703 | 18.9k | case ND_OPT_SOURCE_LINKADDR: |
704 | 21.8k | case ND_OPT_TARGET_LINKADDR: |
705 | 22.0k | case ND_OPT_MTU: |
706 | 22.1k | case ND_OPT_REDIRECTED_HEADER: |
707 | 22.2k | case ND_OPT_NONCE: |
708 | 22.2k | if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { |
709 | 13.3k | nd6log(error, |
710 | 13.3k | "duplicated ND6 option found (type=%d)\n", |
711 | 13.3k | nd_opt->nd_opt_type); |
712 | | /* XXX bark? */ |
713 | 13.3k | } else { |
714 | 8.96k | ndopts->nd_opt_array[nd_opt->nd_opt_type] = |
715 | 8.96k | nd_opt; |
716 | 8.96k | } |
717 | 22.2k | break; |
718 | 54 | case ND_OPT_PREFIX_INFORMATION: |
719 | 54 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { |
720 | 20 | ndopts->nd_opt_array[nd_opt->nd_opt_type] = |
721 | 20 | nd_opt; |
722 | 20 | } |
723 | 54 | ndopts->nd_opts_pi_end = |
724 | 54 | (struct nd_opt_prefix_info *)nd_opt; |
725 | 54 | break; |
726 | 21 | case ND_OPT_RDNSS: |
727 | 72 | case ND_OPT_DNSSL: |
728 | 135 | case ND_OPT_CAPTIVE_PORTAL: |
729 | | /* ignore */ |
730 | 135 | break; |
731 | 40 | case ND_OPT_ROUTE_INFO: |
732 | 40 | if (nd6_process_rti) { |
733 | 40 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { |
734 | 28 | ndopts->nd_opt_array[nd_opt->nd_opt_type] |
735 | 28 | = nd_opt; |
736 | 28 | } |
737 | 40 | ndopts->nd_opts_rti_end = |
738 | 40 | (struct nd_opt_route_info *)nd_opt; |
739 | 40 | break; |
740 | 40 | } |
741 | 40 | OS_FALLTHROUGH; |
742 | 142 | default: |
743 | | /* |
744 | | * Unknown options must be silently ignored, |
745 | | * to accomodate future extension to the protocol. |
746 | | */ |
747 | 142 | nd6log(debug, |
748 | 22.6k | "nd6_options: unsupported option %d - " |
749 | 22.6k | "option ignored\n", nd_opt->nd_opt_type); |
750 | 22.6k | } |
751 | | |
752 | 22.6k | skip1: |
753 | 22.6k | i++; |
754 | 22.6k | if (i > nd6_maxndopt) { |
755 | 40 | icmp6stat.icp6s_nd_toomanyopt++; |
756 | 40 | nd6log(info, "too many loop in nd opt\n"); |
757 | 40 | break; |
758 | 40 | } |
759 | | |
760 | 22.6k | if (ndopts->nd_opts_done) { |
761 | 8.66k | break; |
762 | 8.66k | } |
763 | 22.6k | } |
764 | | |
765 | 8.70k | return 0; |
766 | 20.0k | } |
767 | | |
768 | | struct nd6svc_arg { |
769 | | int draining; |
770 | | uint32_t killed; |
771 | | uint32_t aging_lazy; |
772 | | uint32_t aging; |
773 | | uint32_t sticky; |
774 | | uint32_t found; |
775 | | }; |
776 | | |
777 | | |
778 | | static void |
779 | | nd6_service_neighbor_cache(struct nd6svc_arg *ap, uint64_t timenow) |
780 | 408k | { |
781 | 408k | struct llinfo_nd6 *ln; |
782 | 408k | struct ifnet *ifp = NULL; |
783 | 408k | boolean_t send_nc_failure_kev = FALSE; |
784 | 408k | struct radix_node_head *rnh = rt_tables[AF_INET6]; |
785 | | |
786 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
787 | 408k | again: |
788 | | /* |
789 | | * send_nc_failure_kev gets set when default router's IPv6 address |
790 | | * can't be resolved. |
791 | | * That can happen either: |
792 | | * 1. When the entry has resolved once but can't be |
793 | | * resolved later and the neighbor cache entry for gateway is deleted |
794 | | * after max probe attempts. |
795 | | * |
796 | | * 2. When the entry is in ND6_LLINFO_INCOMPLETE but can not be resolved |
797 | | * after max neighbor address resolution attempts. |
798 | | * |
799 | | * Both set send_nc_failure_kev to true. ifp is also set to the previous |
800 | | * neighbor cache entry's route's ifp. |
801 | | * Once we are done sending the notification, set send_nc_failure_kev |
802 | | * to false to stop sending false notifications for non default router |
803 | | * neighbors. |
804 | | * |
805 | | * We may to send more information like Gateway's IP that could not be |
806 | | * resolved, however right now we do not install more than one default |
807 | | * route per interface in the routing table. |
808 | | */ |
809 | 408k | if (send_nc_failure_kev && ifp != NULL && |
810 | 408k | ifp->if_addrlen == IF_LLREACH_MAXLEN) { |
811 | 0 | struct kev_msg ev_msg; |
812 | 0 | struct kev_nd6_ndfailure nd6_ndfailure; |
813 | 0 | bzero(&ev_msg, sizeof(ev_msg)); |
814 | 0 | bzero(&nd6_ndfailure, sizeof(nd6_ndfailure)); |
815 | 0 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
816 | 0 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
817 | 0 | ev_msg.kev_subclass = KEV_ND6_SUBCLASS; |
818 | 0 | ev_msg.event_code = KEV_ND6_NDFAILURE; |
819 | |
|
820 | 0 | nd6_ndfailure.link_data.if_family = ifp->if_family; |
821 | 0 | nd6_ndfailure.link_data.if_unit = ifp->if_unit; |
822 | 0 | strlcpy(nd6_ndfailure.link_data.if_name, |
823 | 0 | ifp->if_name, |
824 | 0 | sizeof(nd6_ndfailure.link_data.if_name)); |
825 | 0 | ev_msg.dv[0].data_ptr = &nd6_ndfailure; |
826 | 0 | ev_msg.dv[0].data_length = |
827 | 0 | sizeof(nd6_ndfailure); |
828 | 0 | dlil_post_complete_msg(NULL, &ev_msg); |
829 | 0 | } |
830 | | |
831 | 408k | send_nc_failure_kev = FALSE; |
832 | 408k | ifp = NULL; |
833 | | /* |
834 | | * The global list llinfo_nd6 is modified by nd6_request() and is |
835 | | * therefore protected by rnh_lock. For obvious reasons, we cannot |
836 | | * hold rnh_lock across calls that might lead to code paths which |
837 | | * attempt to acquire rnh_lock, else we deadlock. Hence for such |
838 | | * cases we drop rt_lock and rnh_lock, make the calls, and repeat the |
839 | | * loop. To ensure that we don't process the same entry more than |
840 | | * once in a single timeout, we mark the "already-seen" entries with |
841 | | * ND6_LNF_TIMER_SKIP flag. At the end of the loop, we do a second |
842 | | * pass thru the entries and clear the flag so they can be processed |
843 | | * during the next timeout. |
844 | | */ |
845 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
846 | | |
847 | 408k | ln = llinfo_nd6.ln_next; |
848 | 8.23M | while (ln != NULL && ln != &llinfo_nd6) { |
849 | 7.82M | struct rtentry *rt; |
850 | 7.82M | struct sockaddr_in6 *dst; |
851 | 7.82M | struct llinfo_nd6 *next; |
852 | 7.82M | u_int32_t retrans, flags; |
853 | 7.82M | struct nd_ifinfo *ndi = NULL; |
854 | 7.82M | boolean_t is_router = FALSE; |
855 | | |
856 | | /* ln_next/prev/rt is protected by rnh_lock */ |
857 | 7.82M | next = ln->ln_next; |
858 | 7.82M | rt = ln->ln_rt; |
859 | 7.82M | RT_LOCK(rt); |
860 | | |
861 | | /* We've seen this already; skip it */ |
862 | 7.82M | if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { |
863 | 0 | RT_UNLOCK(rt); |
864 | 0 | ln = next; |
865 | 0 | continue; |
866 | 0 | } |
867 | 7.82M | ap->found++; |
868 | | |
869 | | /* rt->rt_ifp should never be NULL */ |
870 | 7.82M | if ((ifp = rt->rt_ifp) == NULL) { |
871 | 0 | panic("%s: ln(%p) rt(%p) rt_ifp == NULL", __func__, |
872 | 0 | ln, rt); |
873 | | /* NOTREACHED */ |
874 | 0 | } |
875 | | |
876 | | /* rt_llinfo must always be equal to ln */ |
877 | 7.82M | if ((struct llinfo_nd6 *)rt->rt_llinfo != ln) { |
878 | 0 | panic("%s: rt_llinfo(%p) is not equal to ln(%p)", |
879 | 0 | __func__, rt->rt_llinfo, ln); |
880 | | /* NOTREACHED */ |
881 | 0 | } |
882 | | |
883 | | /* rt_key should never be NULL */ |
884 | 7.82M | dst = SIN6(rt_key(rt)); |
885 | 7.82M | if (dst == NULL) { |
886 | 0 | panic("%s: rt(%p) key is NULL ln(%p)", __func__, |
887 | 0 | rt, ln); |
888 | | /* NOTREACHED */ |
889 | 0 | } |
890 | | |
891 | | /* Set the flag in case we jump to "again" */ |
892 | 7.82M | ln->ln_flags |= ND6_LNF_TIMER_SKIP; |
893 | | |
894 | 7.82M | if (ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC)) { |
895 | 3.47M | ap->sticky++; |
896 | 4.34M | } else if (ap->draining && (rt->rt_refcnt == 0)) { |
897 | | /* |
898 | | * If we are draining, immediately purge non-static |
899 | | * entries without oustanding route refcnt. |
900 | | */ |
901 | 0 | if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { |
902 | 0 | ND6_CACHE_STATE_TRANSITION(ln, (short)ND6_LLINFO_STALE); |
903 | 0 | } else { |
904 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PURGE); |
905 | 0 | } |
906 | 0 | ln_setexpire(ln, timenow); |
907 | 0 | } |
908 | | |
909 | | /* |
910 | | * If the entry has not expired, skip it. Take note on the |
911 | | * state, as entries that are in the STALE state are simply |
912 | | * waiting to be garbage collected, in which case we can |
913 | | * relax the callout scheduling (use nd6_prune_lazy). |
914 | | */ |
915 | 7.82M | if (ln->ln_expire > timenow) { |
916 | 4.34M | switch (ln->ln_state) { |
917 | 4.06M | case ND6_LLINFO_STALE: |
918 | 4.06M | ap->aging_lazy++; |
919 | 4.06M | break; |
920 | 287k | default: |
921 | 287k | ap->aging++; |
922 | 287k | break; |
923 | 4.34M | } |
924 | 4.34M | RT_UNLOCK(rt); |
925 | 4.34M | ln = next; |
926 | 4.34M | continue; |
927 | 4.34M | } |
928 | | |
929 | 3.47M | ndi = ND_IFINFO(ifp); |
930 | 3.47M | VERIFY(ndi->initialized); |
931 | 0 | retrans = ndi->retrans; |
932 | 3.47M | flags = ndi->flags; |
933 | | |
934 | 3.47M | RT_LOCK_ASSERT_HELD(rt); |
935 | 3.47M | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
936 | | |
937 | 3.47M | switch (ln->ln_state) { |
938 | 0 | case ND6_LLINFO_INCOMPLETE: |
939 | 0 | if (ln->ln_asked < nd6_mmaxtries) { |
940 | 0 | struct ifnet *exclifp = ln->ln_exclifp; |
941 | 0 | ln->ln_asked++; |
942 | 0 | ln_setexpire(ln, timenow + retrans / 1000); |
943 | 0 | RT_ADDREF_LOCKED(rt); |
944 | 0 | RT_UNLOCK(rt); |
945 | 0 | lck_mtx_unlock(rnh_lock); |
946 | 0 | if (ip6_forwarding) { |
947 | 0 | nd6_prproxy_ns_output(ifp, exclifp, |
948 | 0 | NULL, &dst->sin6_addr, ln); |
949 | 0 | } else { |
950 | 0 | nd6_ns_output(ifp, NULL, |
951 | 0 | &dst->sin6_addr, ln, NULL); |
952 | 0 | } |
953 | 0 | RT_REMREF(rt); |
954 | 0 | ap->aging++; |
955 | 0 | lck_mtx_lock(rnh_lock); |
956 | 0 | } else { |
957 | 0 | struct mbuf *m = ln->ln_hold; |
958 | 0 | ln->ln_hold = NULL; |
959 | 0 | send_nc_failure_kev = is_router; |
960 | 0 | if (m != NULL) { |
961 | 0 | RT_ADDREF_LOCKED(rt); |
962 | 0 | RT_UNLOCK(rt); |
963 | 0 | lck_mtx_unlock(rnh_lock); |
964 | |
|
965 | 0 | struct mbuf *mnext; |
966 | 0 | while (m) { |
967 | 0 | mnext = m->m_nextpkt; |
968 | 0 | m->m_nextpkt = NULL; |
969 | 0 | m->m_pkthdr.rcvif = ifp; |
970 | 0 | icmp6_error_flag(m, ICMP6_DST_UNREACH, |
971 | 0 | ICMP6_DST_UNREACH_ADDR, 0, 0); |
972 | 0 | m = mnext; |
973 | 0 | } |
974 | 0 | } else { |
975 | 0 | RT_ADDREF_LOCKED(rt); |
976 | 0 | RT_UNLOCK(rt); |
977 | 0 | lck_mtx_unlock(rnh_lock); |
978 | 0 | } |
979 | | |
980 | | /* |
981 | | * Enqueue work item to invoke callback for |
982 | | * this route entry |
983 | | */ |
984 | 0 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
985 | 0 | ROUTE_LLENTRY_UNREACH, NULL, FALSE); |
986 | 0 | nd6_free(rt); |
987 | 0 | ap->killed++; |
988 | 0 | lck_mtx_lock(rnh_lock); |
989 | | /* |
990 | | * nd6_free above would flush out the routing table of |
991 | | * any cloned routes with same next-hop. |
992 | | * Walk the tree anyways as there could be static routes |
993 | | * left. |
994 | | * |
995 | | * We also already have a reference to rt that gets freed right |
996 | | * after the block below executes. Don't need an extra reference |
997 | | * on rt here. |
998 | | */ |
999 | 0 | if (is_router) { |
1000 | 0 | struct route_event rt_ev; |
1001 | 0 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); |
1002 | 0 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
1003 | 0 | } |
1004 | 0 | rtfree_locked(rt); |
1005 | 0 | } |
1006 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1007 | 0 | goto again; |
1008 | | |
1009 | 408k | case ND6_LLINFO_REACHABLE: |
1010 | 408k | if (ln->ln_expire != 0) { |
1011 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); |
1012 | 0 | ln_setexpire(ln, timenow + nd6_gctimer); |
1013 | 0 | ap->aging_lazy++; |
1014 | | /* |
1015 | | * Enqueue work item to invoke callback for |
1016 | | * this route entry |
1017 | | */ |
1018 | 0 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
1019 | 0 | ROUTE_LLENTRY_STALE, NULL, TRUE); |
1020 | |
|
1021 | 0 | RT_ADDREF_LOCKED(rt); |
1022 | 0 | RT_UNLOCK(rt); |
1023 | 0 | if (is_router) { |
1024 | 0 | struct route_event rt_ev; |
1025 | 0 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_STALE); |
1026 | 0 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
1027 | 0 | } |
1028 | 0 | rtfree_locked(rt); |
1029 | 408k | } else { |
1030 | 408k | RT_UNLOCK(rt); |
1031 | 408k | } |
1032 | 408k | break; |
1033 | | |
1034 | 0 | case ND6_LLINFO_STALE: |
1035 | 0 | case ND6_LLINFO_PURGE: |
1036 | | /* Garbage Collection(RFC 4861 5.3) */ |
1037 | 0 | if (ln->ln_expire != 0) { |
1038 | 0 | RT_ADDREF_LOCKED(rt); |
1039 | 0 | RT_UNLOCK(rt); |
1040 | 0 | lck_mtx_unlock(rnh_lock); |
1041 | 0 | nd6_free(rt); |
1042 | 0 | ap->killed++; |
1043 | 0 | lck_mtx_lock(rnh_lock); |
1044 | 0 | rtfree_locked(rt); |
1045 | 0 | goto again; |
1046 | 0 | } else { |
1047 | 0 | RT_UNLOCK(rt); |
1048 | 0 | } |
1049 | 0 | break; |
1050 | | |
1051 | 0 | case ND6_LLINFO_DELAY: |
1052 | 0 | if ((flags & ND6_IFF_PERFORMNUD) != 0) { |
1053 | | /* We need NUD */ |
1054 | 0 | ln->ln_asked = 1; |
1055 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); |
1056 | 0 | ln_setexpire(ln, timenow + retrans / 1000); |
1057 | 0 | RT_ADDREF_LOCKED(rt); |
1058 | 0 | RT_UNLOCK(rt); |
1059 | 0 | lck_mtx_unlock(rnh_lock); |
1060 | 0 | nd6_ns_output(ifp, &dst->sin6_addr, |
1061 | 0 | &dst->sin6_addr, ln, NULL); |
1062 | 0 | RT_REMREF(rt); |
1063 | 0 | ap->aging++; |
1064 | 0 | lck_mtx_lock(rnh_lock); |
1065 | 0 | goto again; |
1066 | 0 | } |
1067 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); /* XXX */ |
1068 | 0 | ln_setexpire(ln, timenow + nd6_gctimer); |
1069 | 0 | RT_UNLOCK(rt); |
1070 | 0 | ap->aging_lazy++; |
1071 | 0 | break; |
1072 | | |
1073 | 0 | case ND6_LLINFO_PROBE: |
1074 | 0 | if (ln->ln_asked < nd6_umaxtries) { |
1075 | 0 | ln->ln_asked++; |
1076 | 0 | ln_setexpire(ln, timenow + retrans / 1000); |
1077 | 0 | RT_ADDREF_LOCKED(rt); |
1078 | 0 | RT_UNLOCK(rt); |
1079 | 0 | lck_mtx_unlock(rnh_lock); |
1080 | 0 | nd6_ns_output(ifp, &dst->sin6_addr, |
1081 | 0 | &dst->sin6_addr, ln, NULL); |
1082 | 0 | RT_REMREF(rt); |
1083 | 0 | ap->aging++; |
1084 | 0 | lck_mtx_lock(rnh_lock); |
1085 | 0 | } else { |
1086 | 0 | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
1087 | 0 | send_nc_failure_kev = is_router; |
1088 | 0 | RT_ADDREF_LOCKED(rt); |
1089 | 0 | RT_UNLOCK(rt); |
1090 | 0 | lck_mtx_unlock(rnh_lock); |
1091 | 0 | nd6_free(rt); |
1092 | 0 | ap->killed++; |
1093 | | |
1094 | | /* |
1095 | | * Enqueue work item to invoke callback for |
1096 | | * this route entry |
1097 | | */ |
1098 | 0 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
1099 | 0 | ROUTE_LLENTRY_UNREACH, NULL, FALSE); |
1100 | |
|
1101 | 0 | lck_mtx_lock(rnh_lock); |
1102 | | /* |
1103 | | * nd6_free above would flush out the routing table of |
1104 | | * any cloned routes with same next-hop. |
1105 | | * Walk the tree anyways as there could be static routes |
1106 | | * left. |
1107 | | * |
1108 | | * We also already have a reference to rt that gets freed right |
1109 | | * after the block below executes. Don't need an extra reference |
1110 | | * on rt here. |
1111 | | */ |
1112 | 0 | if (is_router) { |
1113 | 0 | struct route_event rt_ev; |
1114 | 0 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); |
1115 | 0 | (void) rnh->rnh_walktree(rnh, |
1116 | 0 | route_event_walktree, (void *)&rt_ev); |
1117 | 0 | } |
1118 | 0 | rtfree_locked(rt); |
1119 | 0 | } |
1120 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1121 | 0 | goto again; |
1122 | | |
1123 | 3.06M | default: |
1124 | 3.06M | RT_UNLOCK(rt); |
1125 | 3.06M | break; |
1126 | 3.47M | } |
1127 | 3.47M | ln = next; |
1128 | 3.47M | } |
1129 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1130 | | |
1131 | | /* Now clear the flag from all entries */ |
1132 | 408k | ln = llinfo_nd6.ln_next; |
1133 | 8.23M | while (ln != NULL && ln != &llinfo_nd6) { |
1134 | 7.82M | struct rtentry *rt = ln->ln_rt; |
1135 | 7.82M | struct llinfo_nd6 *next = ln->ln_next; |
1136 | | |
1137 | 7.82M | RT_LOCK_SPIN(rt); |
1138 | 7.82M | if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { |
1139 | 7.82M | ln->ln_flags &= ~ND6_LNF_TIMER_SKIP; |
1140 | 7.82M | } |
1141 | 7.82M | RT_UNLOCK(rt); |
1142 | 7.82M | ln = next; |
1143 | 7.82M | } |
1144 | 408k | } |
1145 | | |
1146 | | static void |
1147 | | nd6_service_expired_default_router(struct nd6svc_arg *ap, uint64_t timenow) |
1148 | 408k | { |
1149 | 408k | struct nd_defrouter *dr = NULL; |
1150 | 408k | struct nd_defrouter *ndr = NULL; |
1151 | 408k | struct nd_drhead nd_defrouter_tmp; |
1152 | | /* expire default router list */ |
1153 | 408k | TAILQ_INIT(&nd_defrouter_tmp); |
1154 | | |
1155 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
1156 | 408k | lck_mtx_lock(nd6_mutex); |
1157 | | |
1158 | 408k | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) { |
1159 | 0 | ap->found++; |
1160 | 0 | if (dr->expire != 0 && dr->expire < timenow) { |
1161 | 0 | VERIFY(dr->ifp != NULL); |
1162 | 0 | in6_ifstat_inc(dr->ifp, ifs6_defrtr_expiry_cnt); |
1163 | 0 | if ((dr->stateflags & NDDRF_INELIGIBLE) == 0) { |
1164 | 0 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_RTR_EXPIRY, dr->ifp, |
1165 | 0 | &dr->rtaddr, dr->rtlifetime); |
1166 | 0 | } |
1167 | 0 | if (dr->ifp != NULL && |
1168 | 0 | dr->ifp->if_type == IFT_CELLULAR) { |
1169 | | /* |
1170 | | * Some buggy cellular gateways may not send |
1171 | | * periodic router advertisements. |
1172 | | * Or they may send it with router lifetime |
1173 | | * value that is less than the configured Max and Min |
1174 | | * Router Advertisement interval. |
1175 | | * To top that an idle device may not wake up |
1176 | | * when periodic RA is received on cellular |
1177 | | * interface. |
1178 | | * We could send RS on every wake but RFC |
1179 | | * 4861 precludes that. |
1180 | | * The addresses are of infinite lifetimes |
1181 | | * and are tied to the lifetime of the bearer, |
1182 | | * so keeping the addresses and just getting rid of |
1183 | | * the router does not help us anyways. |
1184 | | * If there's network renumbering, a lifetime with |
1185 | | * value 0 would remove the default router. |
1186 | | * Also it will get deleted as part of purge when |
1187 | | * the PDP context is torn down and configured again. |
1188 | | * For that reason, do not expire the default router |
1189 | | * learned on cellular interface. Ever. |
1190 | | */ |
1191 | 0 | dr->expire += dr->rtlifetime; |
1192 | 0 | nd6log2(debug, |
1193 | 0 | "%s: Refreshing expired default router entry " |
1194 | 0 | "%s for interface %s\n", __func__, |
1195 | 0 | ip6_sprintf(&dr->rtaddr), if_name(dr->ifp)); |
1196 | 0 | } else { |
1197 | 0 | ap->killed++; |
1198 | | /* |
1199 | | * Remove the entry from default router list |
1200 | | * and add it to the temp list. |
1201 | | * nd_defrouter_tmp will be a local temporary |
1202 | | * list as no one else can get the same |
1203 | | * removed entry once it is removed from default |
1204 | | * router list. |
1205 | | * Remove the reference after calling defrtrlist_del |
1206 | | */ |
1207 | 0 | TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); |
1208 | 0 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
1209 | 0 | } |
1210 | 0 | } else { |
1211 | 0 | if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) { |
1212 | 0 | ap->sticky++; |
1213 | 0 | } else { |
1214 | 0 | ap->aging_lazy++; |
1215 | 0 | } |
1216 | 0 | } |
1217 | 0 | } |
1218 | | |
1219 | | /* |
1220 | | * Keep the following separate from the above |
1221 | | * iteration of nd_defrouter because it's not safe |
1222 | | * to call defrtrlist_del while iterating global default |
1223 | | * router list. Global list has to be traversed |
1224 | | * while holding nd6_mutex throughout. |
1225 | | * |
1226 | | * The following call to defrtrlist_del should be |
1227 | | * safe as we are iterating a local list of |
1228 | | * default routers. |
1229 | | */ |
1230 | 408k | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { |
1231 | 0 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
1232 | 0 | defrtrlist_del(dr, NULL); |
1233 | 0 | NDDR_REMREF(dr); /* remove list reference */ |
1234 | 0 | } |
1235 | | |
1236 | | /* XXX TBD: Also iterate through RTI router lists */ |
1237 | | /* |
1238 | | * Also check if default router selection needs to be triggered |
1239 | | * for default interface, to avoid an issue with co-existence of |
1240 | | * static un-scoped default route configuration and default router |
1241 | | * discovery/selection. |
1242 | | */ |
1243 | 408k | if (trigger_v6_defrtr_select) { |
1244 | 0 | defrouter_select(NULL, NULL); |
1245 | 0 | trigger_v6_defrtr_select = FALSE; |
1246 | 0 | } |
1247 | 408k | lck_mtx_unlock(nd6_mutex); |
1248 | 408k | } |
1249 | | |
1250 | | static void |
1251 | | nd6_service_expired_route_info(struct nd6svc_arg *ap, uint64_t timenow) |
1252 | 408k | { |
1253 | 408k | struct nd_route_info *rti = NULL; |
1254 | 408k | struct nd_route_info *rti_next = NULL; |
1255 | | |
1256 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
1257 | 408k | lck_mtx_lock(nd6_mutex); |
1258 | 408k | nd6_rti_list_wait(__func__); |
1259 | | |
1260 | 408k | TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { |
1261 | 0 | struct nd_defrouter *dr = NULL; |
1262 | 0 | struct nd_defrouter *ndr = NULL; |
1263 | 0 | struct nd_route_info rti_tmp = {}; |
1264 | |
|
1265 | 0 | rti_tmp.nd_rti_prefix = rti->nd_rti_prefix; |
1266 | 0 | rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen; |
1267 | 0 | TAILQ_INIT(&rti_tmp.nd_rti_router_list); |
1268 | |
|
1269 | 0 | TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) { |
1270 | 0 | ap->found++; |
1271 | 0 | if (dr->expire != 0 && dr->expire < timenow) { |
1272 | 0 | VERIFY(dr->ifp != NULL); |
1273 | 0 | if (dr->ifp != NULL && |
1274 | 0 | dr->ifp->if_type == IFT_CELLULAR) { |
1275 | | /* |
1276 | | * Don't expire these routes over cellular. |
1277 | | * XXX Should we change this for non default routes? |
1278 | | */ |
1279 | 0 | dr->expire += dr->rtlifetime; |
1280 | 0 | nd6log2(debug, |
1281 | 0 | "%s: Refreshing expired default router entry " |
1282 | 0 | "%s for interface %s\n", __func__, |
1283 | 0 | ip6_sprintf(&dr->rtaddr), if_name(dr->ifp)); |
1284 | 0 | } else { |
1285 | 0 | ap->killed++; |
1286 | | /* |
1287 | | * Remove the entry from rti entry's router list |
1288 | | * and add it to the temp list. |
1289 | | * Remove the reference after calling defrtrlist_del |
1290 | | */ |
1291 | 0 | TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry); |
1292 | 0 | TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry); |
1293 | 0 | } |
1294 | 0 | } else { |
1295 | 0 | if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) { |
1296 | 0 | ap->sticky++; |
1297 | 0 | } else { |
1298 | 0 | ap->aging_lazy++; |
1299 | 0 | } |
1300 | 0 | } |
1301 | 0 | } |
1302 | | |
1303 | | /* |
1304 | | * Keep the following separate from the above |
1305 | | * iteration of nd_defrouter because it's not safe |
1306 | | * to call defrtrlist_del while iterating global default |
1307 | | * router list. Global list has to be traversed |
1308 | | * while holding nd6_mutex throughout. |
1309 | | * |
1310 | | * The following call to defrtrlist_del should be |
1311 | | * safe as we are iterating a local list of |
1312 | | * default routers. |
1313 | | */ |
1314 | 0 | TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) { |
1315 | 0 | TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry); |
1316 | 0 | defrtrlist_del(dr, &rti->nd_rti_router_list); |
1317 | 0 | NDDR_REMREF(dr); /* remove list reference */ |
1318 | 0 | } |
1319 | | |
1320 | | /* |
1321 | | * The above may have removed an entry from default router list. |
1322 | | * If it did and the list is now empty, remove the rti as well. |
1323 | | */ |
1324 | 0 | if (TAILQ_EMPTY(&rti->nd_rti_router_list)) { |
1325 | 0 | TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry); |
1326 | 0 | ndrti_free(rti); |
1327 | 0 | } |
1328 | 0 | } |
1329 | | |
1330 | 408k | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
1331 | 408k | nd6_rti_list_signal_done(); |
1332 | 408k | lck_mtx_unlock(nd6_mutex); |
1333 | 408k | } |
1334 | | |
1335 | | |
1336 | | /* |
1337 | | * @function nd6_handle_duplicated_ip6_addr |
1338 | | * |
1339 | | * @brief |
1340 | | * Handle a duplicated IPv6 secured non-termporary address |
1341 | | * |
1342 | | * @discussion |
1343 | | * If the collision count hasn't been exceeded, removes the old |
1344 | | * conflicting IPv6 address, increments the collision count, |
1345 | | * and allocates a new address. |
1346 | | * |
1347 | | * Returns TRUE if the old address was removed, and the locks |
1348 | | * (in6_ifaddr_rwlock, ia6->ia_ifa) were unlocked. |
1349 | | */ |
1350 | | static boolean_t |
1351 | | nd6_handle_duplicated_ip6_addr(struct in6_ifaddr *ia6) |
1352 | 0 | { |
1353 | 0 | uint8_t collision_count; |
1354 | 0 | int error = 0; |
1355 | 0 | struct in6_ifaddr *new_ia6; |
1356 | 0 | struct nd_prefix *pr; |
1357 | 0 | struct ifnet *ifp; |
1358 | |
|
1359 | 0 | LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); |
1360 | 0 | IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); |
1361 | | |
1362 | | /* don't retry too many times */ |
1363 | 0 | collision_count = ia6->ia6_cga_collision_count; |
1364 | 0 | if (collision_count >= ip6_cga_conflict_retries) { |
1365 | 0 | return FALSE; |
1366 | 0 | } |
1367 | | |
1368 | | /* need the prefix to allocate a new address */ |
1369 | 0 | pr = ia6->ia6_ndpr; |
1370 | 0 | if (pr == NULL) { |
1371 | 0 | return FALSE; |
1372 | 0 | } |
1373 | 0 | NDPR_ADDREF(pr); |
1374 | 0 | ifp = pr->ndpr_ifp; |
1375 | 0 | log(LOG_DEBUG, |
1376 | 0 | "%s: %s duplicated (collision count %d)\n", |
1377 | 0 | ifp->if_xname, ip6_sprintf(&ia6->ia_addr.sin6_addr), |
1378 | 0 | collision_count); |
1379 | | |
1380 | | /* remove the old address */ |
1381 | 0 | IFA_UNLOCK(&ia6->ia_ifa); |
1382 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
1383 | 0 | in6_purgeaddr(&ia6->ia_ifa); |
1384 | | |
1385 | | /* allocate a new address with new collision count */ |
1386 | 0 | collision_count++; |
1387 | 0 | new_ia6 = in6_pfx_newpersistaddr(pr, 1, &error, FALSE, collision_count); |
1388 | 0 | if (new_ia6 != NULL) { |
1389 | 0 | log(LOG_DEBUG, |
1390 | 0 | "%s: %s new (collision count %d)\n", |
1391 | 0 | ifp->if_xname, ip6_sprintf(&new_ia6->ia_addr.sin6_addr), |
1392 | 0 | collision_count); |
1393 | 0 | IFA_LOCK(&new_ia6->ia_ifa); |
1394 | 0 | NDPR_LOCK(pr); |
1395 | 0 | new_ia6->ia6_ndpr = pr; |
1396 | 0 | NDPR_ADDREF(pr); /* for addr reference */ |
1397 | 0 | pr->ndpr_addrcnt++; |
1398 | 0 | VERIFY(pr->ndpr_addrcnt != 0); |
1399 | 0 | NDPR_UNLOCK(pr); |
1400 | 0 | IFA_UNLOCK(&new_ia6->ia_ifa); |
1401 | 0 | IFA_REMREF(&new_ia6->ia_ifa); |
1402 | 0 | } else { |
1403 | 0 | log(LOG_ERR, "%s: in6_pfx_newpersistaddr failed %d\n", |
1404 | 0 | __func__, error); |
1405 | 0 | } |
1406 | | |
1407 | | /* release extra prefix reference */ |
1408 | 0 | NDPR_REMREF(pr); |
1409 | 0 | return TRUE; |
1410 | 0 | } |
1411 | | |
1412 | | static boolean_t |
1413 | | secured_address_is_duplicated(int flags) |
1414 | 408k | { |
1415 | 408k | #define _IN6_IFF_DUPLICATED_AUTOCONF_SECURED \ |
1416 | 817k | (IN6_IFF_DUPLICATED | IN6_IFF_AUTOCONF | IN6_IFF_SECURED) |
1417 | 408k | return (flags & _IN6_IFF_DUPLICATED_AUTOCONF_SECURED) == |
1418 | 408k | _IN6_IFF_DUPLICATED_AUTOCONF_SECURED; |
1419 | 408k | } |
1420 | | |
1421 | | static void |
1422 | | nd6_service_ip6_addr(struct nd6svc_arg *ap, uint64_t timenow) |
1423 | 408k | { |
1424 | 408k | struct in6_ifaddr *ia6 = NULL; |
1425 | 408k | struct in6_ifaddr *nia6 = NULL; |
1426 | | /* |
1427 | | * expire interface addresses. |
1428 | | * in the past the loop was inside prefix expiry processing. |
1429 | | * However, from a stricter spec-conformance standpoint, we should |
1430 | | * rather separate address lifetimes and prefix lifetimes. |
1431 | | */ |
1432 | | |
1433 | 408k | addrloop: |
1434 | 408k | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
1435 | | |
1436 | 408k | TAILQ_FOREACH_SAFE(ia6, &in6_ifaddrhead, ia6_link, nia6) { |
1437 | 408k | int oldflags = ia6->ia6_flags; |
1438 | 408k | ap->found++; |
1439 | 408k | IFA_LOCK(&ia6->ia_ifa); |
1440 | | /* |
1441 | | * Extra reference for ourselves; it's no-op if |
1442 | | * we don't have to regenerate temporary address, |
1443 | | * otherwise it protects the address from going |
1444 | | * away since we drop in6_ifaddr_rwlock below. |
1445 | | */ |
1446 | 408k | IFA_ADDREF_LOCKED(&ia6->ia_ifa); |
1447 | | |
1448 | | /* check for duplicated secured address */ |
1449 | 408k | if (secured_address_is_duplicated(ia6->ia6_flags) && |
1450 | 408k | nd6_handle_duplicated_ip6_addr(ia6)) { |
1451 | | /* |
1452 | | * nd6_handle_duplicated_ip6_addr() unlocked |
1453 | | * (in6_ifaddr_rwlock, ia6->ia_ifa) already. |
1454 | | * Still need to release extra reference on |
1455 | | * ia6->ia_ifa taken above. |
1456 | | */ |
1457 | 0 | IFA_REMREF(&ia6->ia_ifa); |
1458 | 0 | goto addrloop; |
1459 | 0 | } |
1460 | | |
1461 | | /* check address lifetime */ |
1462 | 408k | if (IFA6_IS_INVALID(ia6, timenow)) { |
1463 | | /* |
1464 | | * If the expiring address is temporary, try |
1465 | | * regenerating a new one. This would be useful when |
1466 | | * we suspended a laptop PC, then turned it on after a |
1467 | | * period that could invalidate all temporary |
1468 | | * addresses. Although we may have to restart the |
1469 | | * loop (see below), it must be after purging the |
1470 | | * address. Otherwise, we'd see an infinite loop of |
1471 | | * regeneration. |
1472 | | */ |
1473 | 0 | if (ip6_use_tempaddr && |
1474 | 0 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { |
1475 | | /* |
1476 | | * NOTE: We have to drop the lock here |
1477 | | * because regen_tmpaddr() eventually calls |
1478 | | * in6_update_ifa(), which must take the lock |
1479 | | * and would otherwise cause a hang. This is |
1480 | | * safe because the goto addrloop leads to a |
1481 | | * re-evaluation of the in6_ifaddrs list |
1482 | | */ |
1483 | 0 | IFA_UNLOCK(&ia6->ia_ifa); |
1484 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
1485 | 0 | (void) regen_tmpaddr(ia6); |
1486 | 0 | } else { |
1487 | 0 | IFA_UNLOCK(&ia6->ia_ifa); |
1488 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
1489 | 0 | } |
1490 | | |
1491 | | /* |
1492 | | * Purging the address would have caused |
1493 | | * in6_ifaddr_rwlock to be dropped and reacquired; |
1494 | | * therefore search again from the beginning |
1495 | | * of in6_ifaddrs list. |
1496 | | */ |
1497 | 0 | in6_purgeaddr(&ia6->ia_ifa); |
1498 | 0 | ap->killed++; |
1499 | |
|
1500 | 0 | if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { |
1501 | 0 | in6_ifstat_inc(ia6->ia_ifa.ifa_ifp, ifs6_addr_expiry_cnt); |
1502 | 0 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_ADDR_EXPIRY, |
1503 | 0 | ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, |
1504 | 0 | 0); |
1505 | 0 | } |
1506 | | /* Release extra reference taken above */ |
1507 | 0 | IFA_REMREF(&ia6->ia_ifa); |
1508 | 0 | goto addrloop; |
1509 | 0 | } |
1510 | | /* |
1511 | | * The lazy timer runs every nd6_prune_lazy seconds with at |
1512 | | * most "2 * nd6_prune_lazy - 1" leeway. We consider the worst |
1513 | | * case here and make sure we schedule the regular timer if an |
1514 | | * interface address is about to expire. |
1515 | | */ |
1516 | 408k | if (IFA6_IS_INVALID(ia6, timenow + 3 * nd6_prune_lazy)) { |
1517 | 0 | ap->aging++; |
1518 | 408k | } else { |
1519 | 408k | ap->aging_lazy++; |
1520 | 408k | } |
1521 | 408k | IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); |
1522 | 408k | if (IFA6_IS_DEPRECATED(ia6, timenow)) { |
1523 | 0 | ia6->ia6_flags |= IN6_IFF_DEPRECATED; |
1524 | |
|
1525 | 0 | if ((oldflags & IN6_IFF_DEPRECATED) == 0) { |
1526 | | /* |
1527 | | * Only enqueue the Deprecated event when the address just |
1528 | | * becomes deprecated. |
1529 | | * Keep it limited to the stable address as it is common for |
1530 | | * older temporary addresses to get deprecated while we generate |
1531 | | * new ones. |
1532 | | */ |
1533 | 0 | if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { |
1534 | 0 | in6_event_enqueue_nwk_wq_entry(IN6_ADDR_MARKED_DEPRECATED, |
1535 | 0 | ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, |
1536 | 0 | 0); |
1537 | 0 | } |
1538 | 0 | } |
1539 | | /* |
1540 | | * If a temporary address has just become deprecated, |
1541 | | * regenerate a new one if possible. |
1542 | | */ |
1543 | 0 | if (ip6_use_tempaddr && |
1544 | 0 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && |
1545 | 0 | (oldflags & IN6_IFF_DEPRECATED) == 0) { |
1546 | | /* see NOTE above */ |
1547 | 0 | IFA_UNLOCK(&ia6->ia_ifa); |
1548 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
1549 | 0 | if (regen_tmpaddr(ia6) == 0) { |
1550 | | /* |
1551 | | * A new temporary address is |
1552 | | * generated. |
1553 | | * XXX: this means the address chain |
1554 | | * has changed while we are still in |
1555 | | * the loop. Although the change |
1556 | | * would not cause disaster (because |
1557 | | * it's not a deletion, but an |
1558 | | * addition,) we'd rather restart the |
1559 | | * loop just for safety. Or does this |
1560 | | * significantly reduce performance?? |
1561 | | */ |
1562 | | /* Release extra reference */ |
1563 | 0 | IFA_REMREF(&ia6->ia_ifa); |
1564 | 0 | goto addrloop; |
1565 | 0 | } |
1566 | 0 | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
1567 | 0 | } else { |
1568 | 0 | IFA_UNLOCK(&ia6->ia_ifa); |
1569 | 0 | } |
1570 | 408k | } else { |
1571 | | /* |
1572 | | * A new RA might have made a deprecated address |
1573 | | * preferred. |
1574 | | */ |
1575 | 408k | ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; |
1576 | 408k | IFA_UNLOCK(&ia6->ia_ifa); |
1577 | 408k | } |
1578 | 408k | LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); |
1579 | | /* Release extra reference taken above */ |
1580 | 408k | IFA_REMREF(&ia6->ia_ifa); |
1581 | 408k | } |
1582 | 408k | lck_rw_done(&in6_ifaddr_rwlock); |
1583 | 408k | } |
1584 | | |
1585 | | static void |
1586 | | nd6_service_expired_prefix(struct nd6svc_arg *ap, uint64_t timenow) |
1587 | 408k | { |
1588 | 408k | struct nd_prefix *pr = NULL; |
1589 | | |
1590 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
1591 | 408k | lck_mtx_lock(nd6_mutex); |
1592 | | /* expire prefix list */ |
1593 | 408k | pr = nd_prefix.lh_first; |
1594 | 408k | while (pr != NULL) { |
1595 | 0 | ap->found++; |
1596 | | /* |
1597 | | * check prefix lifetime. |
1598 | | * since pltime is just for autoconf, pltime processing for |
1599 | | * prefix is not necessary. |
1600 | | */ |
1601 | 0 | NDPR_LOCK(pr); |
1602 | 0 | if (pr->ndpr_stateflags & NDPRF_PROCESSED_SERVICE || |
1603 | 0 | pr->ndpr_stateflags & NDPRF_DEFUNCT) { |
1604 | 0 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
1605 | 0 | NDPR_UNLOCK(pr); |
1606 | 0 | pr = pr->ndpr_next; |
1607 | 0 | continue; |
1608 | 0 | } |
1609 | 0 | if (pr->ndpr_expire != 0 && pr->ndpr_expire < timenow) { |
1610 | | /* |
1611 | | * address expiration and prefix expiration are |
1612 | | * separate. NEVER perform in6_purgeaddr here. |
1613 | | */ |
1614 | 0 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
1615 | 0 | NDPR_ADDREF(pr); |
1616 | 0 | prelist_remove(pr); |
1617 | 0 | NDPR_UNLOCK(pr); |
1618 | |
|
1619 | 0 | in6_ifstat_inc(pr->ndpr_ifp, ifs6_pfx_expiry_cnt); |
1620 | 0 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_PFX_EXPIRY, |
1621 | 0 | pr->ndpr_ifp, &pr->ndpr_prefix.sin6_addr, |
1622 | 0 | 0); |
1623 | 0 | NDPR_REMREF(pr); |
1624 | 0 | pfxlist_onlink_check(); |
1625 | 0 | pr = nd_prefix.lh_first; |
1626 | 0 | ap->killed++; |
1627 | 0 | } else { |
1628 | 0 | if (pr->ndpr_expire == 0 || |
1629 | 0 | (pr->ndpr_stateflags & NDPRF_STATIC)) { |
1630 | 0 | ap->sticky++; |
1631 | 0 | } else { |
1632 | 0 | ap->aging_lazy++; |
1633 | 0 | } |
1634 | 0 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
1635 | 0 | NDPR_UNLOCK(pr); |
1636 | 0 | pr = pr->ndpr_next; |
1637 | 0 | } |
1638 | 0 | } |
1639 | 408k | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
1640 | 0 | NDPR_LOCK(pr); |
1641 | 0 | pr->ndpr_stateflags &= ~NDPRF_PROCESSED_SERVICE; |
1642 | 0 | NDPR_UNLOCK(pr); |
1643 | 0 | } |
1644 | 408k | lck_mtx_unlock(nd6_mutex); |
1645 | 408k | } |
1646 | | |
1647 | | |
1648 | | /* |
1649 | | * ND6 service routine to expire default route list and prefix list |
1650 | | */ |
1651 | | static void |
1652 | | nd6_service(void *arg) |
1653 | 408k | { |
1654 | 408k | struct nd6svc_arg *ap = arg; |
1655 | 408k | uint64_t timenow; |
1656 | | |
1657 | 408k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1658 | | /* |
1659 | | * Since we may drop rnh_lock and nd6_mutex below, we want |
1660 | | * to run this entire operation single threaded. |
1661 | | */ |
1662 | 408k | while (nd6_service_busy) { |
1663 | 0 | nd6log2(debug, "%s: %s is blocked by %d waiters\n", |
1664 | 0 | __func__, ap->draining ? "drainer" : "timer", |
1665 | 0 | nd6_service_waiters); |
1666 | 0 | nd6_service_waiters++; |
1667 | 0 | (void) msleep(nd6_service_wc, rnh_lock, (PZERO - 1), |
1668 | 0 | __func__, NULL); |
1669 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1670 | 0 | } |
1671 | | |
1672 | | /* We are busy now; tell everyone else to go away */ |
1673 | 408k | nd6_service_busy = TRUE; |
1674 | 408k | net_update_uptime(); |
1675 | 408k | timenow = net_uptime(); |
1676 | | |
1677 | | /* Iterate and service neighbor cache entries */ |
1678 | 408k | nd6_service_neighbor_cache(ap, timenow); |
1679 | | |
1680 | | /* |
1681 | | * There is lock ordering requirement and rnh_lock |
1682 | | * has to be released before acquiring nd6_mutex. |
1683 | | */ |
1684 | 408k | lck_mtx_unlock(rnh_lock); |
1685 | | |
1686 | | /* Iterate and service expired default router */ |
1687 | 408k | nd6_service_expired_default_router(ap, timenow); |
1688 | | /* Iterate and service expired route information entries */ |
1689 | 408k | nd6_service_expired_route_info(ap, timenow); |
1690 | | |
1691 | | /* Iterate and service expired/duplicated IPv6 address */ |
1692 | 408k | nd6_service_ip6_addr(ap, timenow); |
1693 | | |
1694 | | /* Iterate and service expired IPv6 prefixes */ |
1695 | 408k | nd6_service_expired_prefix(ap, timenow); |
1696 | | |
1697 | 408k | lck_mtx_lock(rnh_lock); |
1698 | | /* We're done; let others enter */ |
1699 | 408k | nd6_service_busy = FALSE; |
1700 | 408k | if (nd6_service_waiters > 0) { |
1701 | 0 | nd6_service_waiters = 0; |
1702 | 0 | wakeup(nd6_service_wc); |
1703 | 0 | } |
1704 | 408k | } |
1705 | | |
1706 | | static int nd6_need_draining = 0; |
1707 | | |
1708 | | void |
1709 | | nd6_drain(void *arg) |
1710 | 0 | { |
1711 | 0 | #pragma unused(arg) |
1712 | 0 | nd6log2(debug, "%s: draining ND6 entries\n", __func__); |
1713 | |
|
1714 | 0 | lck_mtx_lock(rnh_lock); |
1715 | 0 | nd6_need_draining = 1; |
1716 | 0 | nd6_sched_timeout(NULL, NULL); |
1717 | 0 | lck_mtx_unlock(rnh_lock); |
1718 | 0 | } |
1719 | | |
1720 | | /* |
1721 | | * We use the ``arg'' variable to decide whether or not the timer we're |
1722 | | * running is the fast timer. We do this to reset the nd6_fast_timer_on |
1723 | | * variable so that later we don't end up ignoring a ``fast timer'' |
1724 | | * request if the 5 second timer is running (see nd6_sched_timeout). |
1725 | | */ |
1726 | | void |
1727 | | nd6_timeout(void *arg) |
1728 | 408k | { |
1729 | 408k | struct nd6svc_arg sarg; |
1730 | 408k | uint32_t buf; |
1731 | | |
1732 | 408k | lck_mtx_lock(rnh_lock); |
1733 | 408k | bzero(&sarg, sizeof(sarg)); |
1734 | 408k | if (nd6_need_draining != 0) { |
1735 | 0 | nd6_need_draining = 0; |
1736 | 0 | sarg.draining = 1; |
1737 | 0 | } |
1738 | 408k | nd6_service(&sarg); |
1739 | 408k | nd6log2(debug, "%s: found %u, aging_lazy %u, aging %u, " |
1740 | 408k | "sticky %u, killed %u\n", __func__, sarg.found, sarg.aging_lazy, |
1741 | 408k | sarg.aging, sarg.sticky, sarg.killed); |
1742 | | /* re-arm the timer if there's work to do */ |
1743 | 408k | nd6_timeout_run--; |
1744 | | // VERIFY(nd6_timeout_run >= 0 && nd6_timeout_run < 2); |
1745 | 408k | if (arg == &nd6_fast_timer_on) { |
1746 | 0 | nd6_fast_timer_on = FALSE; |
1747 | 0 | } |
1748 | 408k | if (sarg.aging_lazy > 0 || sarg.aging > 0 || nd6_sched_timeout_want) { |
1749 | 408k | struct timeval atv, ltv, *leeway; |
1750 | 408k | int lazy = nd6_prune_lazy; |
1751 | | |
1752 | 408k | if (sarg.aging > 0 || lazy < 1) { |
1753 | 287k | atv.tv_usec = 0; |
1754 | 287k | atv.tv_sec = nd6_prune; |
1755 | 287k | leeway = NULL; |
1756 | 287k | } else { |
1757 | 121k | VERIFY(lazy >= 1); |
1758 | 0 | atv.tv_usec = 0; |
1759 | 121k | atv.tv_sec = MAX(nd6_prune, lazy); |
1760 | 121k | ltv.tv_usec = 0; |
1761 | 121k | read_frandom(&buf, sizeof(buf)); |
1762 | 121k | ltv.tv_sec = MAX(buf % lazy, 1) * 2; |
1763 | 121k | leeway = <v; |
1764 | 121k | } |
1765 | 0 | nd6_sched_timeout(&atv, leeway); |
1766 | 408k | } else if (nd6_debug) { |
1767 | 0 | nd6log2(debug, "%s: not rescheduling timer\n", __func__); |
1768 | 0 | } |
1769 | 0 | lck_mtx_unlock(rnh_lock); |
1770 | 408k | } |
1771 | | |
1772 | | void |
1773 | | nd6_sched_timeout(struct timeval *atv, struct timeval *ltv) |
1774 | 413k | { |
1775 | 413k | struct timeval tv; |
1776 | | |
1777 | 413k | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1778 | 413k | if (atv == NULL) { |
1779 | 4.06k | tv.tv_usec = 0; |
1780 | 4.06k | tv.tv_sec = MAX(nd6_prune, 1); |
1781 | 4.06k | atv = &tv; |
1782 | 4.06k | ltv = NULL; /* ignore leeway */ |
1783 | 4.06k | } |
1784 | | /* see comments on top of this file */ |
1785 | 413k | if (nd6_timeout_run == 0) { |
1786 | 408k | if (ltv == NULL) { |
1787 | 287k | nd6log2(debug, "%s: timer scheduled in " |
1788 | 287k | "T+%llus.%lluu (demand %d)\n", __func__, |
1789 | 287k | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
1790 | 287k | nd6_sched_timeout_want); |
1791 | 287k | nd6_fast_timer_on = TRUE; |
1792 | | // timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); |
1793 | 287k | } else { |
1794 | 121k | nd6log2(debug, "%s: timer scheduled in " |
1795 | 121k | "T+%llus.%lluu with %llus.%lluu leeway " |
1796 | 121k | "(demand %d)\n", __func__, (uint64_t)atv->tv_sec, |
1797 | 121k | (uint64_t)atv->tv_usec, (uint64_t)ltv->tv_sec, |
1798 | 121k | (uint64_t)ltv->tv_usec, nd6_sched_timeout_want); |
1799 | 121k | nd6_fast_timer_on = FALSE; |
1800 | | // timeout_with_leeway(nd6_timeout, NULL, |
1801 | | // tvtohz(atv), tvtohz(ltv)); |
1802 | 121k | } |
1803 | 408k | nd6_timeout_run++; |
1804 | 408k | nd6_sched_timeout_want = 0; |
1805 | 408k | } else if (nd6_timeout_run == 1 && ltv == NULL && |
1806 | 4.40k | nd6_fast_timer_on == FALSE) { |
1807 | 342 | nd6log2(debug, "%s: fast timer scheduled in " |
1808 | 342 | "T+%llus.%lluu (demand %d)\n", __func__, |
1809 | 342 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
1810 | 342 | nd6_sched_timeout_want); |
1811 | 342 | nd6_fast_timer_on = TRUE; |
1812 | 342 | nd6_sched_timeout_want = 0; |
1813 | 342 | nd6_timeout_run++; |
1814 | | // timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); |
1815 | 4.06k | } else { |
1816 | 4.06k | if (ltv == NULL) { |
1817 | 4.05k | nd6log2(debug, "%s: not scheduling timer: " |
1818 | 4.05k | "timers %d, fast_timer %d, T+%llus.%lluu\n", |
1819 | 4.05k | __func__, nd6_timeout_run, nd6_fast_timer_on, |
1820 | 4.05k | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec); |
1821 | 4.05k | } else { |
1822 | 11 | nd6log2(debug, "%s: not scheduling timer: " |
1823 | 11 | "timers %d, fast_timer %d, T+%llus.%lluu " |
1824 | 11 | "with %llus.%lluu leeway\n", __func__, |
1825 | 11 | nd6_timeout_run, nd6_fast_timer_on, |
1826 | 11 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
1827 | 11 | (uint64_t)ltv->tv_sec, (uint64_t)ltv->tv_usec); |
1828 | 11 | } |
1829 | 4.06k | } |
1830 | 413k | } |
1831 | | |
1832 | | /* |
1833 | | * ND6 router advertisement kernel notification |
1834 | | */ |
1835 | | void |
1836 | | nd6_post_msg(u_int32_t code, struct nd_prefix_list *prefix_list, |
1837 | | u_int32_t list_length, u_int32_t mtu) |
1838 | 0 | { |
1839 | 0 | struct kev_msg ev_msg; |
1840 | 0 | struct kev_nd6_ra_data nd6_ra_msg_data; |
1841 | 0 | struct nd_prefix_list *itr = prefix_list; |
1842 | |
|
1843 | 0 | bzero(&ev_msg, sizeof(struct kev_msg)); |
1844 | 0 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
1845 | 0 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
1846 | 0 | ev_msg.kev_subclass = KEV_ND6_SUBCLASS; |
1847 | 0 | ev_msg.event_code = code; |
1848 | |
|
1849 | 0 | bzero(&nd6_ra_msg_data, sizeof(nd6_ra_msg_data)); |
1850 | |
|
1851 | 0 | if (mtu > 0 && mtu >= IPV6_MMTU) { |
1852 | 0 | nd6_ra_msg_data.mtu = mtu; |
1853 | 0 | nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_MTU; |
1854 | 0 | } |
1855 | |
|
1856 | 0 | if (list_length > 0 && prefix_list != NULL) { |
1857 | 0 | nd6_ra_msg_data.list_length = list_length; |
1858 | 0 | nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_PREFIX; |
1859 | 0 | } |
1860 | |
|
1861 | 0 | while (itr != NULL && nd6_ra_msg_data.list_index < list_length) { |
1862 | 0 | bcopy(&itr->pr.ndpr_prefix, &nd6_ra_msg_data.prefix.prefix, |
1863 | 0 | sizeof(nd6_ra_msg_data.prefix.prefix)); |
1864 | 0 | nd6_ra_msg_data.prefix.raflags = itr->pr.ndpr_raf; |
1865 | 0 | nd6_ra_msg_data.prefix.prefixlen = itr->pr.ndpr_plen; |
1866 | 0 | nd6_ra_msg_data.prefix.origin = PR_ORIG_RA; |
1867 | 0 | nd6_ra_msg_data.prefix.vltime = itr->pr.ndpr_vltime; |
1868 | 0 | nd6_ra_msg_data.prefix.pltime = itr->pr.ndpr_pltime; |
1869 | 0 | nd6_ra_msg_data.prefix.expire = ndpr_getexpire(&itr->pr); |
1870 | 0 | nd6_ra_msg_data.prefix.flags = itr->pr.ndpr_stateflags; |
1871 | 0 | nd6_ra_msg_data.prefix.refcnt = itr->pr.ndpr_addrcnt; |
1872 | 0 | nd6_ra_msg_data.prefix.if_index = itr->pr.ndpr_ifp->if_index; |
1873 | | |
1874 | | /* send the message up */ |
1875 | 0 | ev_msg.dv[0].data_ptr = &nd6_ra_msg_data; |
1876 | 0 | ev_msg.dv[0].data_length = sizeof(nd6_ra_msg_data); |
1877 | 0 | ev_msg.dv[1].data_length = 0; |
1878 | 0 | dlil_post_complete_msg(NULL, &ev_msg); |
1879 | | |
1880 | | /* clean up for the next prefix */ |
1881 | 0 | bzero(&nd6_ra_msg_data.prefix, sizeof(nd6_ra_msg_data.prefix)); |
1882 | 0 | itr = itr->next; |
1883 | 0 | nd6_ra_msg_data.list_index++; |
1884 | 0 | } |
1885 | 0 | } |
1886 | | |
1887 | | /* |
1888 | | * Regenerate deprecated/invalidated temporary address |
1889 | | */ |
1890 | | static int |
1891 | | regen_tmpaddr(struct in6_ifaddr *ia6) |
1892 | 0 | { |
1893 | 0 | struct ifaddr *ifa; |
1894 | 0 | struct ifnet *ifp; |
1895 | 0 | struct in6_ifaddr *public_ifa6 = NULL; |
1896 | 0 | uint64_t timenow = net_uptime(); |
1897 | |
|
1898 | 0 | ifp = ia6->ia_ifa.ifa_ifp; |
1899 | 0 | ifnet_lock_shared(ifp); |
1900 | 0 | TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { |
1901 | 0 | struct in6_ifaddr *it6; |
1902 | |
|
1903 | 0 | IFA_LOCK(ifa); |
1904 | 0 | if (ifa->ifa_addr->sa_family != AF_INET6) { |
1905 | 0 | IFA_UNLOCK(ifa); |
1906 | 0 | continue; |
1907 | 0 | } |
1908 | 0 | it6 = (struct in6_ifaddr *)ifa; |
1909 | | |
1910 | | /* ignore no autoconf addresses. */ |
1911 | 0 | if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) { |
1912 | 0 | IFA_UNLOCK(ifa); |
1913 | 0 | continue; |
1914 | 0 | } |
1915 | | /* ignore autoconf addresses with different prefixes. */ |
1916 | 0 | if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) { |
1917 | 0 | IFA_UNLOCK(ifa); |
1918 | 0 | continue; |
1919 | 0 | } |
1920 | | /* |
1921 | | * Now we are looking at an autoconf address with the same |
1922 | | * prefix as ours. If the address is temporary and is still |
1923 | | * preferred, do not create another one. It would be rare, but |
1924 | | * could happen, for example, when we resume a laptop PC after |
1925 | | * a long period. |
1926 | | */ |
1927 | 0 | if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && |
1928 | 0 | !IFA6_IS_DEPRECATED(it6, timenow)) { |
1929 | 0 | IFA_UNLOCK(ifa); |
1930 | 0 | if (public_ifa6 != NULL) { |
1931 | 0 | IFA_REMREF(&public_ifa6->ia_ifa); |
1932 | 0 | } |
1933 | 0 | public_ifa6 = NULL; |
1934 | 0 | break; |
1935 | 0 | } |
1936 | | |
1937 | | /* |
1938 | | * This is a public autoconf address that has the same prefix |
1939 | | * as ours. If it is preferred, keep it. We can't break the |
1940 | | * loop here, because there may be a still-preferred temporary |
1941 | | * address with the prefix. |
1942 | | */ |
1943 | 0 | if (!IFA6_IS_DEPRECATED(it6, timenow)) { |
1944 | 0 | IFA_ADDREF_LOCKED(ifa); /* for public_ifa6 */ |
1945 | 0 | IFA_UNLOCK(ifa); |
1946 | 0 | if (public_ifa6 != NULL) { |
1947 | 0 | IFA_REMREF(&public_ifa6->ia_ifa); |
1948 | 0 | } |
1949 | 0 | public_ifa6 = it6; |
1950 | 0 | } else { |
1951 | 0 | IFA_UNLOCK(ifa); |
1952 | 0 | } |
1953 | 0 | } |
1954 | 0 | ifnet_lock_done(ifp); |
1955 | |
|
1956 | 0 | if (public_ifa6 != NULL) { |
1957 | 0 | int e; |
1958 | |
|
1959 | 0 | if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { |
1960 | 0 | log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" |
1961 | 0 | " tmp addr,errno=%d\n", e); |
1962 | 0 | IFA_REMREF(&public_ifa6->ia_ifa); |
1963 | 0 | return -1; |
1964 | 0 | } |
1965 | 0 | IFA_REMREF(&public_ifa6->ia_ifa); |
1966 | 0 | return 0; |
1967 | 0 | } |
1968 | | |
1969 | 0 | return -1; |
1970 | 0 | } |
1971 | | |
1972 | | static void |
1973 | | nd6_purge_interface_default_routers(struct ifnet *ifp) |
1974 | 0 | { |
1975 | 0 | struct nd_defrouter *dr = NULL; |
1976 | 0 | struct nd_defrouter *ndr = NULL; |
1977 | 0 | struct nd_drhead nd_defrouter_tmp = {}; |
1978 | |
|
1979 | 0 | TAILQ_INIT(&nd_defrouter_tmp); |
1980 | |
|
1981 | 0 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
1982 | |
|
1983 | 0 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) { |
1984 | 0 | if (dr->ifp != ifp) { |
1985 | 0 | continue; |
1986 | 0 | } |
1987 | | /* |
1988 | | * Remove the entry from default router list |
1989 | | * and add it to the temp list. |
1990 | | * nd_defrouter_tmp will be a local temporary |
1991 | | * list as no one else can get the same |
1992 | | * removed entry once it is removed from default |
1993 | | * router list. |
1994 | | * Remove the reference after calling defrtrlist_del. |
1995 | | * |
1996 | | * The uninstalled entries have to be iterated first |
1997 | | * when we call defrtrlist_del. |
1998 | | * This is to ensure that we don't end up calling |
1999 | | * default router selection when there are other |
2000 | | * uninstalled candidate default routers on |
2001 | | * the interface. |
2002 | | * If we don't respect that order, we may end |
2003 | | * up missing out on some entries. |
2004 | | * |
2005 | | * For that reason, installed ones must be inserted |
2006 | | * at the tail and uninstalled ones at the head |
2007 | | */ |
2008 | 0 | TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); |
2009 | | |
2010 | 0 | if (dr->stateflags & NDDRF_INSTALLED) { |
2011 | 0 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
2012 | 0 | } else { |
2013 | 0 | TAILQ_INSERT_HEAD(&nd_defrouter_tmp, dr, dr_entry); |
2014 | 0 | } |
2015 | 0 | } |
2016 | | |
2017 | | /* |
2018 | | * The following call to defrtrlist_del should be |
2019 | | * safe as we are iterating a local list of |
2020 | | * default routers. |
2021 | | * |
2022 | | * We don't really need nd6_mutex here but keeping |
2023 | | * it as it is to avoid changing assertios held in |
2024 | | * the functions in the call-path. |
2025 | | */ |
2026 | 0 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { |
2027 | 0 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
2028 | 0 | defrtrlist_del(dr, NULL); |
2029 | 0 | NDDR_REMREF(dr); /* remove list reference */ |
2030 | 0 | } |
2031 | 0 | } |
2032 | | |
2033 | | static void |
2034 | | nd6_purge_interface_prefixes(struct ifnet *ifp) |
2035 | 0 | { |
2036 | 0 | boolean_t removed = FALSE; |
2037 | 0 | struct nd_prefix *pr = NULL; |
2038 | 0 | struct nd_prefix *npr = NULL; |
2039 | |
|
2040 | 0 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
2041 | | |
2042 | | /* Nuke prefix list entries toward ifp */ |
2043 | 0 | for (pr = nd_prefix.lh_first; pr; pr = npr) { |
2044 | 0 | NDPR_LOCK(pr); |
2045 | 0 | npr = pr->ndpr_next; |
2046 | 0 | if (pr->ndpr_ifp == ifp && |
2047 | 0 | !(pr->ndpr_stateflags & NDPRF_DEFUNCT)) { |
2048 | | /* |
2049 | | * Because if_detach() does *not* release prefixes |
2050 | | * while purging addresses the reference count will |
2051 | | * still be above zero. We therefore reset it to |
2052 | | * make sure that the prefix really gets purged. |
2053 | | */ |
2054 | 0 | pr->ndpr_addrcnt = 0; |
2055 | | |
2056 | | /* |
2057 | | * Previously, pr->ndpr_addr is removed as well, |
2058 | | * but I strongly believe we don't have to do it. |
2059 | | * nd6_purge() is only called from in6_ifdetach(), |
2060 | | * which removes all the associated interface addresses |
2061 | | * by itself. |
2062 | | * (jinmei@kame.net 20010129) |
2063 | | */ |
2064 | 0 | NDPR_ADDREF(pr); |
2065 | 0 | prelist_remove(pr); |
2066 | 0 | NDPR_UNLOCK(pr); |
2067 | 0 | NDPR_REMREF(pr); |
2068 | 0 | removed = TRUE; |
2069 | 0 | npr = nd_prefix.lh_first; |
2070 | 0 | } else { |
2071 | 0 | NDPR_UNLOCK(pr); |
2072 | 0 | } |
2073 | 0 | } |
2074 | 0 | if (removed) { |
2075 | 0 | pfxlist_onlink_check(); |
2076 | 0 | } |
2077 | 0 | } |
2078 | | |
2079 | | static void |
2080 | | nd6_router_select_rti_entries(struct ifnet *ifp) |
2081 | 586 | { |
2082 | 586 | struct nd_route_info *rti = NULL; |
2083 | 586 | struct nd_route_info *rti_next = NULL; |
2084 | | |
2085 | 586 | nd6_rti_list_wait(__func__); |
2086 | | |
2087 | 586 | TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { |
2088 | 0 | defrouter_select(ifp, &rti->nd_rti_router_list); |
2089 | 0 | } |
2090 | | |
2091 | 586 | nd6_rti_list_signal_done(); |
2092 | 586 | } |
2093 | | |
2094 | | static void |
2095 | | nd6_purge_interface_rti_entries(struct ifnet *ifp) |
2096 | 0 | { |
2097 | 0 | struct nd_route_info *rti = NULL; |
2098 | 0 | struct nd_route_info *rti_next = NULL; |
2099 | |
|
2100 | 0 | nd6_rti_list_wait(__func__); |
2101 | |
|
2102 | 0 | TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) { |
2103 | 0 | struct nd_route_info rti_tmp = {}; |
2104 | 0 | struct nd_defrouter *dr = NULL; |
2105 | 0 | struct nd_defrouter *ndr = NULL; |
2106 | |
|
2107 | 0 | rti_tmp.nd_rti_prefix = rti->nd_rti_prefix; |
2108 | 0 | rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen; |
2109 | 0 | TAILQ_INIT(&rti_tmp.nd_rti_router_list); |
2110 | |
|
2111 | 0 | TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) { |
2112 | | /* |
2113 | | * If ifp is provided, skip the entries that don't match. |
2114 | | * Else it is treated as a purge. |
2115 | | */ |
2116 | 0 | if (ifp != NULL && dr->ifp != ifp) { |
2117 | 0 | continue; |
2118 | 0 | } |
2119 | | |
2120 | | /* |
2121 | | * Remove the entry from rti's router list |
2122 | | * and add it to the temp list. |
2123 | | * Remove the reference after calling defrtrlist_del. |
2124 | | * |
2125 | | * The uninstalled entries have to be iterated first |
2126 | | * when we call defrtrlist_del. |
2127 | | * This is to ensure that we don't end up calling |
2128 | | * router selection when there are other |
2129 | | * uninstalled candidate default routers on |
2130 | | * the interface. |
2131 | | * If we don't respect that order, we may end |
2132 | | * up missing out on some entries. |
2133 | | * |
2134 | | * For that reason, installed ones must be inserted |
2135 | | * at the tail and uninstalled ones at the head |
2136 | | */ |
2137 | | |
2138 | 0 | TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry); |
2139 | 0 | if (dr->stateflags & NDDRF_INSTALLED) { |
2140 | 0 | TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry); |
2141 | 0 | } else { |
2142 | 0 | TAILQ_INSERT_HEAD(&rti_tmp.nd_rti_router_list, dr, dr_entry); |
2143 | 0 | } |
2144 | 0 | } |
2145 | | |
2146 | | /* |
2147 | | * The following call to defrtrlist_del should be |
2148 | | * safe as we are iterating a local list of |
2149 | | * routers. |
2150 | | * |
2151 | | * We don't really need nd6_mutex here but keeping |
2152 | | * it as it is to avoid changing assertios held in |
2153 | | * the functions in the call-path. |
2154 | | */ |
2155 | 0 | TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) { |
2156 | 0 | TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry); |
2157 | 0 | defrtrlist_del(dr, &rti->nd_rti_router_list); |
2158 | 0 | NDDR_REMREF(dr); /* remove list reference */ |
2159 | 0 | } |
2160 | | /* |
2161 | | * The above may have removed an entry from default router list. |
2162 | | * If it did and the list is now empty, remove the rti as well. |
2163 | | */ |
2164 | 0 | if (TAILQ_EMPTY(&rti->nd_rti_router_list)) { |
2165 | 0 | TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry); |
2166 | 0 | ndrti_free(rti); |
2167 | 0 | } |
2168 | 0 | } |
2169 | | |
2170 | 0 | nd6_rti_list_signal_done(); |
2171 | 0 | } |
2172 | | |
2173 | | static void |
2174 | | nd6_purge_interface_llinfo(struct ifnet *ifp) |
2175 | 0 | { |
2176 | 0 | struct llinfo_nd6 *ln = NULL; |
2177 | | /* Note that rt->rt_ifp may not be the same as ifp, |
2178 | | * due to KAME goto ours hack. See RTM_RESOLVE case in |
2179 | | * nd6_rtrequest(), and ip6_input(). |
2180 | | */ |
2181 | 0 | again: |
2182 | 0 | lck_mtx_lock(rnh_lock); |
2183 | 0 | ln = llinfo_nd6.ln_next; |
2184 | 0 | while (ln != NULL && ln != &llinfo_nd6) { |
2185 | 0 | struct rtentry *rt; |
2186 | 0 | struct llinfo_nd6 *nln; |
2187 | |
|
2188 | 0 | nln = ln->ln_next; |
2189 | 0 | rt = ln->ln_rt; |
2190 | 0 | RT_LOCK(rt); |
2191 | 0 | if (rt->rt_gateway != NULL && |
2192 | 0 | rt->rt_gateway->sa_family == AF_LINK && |
2193 | 0 | SDL(rt->rt_gateway)->sdl_index == ifp->if_index) { |
2194 | 0 | RT_ADDREF_LOCKED(rt); |
2195 | 0 | RT_UNLOCK(rt); |
2196 | 0 | lck_mtx_unlock(rnh_lock); |
2197 | | /* |
2198 | | * See comments on nd6_service() for reasons why |
2199 | | * this loop is repeated; we bite the costs of |
2200 | | * going thru the same llinfo_nd6 more than once |
2201 | | * here, since this purge happens during detach, |
2202 | | * and that unlike the timer case, it's possible |
2203 | | * there's more than one purges happening at the |
2204 | | * same time (thus a flag wouldn't buy anything). |
2205 | | */ |
2206 | 0 | nd6_free(rt); |
2207 | 0 | RT_REMREF(rt); |
2208 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
2209 | 0 | goto again; |
2210 | 0 | } else { |
2211 | 0 | RT_UNLOCK(rt); |
2212 | 0 | } |
2213 | 0 | ln = nln; |
2214 | 0 | } |
2215 | 0 | lck_mtx_unlock(rnh_lock); |
2216 | 0 | } |
2217 | | |
2218 | | /* |
2219 | | * Nuke neighbor cache/prefix/default router management table, right before |
2220 | | * ifp goes away. |
2221 | | */ |
2222 | | void |
2223 | | nd6_purge(struct ifnet *ifp) |
2224 | 0 | { |
2225 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
2226 | 0 | lck_mtx_lock(nd6_mutex); |
2227 | | |
2228 | | /* Nuke default router list entries toward ifp */ |
2229 | 0 | nd6_purge_interface_default_routers(ifp); |
2230 | | |
2231 | | /* Nuke prefix list entries toward ifp */ |
2232 | 0 | nd6_purge_interface_prefixes(ifp); |
2233 | | |
2234 | | /* Nuke route info option entries toward ifp */ |
2235 | 0 | nd6_purge_interface_rti_entries(ifp); |
2236 | |
|
2237 | 0 | lck_mtx_unlock(nd6_mutex); |
2238 | | |
2239 | | /* cancel default outgoing interface setting */ |
2240 | 0 | if (nd6_defifindex == ifp->if_index) { |
2241 | 0 | nd6_setdefaultiface(0); |
2242 | 0 | } |
2243 | | |
2244 | | /* |
2245 | | * Perform default router selection even when we are a router, |
2246 | | * if Scoped Routing is enabled. |
2247 | | * XXX ?Should really not be needed since when defrouter_select |
2248 | | * was changed to work on interface. |
2249 | | */ |
2250 | 0 | lck_mtx_lock(nd6_mutex); |
2251 | | /* refresh default router list */ |
2252 | 0 | defrouter_select(ifp, NULL); |
2253 | 0 | lck_mtx_unlock(nd6_mutex); |
2254 | | |
2255 | | /* Nuke neighbor cache entries for the ifp. */ |
2256 | 0 | nd6_purge_interface_llinfo(ifp); |
2257 | 0 | } |
2258 | | |
2259 | | /* |
2260 | | * Upon success, the returned route will be locked and the caller is |
2261 | | * responsible for releasing the reference and doing RT_UNLOCK(rt). |
2262 | | * This routine does not require rnh_lock to be held by the caller, |
2263 | | * although it needs to be indicated of such a case in order to call |
2264 | | * the correct variant of the relevant routing routines. |
2265 | | */ |
2266 | | struct rtentry * |
2267 | | nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp, int rt_locked) |
2268 | 20.9k | { |
2269 | 20.9k | struct rtentry *rt; |
2270 | 20.9k | struct sockaddr_in6 sin6; |
2271 | 20.9k | unsigned int ifscope; |
2272 | | |
2273 | 20.9k | bzero(&sin6, sizeof(sin6)); |
2274 | 20.9k | sin6.sin6_len = sizeof(struct sockaddr_in6); |
2275 | 20.9k | sin6.sin6_family = AF_INET6; |
2276 | 20.9k | sin6.sin6_addr = *addr6; |
2277 | | |
2278 | 20.9k | ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE; |
2279 | 20.9k | if (rt_locked) { |
2280 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
2281 | 0 | rt = rtalloc1_scoped_locked(SA(&sin6), create, 0, ifscope); |
2282 | 20.9k | } else { |
2283 | 20.9k | rt = rtalloc1_scoped(SA(&sin6), create, 0, ifscope); |
2284 | 20.9k | } |
2285 | | |
2286 | 20.9k | if (rt != NULL) { |
2287 | 17.3k | RT_LOCK(rt); |
2288 | 17.3k | if ((rt->rt_flags & RTF_LLINFO) == 0) { |
2289 | | /* |
2290 | | * This is the case for the default route. |
2291 | | * If we want to create a neighbor cache for the |
2292 | | * address, we should free the route for the |
2293 | | * destination and allocate an interface route. |
2294 | | */ |
2295 | 0 | if (create) { |
2296 | 0 | RT_UNLOCK(rt); |
2297 | 0 | if (rt_locked) { |
2298 | 0 | rtfree_locked(rt); |
2299 | 0 | } else { |
2300 | 0 | rtfree(rt); |
2301 | 0 | } |
2302 | 0 | rt = NULL; |
2303 | 0 | } |
2304 | 0 | } |
2305 | 17.3k | } |
2306 | 20.9k | if (rt == NULL) { |
2307 | 3.58k | if (create && ifp) { |
2308 | 21 | struct ifaddr *ifa; |
2309 | 21 | u_int32_t ifa_flags; |
2310 | 21 | int e; |
2311 | | |
2312 | | /* |
2313 | | * If no route is available and create is set, |
2314 | | * we allocate a host route for the destination |
2315 | | * and treat it like an interface route. |
2316 | | * This hack is necessary for a neighbor which can't |
2317 | | * be covered by our own prefix. |
2318 | | */ |
2319 | 21 | ifa = ifaof_ifpforaddr(SA(&sin6), ifp); |
2320 | 21 | if (ifa == NULL) { |
2321 | 0 | return NULL; |
2322 | 0 | } |
2323 | | |
2324 | | /* |
2325 | | * Create a new route. RTF_LLINFO is necessary |
2326 | | * to create a Neighbor Cache entry for the |
2327 | | * destination in nd6_rtrequest which will be |
2328 | | * called in rtrequest via ifa->ifa_rtrequest. |
2329 | | */ |
2330 | 21 | if (!rt_locked) { |
2331 | 21 | lck_mtx_lock(rnh_lock); |
2332 | 21 | } |
2333 | 21 | IFA_LOCK_SPIN(ifa); |
2334 | 21 | ifa_flags = ifa->ifa_flags; |
2335 | 21 | IFA_UNLOCK(ifa); |
2336 | 21 | if ((e = rtrequest_scoped_locked(RTM_ADD, |
2337 | 21 | SA(&sin6), ifa->ifa_addr, SA(&all1_sa), |
2338 | 21 | (ifa_flags | RTF_HOST | RTF_LLINFO) & |
2339 | 21 | ~RTF_CLONING, &rt, ifscope)) != 0) { |
2340 | 0 | if (e != EEXIST) { |
2341 | 0 | log(LOG_ERR, "%s: failed to add route " |
2342 | 0 | "for a neighbor(%s), errno=%d\n", |
2343 | 0 | __func__, ip6_sprintf(addr6), e); |
2344 | 0 | } |
2345 | 0 | } |
2346 | 21 | if (!rt_locked) { |
2347 | 21 | lck_mtx_unlock(rnh_lock); |
2348 | 21 | } |
2349 | 21 | IFA_REMREF(ifa); |
2350 | 21 | if (rt == NULL) { |
2351 | 0 | return NULL; |
2352 | 0 | } |
2353 | | |
2354 | 21 | RT_LOCK(rt); |
2355 | 21 | if (rt->rt_llinfo) { |
2356 | 21 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
2357 | 21 | struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); |
2358 | | |
2359 | 21 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
2360 | | /* |
2361 | | * For interface's that do not perform NUD |
2362 | | * neighbor cache entres must always be marked |
2363 | | * reachable with no expiry |
2364 | | */ |
2365 | 21 | if (ndi->flags & ND6_IFF_PERFORMNUD) { |
2366 | 21 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); |
2367 | 21 | } else { |
2368 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
2369 | 0 | ln_setexpire(ln, 0); |
2370 | 0 | } |
2371 | 21 | } |
2372 | 3.56k | } else { |
2373 | 3.56k | return NULL; |
2374 | 3.56k | } |
2375 | 3.58k | } |
2376 | 17.3k | RT_LOCK_ASSERT_HELD(rt); |
2377 | | /* |
2378 | | * Validation for the entry. |
2379 | | * Note that the check for rt_llinfo is necessary because a cloned |
2380 | | * route from a parent route that has the L flag (e.g. the default |
2381 | | * route to a p2p interface) may have the flag, too, while the |
2382 | | * destination is not actually a neighbor. |
2383 | | * XXX: we can't use rt->rt_ifp to check for the interface, since |
2384 | | * it might be the loopback interface if the entry is for our |
2385 | | * own address on a non-loopback interface. Instead, we should |
2386 | | * use rt->rt_ifa->ifa_ifp, which would specify the REAL |
2387 | | * interface. |
2388 | | * Note also that ifa_ifp and ifp may differ when we connect two |
2389 | | * interfaces to a same link, install a link prefix to an interface, |
2390 | | * and try to install a neighbor cache on an interface that does not |
2391 | | * have a route to the prefix. |
2392 | | * |
2393 | | * If the address is from a proxied prefix, the ifa_ifp and ifp might |
2394 | | * not match, because nd6_na_input() could have modified the ifp |
2395 | | * of the route to point to the interface where the NA arrived on, |
2396 | | * hence the test for RTF_PROXY. |
2397 | | */ |
2398 | 17.3k | if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || |
2399 | 17.3k | rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || |
2400 | 17.3k | (ifp && rt->rt_ifa->ifa_ifp != ifp && |
2401 | 17.3k | !(rt->rt_flags & RTF_PROXY))) { |
2402 | 11 | RT_REMREF_LOCKED(rt); |
2403 | 11 | RT_UNLOCK(rt); |
2404 | 11 | if (create) { |
2405 | 0 | log(LOG_DEBUG, "%s: failed to lookup %s " |
2406 | 0 | "(if = %s)\n", __func__, ip6_sprintf(addr6), |
2407 | 0 | ifp ? if_name(ifp) : "unspec"); |
2408 | | /* xxx more logs... kazu */ |
2409 | 0 | } |
2410 | 11 | return NULL; |
2411 | 11 | } |
2412 | | /* |
2413 | | * Caller needs to release reference and call RT_UNLOCK(rt). |
2414 | | */ |
2415 | 17.3k | return rt; |
2416 | 17.3k | } |
2417 | | |
2418 | | /* |
2419 | | * Test whether a given IPv6 address is a neighbor or not, ignoring |
2420 | | * the actual neighbor cache. The neighbor cache is ignored in order |
2421 | | * to not reenter the routing code from within itself. |
2422 | | */ |
2423 | | static int |
2424 | | nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) |
2425 | 18.5k | { |
2426 | 18.5k | struct nd_prefix *pr; |
2427 | 18.5k | struct ifaddr *dstaddr; |
2428 | | |
2429 | 18.5k | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
2430 | | |
2431 | | /* |
2432 | | * A link-local address is always a neighbor. |
2433 | | * XXX: a link does not necessarily specify a single interface. |
2434 | | */ |
2435 | 18.5k | if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { |
2436 | 16.2k | struct sockaddr_in6 sin6_copy; |
2437 | 16.2k | u_int32_t zone; |
2438 | | |
2439 | | /* |
2440 | | * We need sin6_copy since sa6_recoverscope() may modify the |
2441 | | * content (XXX). |
2442 | | */ |
2443 | 16.2k | sin6_copy = *addr; |
2444 | 16.2k | if (sa6_recoverscope(&sin6_copy, FALSE)) { |
2445 | 0 | return 0; /* XXX: should be impossible */ |
2446 | 0 | } |
2447 | 16.2k | if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) { |
2448 | 0 | return 0; |
2449 | 0 | } |
2450 | 16.2k | if (sin6_copy.sin6_scope_id == zone) { |
2451 | 16.2k | return 1; |
2452 | 16.2k | } else { |
2453 | 0 | return 0; |
2454 | 0 | } |
2455 | 16.2k | } |
2456 | | |
2457 | | /* |
2458 | | * If the address matches one of our addresses, |
2459 | | * it should be a neighbor. |
2460 | | * If the address matches one of our on-link prefixes, it should be a |
2461 | | * neighbor. |
2462 | | */ |
2463 | 2.32k | for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { |
2464 | 0 | NDPR_LOCK(pr); |
2465 | 0 | if (pr->ndpr_ifp != ifp) { |
2466 | 0 | NDPR_UNLOCK(pr); |
2467 | 0 | continue; |
2468 | 0 | } |
2469 | 0 | if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { |
2470 | 0 | NDPR_UNLOCK(pr); |
2471 | 0 | continue; |
2472 | 0 | } |
2473 | 0 | if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, |
2474 | 0 | &addr->sin6_addr, &pr->ndpr_mask)) { |
2475 | 0 | NDPR_UNLOCK(pr); |
2476 | 0 | return 1; |
2477 | 0 | } |
2478 | 0 | NDPR_UNLOCK(pr); |
2479 | 0 | } |
2480 | | |
2481 | | /* |
2482 | | * If the address is assigned on the node of the other side of |
2483 | | * a p2p interface, the address should be a neighbor. |
2484 | | */ |
2485 | 2.32k | dstaddr = ifa_ifwithdstaddr(SA(addr)); |
2486 | 2.32k | if (dstaddr != NULL) { |
2487 | 0 | if (dstaddr->ifa_ifp == ifp) { |
2488 | 0 | IFA_REMREF(dstaddr); |
2489 | 0 | return 1; |
2490 | 0 | } |
2491 | 0 | IFA_REMREF(dstaddr); |
2492 | 0 | dstaddr = NULL; |
2493 | 0 | } |
2494 | | |
2495 | 2.32k | return 0; |
2496 | 2.32k | } |
2497 | | |
2498 | | |
2499 | | /* |
2500 | | * Detect if a given IPv6 address identifies a neighbor on a given link. |
2501 | | * XXX: should take care of the destination of a p2p link? |
2502 | | */ |
2503 | | int |
2504 | | nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp, |
2505 | | int rt_locked) |
2506 | 18.5k | { |
2507 | 18.5k | struct rtentry *rt; |
2508 | | |
2509 | 18.5k | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); |
2510 | 18.5k | lck_mtx_lock(nd6_mutex); |
2511 | 18.5k | if (nd6_is_new_addr_neighbor(addr, ifp)) { |
2512 | 16.2k | lck_mtx_unlock(nd6_mutex); |
2513 | 16.2k | return 1; |
2514 | 16.2k | } |
2515 | 2.32k | lck_mtx_unlock(nd6_mutex); |
2516 | | |
2517 | | /* |
2518 | | * Even if the address matches none of our addresses, it might be |
2519 | | * in the neighbor cache. |
2520 | | */ |
2521 | 2.32k | if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked)) != NULL) { |
2522 | 0 | RT_LOCK_ASSERT_HELD(rt); |
2523 | 0 | RT_REMREF_LOCKED(rt); |
2524 | 0 | RT_UNLOCK(rt); |
2525 | 0 | return 1; |
2526 | 0 | } |
2527 | | |
2528 | 2.32k | return 0; |
2529 | 2.32k | } |
2530 | | |
2531 | | /* |
2532 | | * Free an nd6 llinfo entry. |
2533 | | * Since the function would cause significant changes in the kernel, DO NOT |
2534 | | * make it global, unless you have a strong reason for the change, and are sure |
2535 | | * that the change is safe. |
2536 | | */ |
2537 | | void |
2538 | | nd6_free(struct rtentry *rt) |
2539 | 0 | { |
2540 | 0 | struct llinfo_nd6 *ln = NULL; |
2541 | 0 | struct in6_addr in6 = {}; |
2542 | 0 | struct nd_defrouter *dr = NULL; |
2543 | |
|
2544 | 0 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
2545 | 0 | RT_LOCK_ASSERT_NOTHELD(rt); |
2546 | 0 | lck_mtx_lock(nd6_mutex); |
2547 | |
|
2548 | 0 | RT_LOCK(rt); |
2549 | 0 | RT_ADDREF_LOCKED(rt); /* Extra ref */ |
2550 | 0 | ln = rt->rt_llinfo; |
2551 | 0 | in6 = SIN6(rt_key(rt))->sin6_addr; |
2552 | | |
2553 | | /* |
2554 | | * Prevent another thread from modifying rt_key, rt_gateway |
2555 | | * via rt_setgate() after the rt_lock is dropped by marking |
2556 | | * the route as defunct. |
2557 | | */ |
2558 | 0 | rt->rt_flags |= RTF_CONDEMNED; |
2559 | | |
2560 | | /* |
2561 | | * We used to have pfctlinput(PRC_HOSTDEAD) here. Even though it is |
2562 | | * not harmful, it was not really necessary. Perform default router |
2563 | | * selection even when we are a router, if Scoped Routing is enabled. |
2564 | | */ |
2565 | | /* XXX TDB Handle lists in route information option as well */ |
2566 | 0 | dr = defrouter_lookup(NULL, &SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp); |
2567 | |
|
2568 | 0 | if ((ln && ln->ln_router) || dr) { |
2569 | | /* |
2570 | | * rt6_flush must be called whether or not the neighbor |
2571 | | * is in the Default Router List. |
2572 | | * See a corresponding comment in nd6_na_input(). |
2573 | | */ |
2574 | 0 | RT_UNLOCK(rt); |
2575 | 0 | lck_mtx_unlock(nd6_mutex); |
2576 | 0 | rt6_flush(&in6, rt->rt_ifp); |
2577 | 0 | lck_mtx_lock(nd6_mutex); |
2578 | 0 | } else { |
2579 | 0 | RT_UNLOCK(rt); |
2580 | 0 | } |
2581 | |
|
2582 | 0 | if (dr) { |
2583 | 0 | NDDR_REMREF(dr); |
2584 | | /* |
2585 | | * Unreachablity of a router might affect the default |
2586 | | * router selection and on-link detection of advertised |
2587 | | * prefixes. |
2588 | | */ |
2589 | | |
2590 | | /* |
2591 | | * Temporarily fake the state to choose a new default |
2592 | | * router and to perform on-link determination of |
2593 | | * prefixes correctly. |
2594 | | * Below the state will be set correctly, |
2595 | | * or the entry itself will be deleted. |
2596 | | */ |
2597 | 0 | RT_LOCK_SPIN(rt); |
2598 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); |
2599 | | |
2600 | | /* |
2601 | | * Since defrouter_select() does not affect the |
2602 | | * on-link determination and MIP6 needs the check |
2603 | | * before the default router selection, we perform |
2604 | | * the check now. |
2605 | | */ |
2606 | 0 | RT_UNLOCK(rt); |
2607 | 0 | pfxlist_onlink_check(); |
2608 | | |
2609 | | /* |
2610 | | * refresh default router list |
2611 | | */ |
2612 | 0 | defrouter_select(rt->rt_ifp, NULL); |
2613 | | |
2614 | | /* Loop through all RTI's as well and trigger router selection. */ |
2615 | 0 | nd6_router_select_rti_entries(rt->rt_ifp); |
2616 | 0 | } |
2617 | 0 | RT_LOCK_ASSERT_NOTHELD(rt); |
2618 | 0 | lck_mtx_unlock(nd6_mutex); |
2619 | | /* |
2620 | | * Detach the route from the routing tree and the list of neighbor |
2621 | | * caches, and disable the route entry not to be used in already |
2622 | | * cached routes. |
2623 | | */ |
2624 | 0 | (void) rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); |
2625 | | |
2626 | | /* Extra ref held above; now free it */ |
2627 | 0 | rtfree(rt); |
2628 | 0 | } |
2629 | | |
2630 | | void |
2631 | | nd6_rtrequest(int req, struct rtentry *rt, struct sockaddr *sa) |
2632 | 25 | { |
2633 | 25 | #pragma unused(sa) |
2634 | 25 | struct sockaddr *gate = rt->rt_gateway; |
2635 | 25 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
2636 | 25 | static struct sockaddr_dl null_sdl = |
2637 | 25 | { .sdl_len = sizeof(null_sdl), .sdl_family = AF_LINK }; |
2638 | 25 | struct ifnet *ifp = rt->rt_ifp; |
2639 | 25 | struct ifaddr *ifa; |
2640 | 25 | uint64_t timenow; |
2641 | 25 | char buf[MAX_IPv6_STR_LEN]; |
2642 | 25 | struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); |
2643 | | |
2644 | 25 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
2645 | 25 | VERIFY(nd6_init_done); |
2646 | 25 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
2647 | 25 | RT_LOCK_ASSERT_HELD(rt); |
2648 | | |
2649 | | /* |
2650 | | * We have rnh_lock held, see if we need to schedule the timer; |
2651 | | * we might do this again below during RTM_RESOLVE, but doing it |
2652 | | * now handles all other cases. |
2653 | | */ |
2654 | 25 | if (nd6_sched_timeout_want) { |
2655 | 0 | nd6_sched_timeout(NULL, NULL); |
2656 | 0 | } |
2657 | | |
2658 | 25 | if (rt->rt_flags & RTF_GATEWAY) { |
2659 | 0 | return; |
2660 | 0 | } |
2661 | | |
2662 | 25 | if (!nd6_need_cache(ifp) && !(rt->rt_flags & RTF_HOST)) { |
2663 | | /* |
2664 | | * This is probably an interface direct route for a link |
2665 | | * which does not need neighbor caches (e.g. fe80::%lo0/64). |
2666 | | * We do not need special treatment below for such a route. |
2667 | | * Moreover, the RTF_LLINFO flag which would be set below |
2668 | | * would annoy the ndp(8) command. |
2669 | | */ |
2670 | 3 | return; |
2671 | 3 | } |
2672 | | |
2673 | 22 | if (req == RTM_RESOLVE) { |
2674 | 0 | int no_nd_cache; |
2675 | |
|
2676 | 0 | if (!nd6_need_cache(ifp)) { /* stf case */ |
2677 | 0 | no_nd_cache = 1; |
2678 | 0 | } else { |
2679 | 0 | struct sockaddr_in6 sin6; |
2680 | |
|
2681 | 0 | rtkey_to_sa6(rt, &sin6); |
2682 | | /* |
2683 | | * nd6_is_addr_neighbor() may call nd6_lookup(), |
2684 | | * therefore we drop rt_lock to avoid deadlock |
2685 | | * during the lookup. |
2686 | | */ |
2687 | 0 | RT_ADDREF_LOCKED(rt); |
2688 | 0 | RT_UNLOCK(rt); |
2689 | 0 | no_nd_cache = !nd6_is_addr_neighbor(&sin6, ifp, 1); |
2690 | 0 | RT_LOCK(rt); |
2691 | 0 | RT_REMREF_LOCKED(rt); |
2692 | 0 | } |
2693 | | |
2694 | | /* |
2695 | | * FreeBSD and BSD/OS often make a cloned host route based |
2696 | | * on a less-specific route (e.g. the default route). |
2697 | | * If the less specific route does not have a "gateway" |
2698 | | * (this is the case when the route just goes to a p2p or an |
2699 | | * stf interface), we'll mistakenly make a neighbor cache for |
2700 | | * the host route, and will see strange neighbor solicitation |
2701 | | * for the corresponding destination. In order to avoid the |
2702 | | * confusion, we check if the destination of the route is |
2703 | | * a neighbor in terms of neighbor discovery, and stop the |
2704 | | * process if not. Additionally, we remove the LLINFO flag |
2705 | | * so that ndp(8) will not try to get the neighbor information |
2706 | | * of the destination. |
2707 | | */ |
2708 | 0 | if (no_nd_cache) { |
2709 | 0 | rt->rt_flags &= ~RTF_LLINFO; |
2710 | 0 | return; |
2711 | 0 | } |
2712 | 0 | } |
2713 | | |
2714 | 22 | timenow = net_uptime(); |
2715 | | |
2716 | 22 | switch (req) { |
2717 | 22 | case RTM_ADD: |
2718 | | /* |
2719 | | * There is no backward compatibility :) |
2720 | | * |
2721 | | * if ((rt->rt_flags & RTF_HOST) == 0 && |
2722 | | * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) |
2723 | | * rt->rt_flags |= RTF_CLONING; |
2724 | | */ |
2725 | 22 | if ((rt->rt_flags & RTF_CLONING) || |
2726 | 22 | ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { |
2727 | | /* |
2728 | | * Case 1: This route should come from a route to |
2729 | | * interface (RTF_CLONING case) or the route should be |
2730 | | * treated as on-link but is currently not |
2731 | | * (RTF_LLINFO && ln == NULL case). |
2732 | | */ |
2733 | 21 | if (rt_setgate(rt, rt_key(rt), SA(&null_sdl)) == 0) { |
2734 | 21 | gate = rt->rt_gateway; |
2735 | 21 | SDL(gate)->sdl_type = ifp->if_type; |
2736 | 21 | SDL(gate)->sdl_index = ifp->if_index; |
2737 | | /* |
2738 | | * In case we're called before 1.0 sec. |
2739 | | * has elapsed. |
2740 | | */ |
2741 | 21 | if (ln != NULL) { |
2742 | 0 | ln_setexpire(ln, |
2743 | 0 | (ifp->if_eflags & IFEF_IPV6_ND6ALT) |
2744 | 0 | ? 0 : MAX(timenow, 1)); |
2745 | 0 | } |
2746 | 21 | } |
2747 | 21 | if (rt->rt_flags & RTF_CLONING) { |
2748 | 0 | break; |
2749 | 0 | } |
2750 | 21 | } |
2751 | | /* |
2752 | | * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. |
2753 | | * We don't do that here since llinfo is not ready yet. |
2754 | | * |
2755 | | * There are also couple of other things to be discussed: |
2756 | | * - unsolicited NA code needs improvement beforehand |
2757 | | * - RFC4861 says we MAY send multicast unsolicited NA |
2758 | | * (7.2.6 paragraph 4), however, it also says that we |
2759 | | * SHOULD provide a mechanism to prevent multicast NA storm. |
2760 | | * we don't have anything like it right now. |
2761 | | * note that the mechanism needs a mutual agreement |
2762 | | * between proxies, which means that we need to implement |
2763 | | * a new protocol, or a new kludge. |
2764 | | * - from RFC4861 6.2.4, host MUST NOT send an unsolicited RA. |
2765 | | * we need to check ip6forwarding before sending it. |
2766 | | * (or should we allow proxy ND configuration only for |
2767 | | * routers? there's no mention about proxy ND from hosts) |
2768 | | */ |
2769 | 22 | OS_FALLTHROUGH; |
2770 | 22 | case RTM_RESOLVE: |
2771 | 22 | if (!(ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK))) { |
2772 | | /* |
2773 | | * Address resolution isn't necessary for a point to |
2774 | | * point link, so we can skip this test for a p2p link. |
2775 | | */ |
2776 | 0 | if (gate->sa_family != AF_LINK || |
2777 | 0 | gate->sa_len < sizeof(null_sdl)) { |
2778 | | /* Don't complain in case of RTM_ADD */ |
2779 | 0 | if (req == RTM_RESOLVE) { |
2780 | 0 | log(LOG_ERR, "%s: route to %s has bad " |
2781 | 0 | "gateway address (sa_family %u " |
2782 | 0 | "sa_len %u) on %s\n", __func__, |
2783 | 0 | inet_ntop(AF_INET6, |
2784 | 0 | &SIN6(rt_key(rt))->sin6_addr, buf, |
2785 | 0 | sizeof(buf)), gate->sa_family, |
2786 | 0 | gate->sa_len, if_name(ifp)); |
2787 | 0 | } |
2788 | 0 | break; |
2789 | 0 | } |
2790 | 0 | SDL(gate)->sdl_type = ifp->if_type; |
2791 | 0 | SDL(gate)->sdl_index = ifp->if_index; |
2792 | 0 | } |
2793 | 22 | if (ln != NULL) { |
2794 | 0 | break; /* This happens on a route change */ |
2795 | 0 | } |
2796 | | /* |
2797 | | * Case 2: This route may come from cloning, or a manual route |
2798 | | * add with a LL address. |
2799 | | */ |
2800 | 22 | rt->rt_llinfo = ln = nd6_llinfo_alloc(Z_WAITOK); |
2801 | | |
2802 | 22 | nd6_allocated++; |
2803 | 22 | rt->rt_llinfo_get_ri = nd6_llinfo_get_ri; |
2804 | 22 | rt->rt_llinfo_get_iflri = nd6_llinfo_get_iflri; |
2805 | 22 | rt->rt_llinfo_purge = nd6_llinfo_purge; |
2806 | 22 | rt->rt_llinfo_free = nd6_llinfo_free; |
2807 | 22 | rt->rt_llinfo_refresh = nd6_llinfo_refresh; |
2808 | 22 | rt->rt_flags |= RTF_LLINFO; |
2809 | 22 | ln->ln_rt = rt; |
2810 | | /* this is required for "ndp" command. - shin */ |
2811 | | /* |
2812 | | * For interface's that do not perform NUD |
2813 | | * neighbor cache entries must always be marked |
2814 | | * reachable with no expiry |
2815 | | */ |
2816 | 22 | if ((req == RTM_ADD) || |
2817 | 22 | !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
2818 | | /* |
2819 | | * gate should have some valid AF_LINK entry, |
2820 | | * and ln->ln_expire should have some lifetime |
2821 | | * which is specified by ndp command. |
2822 | | */ |
2823 | 22 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
2824 | 22 | ln_setexpire(ln, 0); |
2825 | 22 | } else { |
2826 | | /* |
2827 | | * When req == RTM_RESOLVE, rt is created and |
2828 | | * initialized in rtrequest(), so rt_expire is 0. |
2829 | | */ |
2830 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); |
2831 | | /* In case we're called before 1.0 sec. has elapsed */ |
2832 | 0 | ln_setexpire(ln, (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? |
2833 | 0 | 0 : MAX(timenow, 1)); |
2834 | 0 | } |
2835 | 22 | LN_INSERTHEAD(ln); |
2836 | 22 | nd6_inuse++; |
2837 | | |
2838 | | /* We have at least one entry; arm the timer if not already */ |
2839 | 22 | nd6_sched_timeout(NULL, NULL); |
2840 | | |
2841 | | /* |
2842 | | * If we have too many cache entries, initiate immediate |
2843 | | * purging for some "less recently used" entries. Note that |
2844 | | * we cannot directly call nd6_free() here because it would |
2845 | | * cause re-entering rtable related routines triggering an LOR |
2846 | | * problem. |
2847 | | */ |
2848 | 22 | if (ip6_neighborgcthresh > 0 && |
2849 | 22 | nd6_inuse >= ip6_neighborgcthresh) { |
2850 | 0 | int i; |
2851 | |
|
2852 | 0 | for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { |
2853 | 0 | struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; |
2854 | 0 | struct rtentry *rt_end = ln_end->ln_rt; |
2855 | | |
2856 | | /* Move this entry to the head */ |
2857 | 0 | RT_LOCK(rt_end); |
2858 | 0 | LN_DEQUEUE(ln_end); |
2859 | 0 | LN_INSERTHEAD(ln_end); |
2860 | |
|
2861 | 0 | if (ln_end->ln_expire == 0) { |
2862 | 0 | RT_UNLOCK(rt_end); |
2863 | 0 | continue; |
2864 | 0 | } |
2865 | 0 | if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) { |
2866 | 0 | ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_STALE); |
2867 | 0 | } else { |
2868 | 0 | ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_PURGE); |
2869 | 0 | } |
2870 | 0 | ln_setexpire(ln_end, timenow); |
2871 | 0 | RT_UNLOCK(rt_end); |
2872 | 0 | } |
2873 | 0 | } |
2874 | | |
2875 | | /* |
2876 | | * check if rt_key(rt) is one of my address assigned |
2877 | | * to the interface. |
2878 | | */ |
2879 | 22 | ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, |
2880 | 22 | &SIN6(rt_key(rt))->sin6_addr); |
2881 | 22 | if (ifa != NULL) { |
2882 | 1 | caddr_t macp = nd6_ifptomac(ifp); |
2883 | 1 | ln_setexpire(ln, 0); |
2884 | 1 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
2885 | 1 | if (macp != NULL) { |
2886 | 0 | Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); |
2887 | 0 | SDL(gate)->sdl_alen = ifp->if_addrlen; |
2888 | 0 | } |
2889 | 1 | if (nd6_useloopback) { |
2890 | 1 | if (rt->rt_ifp != lo_ifp) { |
2891 | | /* |
2892 | | * Purge any link-layer info caching. |
2893 | | */ |
2894 | 0 | if (rt->rt_llinfo_purge != NULL) { |
2895 | 0 | rt->rt_llinfo_purge(rt); |
2896 | 0 | } |
2897 | | |
2898 | | /* |
2899 | | * Adjust route ref count for the |
2900 | | * interfaces. |
2901 | | */ |
2902 | 0 | if (rt->rt_if_ref_fn != NULL) { |
2903 | 0 | rt->rt_if_ref_fn(lo_ifp, 1); |
2904 | 0 | rt->rt_if_ref_fn(rt->rt_ifp, |
2905 | 0 | -1); |
2906 | 0 | } |
2907 | 0 | } |
2908 | 1 | rt->rt_ifp = lo_ifp; |
2909 | | /* |
2910 | | * If rmx_mtu is not locked, update it |
2911 | | * to the MTU used by the new interface. |
2912 | | */ |
2913 | 1 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) { |
2914 | 1 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; |
2915 | 1 | } |
2916 | | /* |
2917 | | * Make sure rt_ifa be equal to the ifaddr |
2918 | | * corresponding to the address. |
2919 | | * We need this because when we refer |
2920 | | * rt_ifa->ia6_flags in ip6_input, we assume |
2921 | | * that the rt_ifa points to the address instead |
2922 | | * of the loopback address. |
2923 | | */ |
2924 | 1 | if (ifa != rt->rt_ifa) { |
2925 | 0 | rtsetifa(rt, ifa); |
2926 | 0 | } |
2927 | 1 | } |
2928 | 1 | IFA_REMREF(ifa); |
2929 | 21 | } else if (rt->rt_flags & RTF_ANNOUNCE) { |
2930 | 0 | ln_setexpire(ln, 0); |
2931 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
2932 | | |
2933 | | /* join solicited node multicast for proxy ND */ |
2934 | 0 | if (ifp->if_flags & IFF_MULTICAST) { |
2935 | 0 | struct in6_addr llsol; |
2936 | 0 | struct in6_multi *in6m; |
2937 | 0 | int error; |
2938 | |
|
2939 | 0 | llsol = SIN6(rt_key(rt))->sin6_addr; |
2940 | 0 | llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; |
2941 | 0 | llsol.s6_addr32[1] = 0; |
2942 | 0 | llsol.s6_addr32[2] = htonl(1); |
2943 | 0 | llsol.s6_addr8[12] = 0xff; |
2944 | 0 | if (in6_setscope(&llsol, ifp, NULL)) { |
2945 | 0 | break; |
2946 | 0 | } |
2947 | 0 | error = in6_mc_join(ifp, &llsol, |
2948 | 0 | NULL, &in6m, 0); |
2949 | 0 | if (error) { |
2950 | 0 | nd6log(error, "%s: failed to join " |
2951 | 0 | "%s (errno=%d)\n", if_name(ifp), |
2952 | 0 | ip6_sprintf(&llsol), error); |
2953 | 0 | } else { |
2954 | 0 | IN6M_REMREF(in6m); |
2955 | 0 | } |
2956 | 0 | } |
2957 | 0 | } |
2958 | 22 | break; |
2959 | | |
2960 | 22 | case RTM_DELETE: |
2961 | 0 | if (ln == NULL) { |
2962 | 0 | break; |
2963 | 0 | } |
2964 | | /* leave from solicited node multicast for proxy ND */ |
2965 | 0 | if ((rt->rt_flags & RTF_ANNOUNCE) && |
2966 | 0 | (ifp->if_flags & IFF_MULTICAST)) { |
2967 | 0 | struct in6_addr llsol; |
2968 | 0 | struct in6_multi *in6m; |
2969 | |
|
2970 | 0 | llsol = SIN6(rt_key(rt))->sin6_addr; |
2971 | 0 | llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; |
2972 | 0 | llsol.s6_addr32[1] = 0; |
2973 | 0 | llsol.s6_addr32[2] = htonl(1); |
2974 | 0 | llsol.s6_addr8[12] = 0xff; |
2975 | 0 | if (in6_setscope(&llsol, ifp, NULL) == 0) { |
2976 | 0 | in6_multihead_lock_shared(); |
2977 | 0 | IN6_LOOKUP_MULTI(&llsol, ifp, in6m); |
2978 | 0 | in6_multihead_lock_done(); |
2979 | 0 | if (in6m != NULL) { |
2980 | 0 | in6_mc_leave(in6m, NULL); |
2981 | 0 | IN6M_REMREF(in6m); |
2982 | 0 | } |
2983 | 0 | } |
2984 | 0 | } |
2985 | 0 | nd6_inuse--; |
2986 | | /* |
2987 | | * Unchain it but defer the actual freeing until the route |
2988 | | * itself is to be freed. rt->rt_llinfo still points to |
2989 | | * llinfo_nd6, and likewise, ln->ln_rt stil points to this |
2990 | | * route entry, except that RTF_LLINFO is now cleared. |
2991 | | */ |
2992 | 0 | if (ln->ln_flags & ND6_LNF_IN_USE) { |
2993 | 0 | LN_DEQUEUE(ln); |
2994 | 0 | } |
2995 | | |
2996 | | /* |
2997 | | * Purge any link-layer info caching. |
2998 | | */ |
2999 | 0 | if (rt->rt_llinfo_purge != NULL) { |
3000 | 0 | rt->rt_llinfo_purge(rt); |
3001 | 0 | } |
3002 | |
|
3003 | 0 | rt->rt_flags &= ~RTF_LLINFO; |
3004 | 0 | if (ln->ln_hold != NULL) { |
3005 | 0 | m_freem_list(ln->ln_hold); |
3006 | 0 | ln->ln_hold = NULL; |
3007 | 0 | } |
3008 | 22 | } |
3009 | 22 | } |
3010 | | |
3011 | | static int |
3012 | | nd6_siocgdrlst(void *data, int data_is_64) |
3013 | 0 | { |
3014 | 0 | struct in6_drlist_32 *drl_32; |
3015 | 0 | struct nd_defrouter *dr; |
3016 | 0 | int i = 0; |
3017 | |
|
3018 | 0 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
3019 | |
|
3020 | 0 | dr = TAILQ_FIRST(&nd_defrouter_list); |
3021 | | |
3022 | | /* XXX Handle mapped defrouter entries */ |
3023 | | /* For 64-bit process */ |
3024 | 0 | if (data_is_64) { |
3025 | 0 | struct in6_drlist_64 *drl_64; |
3026 | |
|
3027 | 0 | drl_64 = _MALLOC(sizeof(*drl_64), M_TEMP, M_WAITOK | M_ZERO); |
3028 | 0 | if (drl_64 == NULL) { |
3029 | 0 | return ENOMEM; |
3030 | 0 | } |
3031 | | |
3032 | | /* preserve the interface name */ |
3033 | 0 | bcopy(data, drl_64, sizeof(drl_64->ifname)); |
3034 | |
|
3035 | 0 | while (dr && i < DRLSTSIZ) { |
3036 | 0 | drl_64->defrouter[i].rtaddr = dr->rtaddr; |
3037 | 0 | if (IN6_IS_ADDR_LINKLOCAL( |
3038 | 0 | &drl_64->defrouter[i].rtaddr)) { |
3039 | | /* XXX: need to this hack for KAME stack */ |
3040 | 0 | drl_64->defrouter[i].rtaddr.s6_addr16[1] = 0; |
3041 | 0 | } else { |
3042 | 0 | log(LOG_ERR, |
3043 | 0 | "default router list contains a " |
3044 | 0 | "non-linklocal address(%s)\n", |
3045 | 0 | ip6_sprintf(&drl_64->defrouter[i].rtaddr)); |
3046 | 0 | } |
3047 | 0 | drl_64->defrouter[i].flags = dr->flags; |
3048 | 0 | drl_64->defrouter[i].rtlifetime = (u_short)dr->rtlifetime; |
3049 | 0 | drl_64->defrouter[i].expire = (u_long)nddr_getexpire(dr); |
3050 | 0 | drl_64->defrouter[i].if_index = dr->ifp->if_index; |
3051 | 0 | i++; |
3052 | 0 | dr = TAILQ_NEXT(dr, dr_entry); |
3053 | 0 | } |
3054 | 0 | bcopy(drl_64, data, sizeof(*drl_64)); |
3055 | 0 | _FREE(drl_64, M_TEMP); |
3056 | 0 | return 0; |
3057 | 0 | } |
3058 | | |
3059 | | /* For 32-bit process */ |
3060 | 0 | drl_32 = _MALLOC(sizeof(*drl_32), M_TEMP, M_WAITOK | M_ZERO); |
3061 | 0 | if (drl_32 == NULL) { |
3062 | 0 | return ENOMEM; |
3063 | 0 | } |
3064 | | |
3065 | | /* preserve the interface name */ |
3066 | 0 | bcopy(data, drl_32, sizeof(drl_32->ifname)); |
3067 | |
|
3068 | 0 | while (dr != NULL && i < DRLSTSIZ) { |
3069 | 0 | drl_32->defrouter[i].rtaddr = dr->rtaddr; |
3070 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&drl_32->defrouter[i].rtaddr)) { |
3071 | | /* XXX: need to this hack for KAME stack */ |
3072 | 0 | drl_32->defrouter[i].rtaddr.s6_addr16[1] = 0; |
3073 | 0 | } else { |
3074 | 0 | log(LOG_ERR, |
3075 | 0 | "default router list contains a " |
3076 | 0 | "non-linklocal address(%s)\n", |
3077 | 0 | ip6_sprintf(&drl_32->defrouter[i].rtaddr)); |
3078 | 0 | } |
3079 | 0 | drl_32->defrouter[i].flags = dr->flags; |
3080 | 0 | drl_32->defrouter[i].rtlifetime = (u_short)dr->rtlifetime; |
3081 | 0 | drl_32->defrouter[i].expire = (u_int32_t)nddr_getexpire(dr); |
3082 | 0 | drl_32->defrouter[i].if_index = dr->ifp->if_index; |
3083 | 0 | i++; |
3084 | 0 | dr = TAILQ_NEXT(dr, dr_entry); |
3085 | 0 | } |
3086 | 0 | bcopy(drl_32, data, sizeof(*drl_32)); |
3087 | 0 | _FREE(drl_32, M_TEMP); |
3088 | 0 | return 0; |
3089 | 0 | } |
3090 | | |
3091 | | /* |
3092 | | * XXX meaning of fields, especialy "raflags", is very |
3093 | | * differnet between RA prefix list and RR/static prefix list. |
3094 | | * how about separating ioctls into two? |
3095 | | */ |
3096 | | static int |
3097 | | nd6_siocgprlst(void *data, int data_is_64) |
3098 | 0 | { |
3099 | 0 | struct in6_prlist_32 *prl_32; |
3100 | 0 | struct nd_prefix *pr; |
3101 | 0 | int i = 0; |
3102 | |
|
3103 | 0 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
3104 | |
|
3105 | 0 | pr = nd_prefix.lh_first; |
3106 | | |
3107 | | /* XXX Handle mapped defrouter entries */ |
3108 | | /* For 64-bit process */ |
3109 | 0 | if (data_is_64) { |
3110 | 0 | struct in6_prlist_64 *prl_64; |
3111 | |
|
3112 | 0 | prl_64 = _MALLOC(sizeof(*prl_64), M_TEMP, M_WAITOK | M_ZERO); |
3113 | 0 | if (prl_64 == NULL) { |
3114 | 0 | return ENOMEM; |
3115 | 0 | } |
3116 | | |
3117 | | /* preserve the interface name */ |
3118 | 0 | bcopy(data, prl_64, sizeof(prl_64->ifname)); |
3119 | |
|
3120 | 0 | while (pr && i < PRLSTSIZ) { |
3121 | 0 | struct nd_pfxrouter *pfr; |
3122 | 0 | int j; |
3123 | |
|
3124 | 0 | NDPR_LOCK(pr); |
3125 | 0 | (void) in6_embedscope(&prl_64->prefix[i].prefix, |
3126 | 0 | &pr->ndpr_prefix, NULL, NULL, NULL); |
3127 | 0 | prl_64->prefix[i].raflags = pr->ndpr_raf; |
3128 | 0 | prl_64->prefix[i].prefixlen = pr->ndpr_plen; |
3129 | 0 | prl_64->prefix[i].vltime = pr->ndpr_vltime; |
3130 | 0 | prl_64->prefix[i].pltime = pr->ndpr_pltime; |
3131 | 0 | prl_64->prefix[i].if_index = pr->ndpr_ifp->if_index; |
3132 | 0 | prl_64->prefix[i].expire = (u_long)ndpr_getexpire(pr); |
3133 | |
|
3134 | 0 | pfr = pr->ndpr_advrtrs.lh_first; |
3135 | 0 | j = 0; |
3136 | 0 | while (pfr) { |
3137 | 0 | if (j < DRLSTSIZ) { |
3138 | 0 | #define RTRADDR prl_64->prefix[i].advrtr[j] |
3139 | 0 | RTRADDR = pfr->router->rtaddr; |
3140 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { |
3141 | | /* XXX: hack for KAME */ |
3142 | 0 | RTRADDR.s6_addr16[1] = 0; |
3143 | 0 | } else { |
3144 | 0 | log(LOG_ERR, |
3145 | 0 | "a router(%s) advertises " |
3146 | 0 | "a prefix with " |
3147 | 0 | "non-link local address\n", |
3148 | 0 | ip6_sprintf(&RTRADDR)); |
3149 | 0 | } |
3150 | 0 | #undef RTRADDR |
3151 | 0 | } |
3152 | 0 | j++; |
3153 | 0 | pfr = pfr->pfr_next; |
3154 | 0 | } |
3155 | 0 | ASSERT(j <= USHRT_MAX); |
3156 | 0 | prl_64->prefix[i].advrtrs = (u_short)j; |
3157 | 0 | prl_64->prefix[i].origin = PR_ORIG_RA; |
3158 | 0 | NDPR_UNLOCK(pr); |
3159 | |
|
3160 | 0 | i++; |
3161 | 0 | pr = pr->ndpr_next; |
3162 | 0 | } |
3163 | 0 | bcopy(prl_64, data, sizeof(*prl_64)); |
3164 | 0 | _FREE(prl_64, M_TEMP); |
3165 | 0 | return 0; |
3166 | 0 | } |
3167 | | |
3168 | | /* For 32-bit process */ |
3169 | 0 | prl_32 = _MALLOC(sizeof(*prl_32), M_TEMP, M_WAITOK | M_ZERO); |
3170 | 0 | if (prl_32 == NULL) { |
3171 | 0 | return ENOMEM; |
3172 | 0 | } |
3173 | | |
3174 | | /* preserve the interface name */ |
3175 | 0 | bcopy(data, prl_32, sizeof(prl_32->ifname)); |
3176 | |
|
3177 | 0 | while (pr && i < PRLSTSIZ) { |
3178 | 0 | struct nd_pfxrouter *pfr; |
3179 | 0 | int j; |
3180 | |
|
3181 | 0 | NDPR_LOCK(pr); |
3182 | 0 | (void) in6_embedscope(&prl_32->prefix[i].prefix, |
3183 | 0 | &pr->ndpr_prefix, NULL, NULL, NULL); |
3184 | 0 | prl_32->prefix[i].raflags = pr->ndpr_raf; |
3185 | 0 | prl_32->prefix[i].prefixlen = pr->ndpr_plen; |
3186 | 0 | prl_32->prefix[i].vltime = pr->ndpr_vltime; |
3187 | 0 | prl_32->prefix[i].pltime = pr->ndpr_pltime; |
3188 | 0 | prl_32->prefix[i].if_index = pr->ndpr_ifp->if_index; |
3189 | 0 | prl_32->prefix[i].expire = (u_int32_t)ndpr_getexpire(pr); |
3190 | |
|
3191 | 0 | pfr = pr->ndpr_advrtrs.lh_first; |
3192 | 0 | j = 0; |
3193 | 0 | while (pfr) { |
3194 | 0 | if (j < DRLSTSIZ) { |
3195 | 0 | #define RTRADDR prl_32->prefix[i].advrtr[j] |
3196 | 0 | RTRADDR = pfr->router->rtaddr; |
3197 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { |
3198 | | /* XXX: hack for KAME */ |
3199 | 0 | RTRADDR.s6_addr16[1] = 0; |
3200 | 0 | } else { |
3201 | 0 | log(LOG_ERR, |
3202 | 0 | "a router(%s) advertises " |
3203 | 0 | "a prefix with " |
3204 | 0 | "non-link local address\n", |
3205 | 0 | ip6_sprintf(&RTRADDR)); |
3206 | 0 | } |
3207 | 0 | #undef RTRADDR |
3208 | 0 | } |
3209 | 0 | j++; |
3210 | 0 | pfr = pfr->pfr_next; |
3211 | 0 | } |
3212 | 0 | ASSERT(j <= USHRT_MAX); |
3213 | 0 | prl_32->prefix[i].advrtrs = (u_short)j; |
3214 | 0 | prl_32->prefix[i].origin = PR_ORIG_RA; |
3215 | 0 | NDPR_UNLOCK(pr); |
3216 | |
|
3217 | 0 | i++; |
3218 | 0 | pr = pr->ndpr_next; |
3219 | 0 | } |
3220 | 0 | bcopy(prl_32, data, sizeof(*prl_32)); |
3221 | 0 | _FREE(prl_32, M_TEMP); |
3222 | 0 | return 0; |
3223 | 0 | } |
3224 | | |
3225 | | int |
3226 | | nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) |
3227 | 0 | { |
3228 | 0 | struct nd_defrouter *dr; |
3229 | 0 | struct nd_prefix *pr; |
3230 | 0 | struct rtentry *rt; |
3231 | 0 | int error = 0; |
3232 | |
|
3233 | 0 | VERIFY(ifp != NULL); |
3234 | | |
3235 | 0 | switch (cmd) { |
3236 | 0 | case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ |
3237 | 0 | case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ |
3238 | | /* |
3239 | | * obsolete API, use sysctl under net.inet6.icmp6 |
3240 | | */ |
3241 | 0 | lck_mtx_lock(nd6_mutex); |
3242 | 0 | error = nd6_siocgdrlst(data, cmd == SIOCGDRLST_IN6_64); |
3243 | 0 | lck_mtx_unlock(nd6_mutex); |
3244 | 0 | break; |
3245 | | |
3246 | 0 | case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ |
3247 | 0 | case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ |
3248 | | /* |
3249 | | * obsolete API, use sysctl under net.inet6.icmp6 |
3250 | | */ |
3251 | 0 | lck_mtx_lock(nd6_mutex); |
3252 | 0 | error = nd6_siocgprlst(data, cmd == SIOCGPRLST_IN6_64); |
3253 | 0 | lck_mtx_unlock(nd6_mutex); |
3254 | 0 | break; |
3255 | | |
3256 | 0 | case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ |
3257 | 0 | case SIOCGIFINFO_IN6: { /* struct in6_ondireq */ |
3258 | 0 | u_int32_t linkmtu; |
3259 | 0 | struct in6_ondireq *ondi = (struct in6_ondireq *)(void *)data; |
3260 | 0 | struct nd_ifinfo *ndi; |
3261 | | /* |
3262 | | * SIOCGIFINFO_IN6 ioctl is encoded with in6_ondireq |
3263 | | * instead of in6_ndireq, so we treat it as such. |
3264 | | */ |
3265 | 0 | ndi = ND_IFINFO(ifp); |
3266 | 0 | if ((NULL == ndi) || (FALSE == ndi->initialized)) { |
3267 | 0 | error = EINVAL; |
3268 | 0 | break; |
3269 | 0 | } |
3270 | 0 | lck_mtx_lock(&ndi->lock); |
3271 | 0 | linkmtu = IN6_LINKMTU(ifp); |
3272 | 0 | bcopy(&linkmtu, &ondi->ndi.linkmtu, sizeof(linkmtu)); |
3273 | 0 | bcopy(&ndi->maxmtu, &ondi->ndi.maxmtu, |
3274 | 0 | sizeof(u_int32_t)); |
3275 | 0 | bcopy(&ndi->basereachable, &ondi->ndi.basereachable, |
3276 | 0 | sizeof(u_int32_t)); |
3277 | 0 | bcopy(&ndi->reachable, &ondi->ndi.reachable, |
3278 | 0 | sizeof(u_int32_t)); |
3279 | 0 | bcopy(&ndi->retrans, &ondi->ndi.retrans, |
3280 | 0 | sizeof(u_int32_t)); |
3281 | 0 | bcopy(&ndi->flags, &ondi->ndi.flags, |
3282 | 0 | sizeof(u_int32_t)); |
3283 | 0 | bcopy(&ndi->recalctm, &ondi->ndi.recalctm, |
3284 | 0 | sizeof(int)); |
3285 | 0 | ondi->ndi.chlim = ndi->chlim; |
3286 | | /* |
3287 | | * The below truncation is fine as we mostly use it for |
3288 | | * debugging purpose. |
3289 | | */ |
3290 | 0 | ondi->ndi.receivedra = (uint8_t)ndi->ndefrouters; |
3291 | 0 | ondi->ndi.collision_count = (uint8_t)ndi->cga_collision_count; |
3292 | 0 | lck_mtx_unlock(&ndi->lock); |
3293 | 0 | break; |
3294 | 0 | } |
3295 | | |
3296 | 0 | case SIOCSIFINFO_FLAGS: { /* struct in6_ndireq */ |
3297 | | /* |
3298 | | * XXX BSD has a bunch of checks here to ensure |
3299 | | * that interface disabled flag is not reset if |
3300 | | * link local address has failed DAD. |
3301 | | * Investigate that part. |
3302 | | */ |
3303 | 0 | struct in6_ndireq *cndi = (struct in6_ndireq *)(void *)data; |
3304 | 0 | u_int32_t oflags, flags; |
3305 | 0 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
3306 | | |
3307 | | /* XXX: almost all other fields of cndi->ndi is unused */ |
3308 | 0 | if ((NULL == ndi) || !ndi->initialized) { |
3309 | 0 | error = EINVAL; |
3310 | 0 | break; |
3311 | 0 | } |
3312 | | |
3313 | 0 | lck_mtx_lock(&ndi->lock); |
3314 | 0 | oflags = ndi->flags; |
3315 | 0 | bcopy(&cndi->ndi.flags, &(ndi->flags), sizeof(flags)); |
3316 | 0 | flags = ndi->flags; |
3317 | 0 | lck_mtx_unlock(&ndi->lock); |
3318 | |
|
3319 | 0 | if (oflags == flags) { |
3320 | 0 | break; |
3321 | 0 | } |
3322 | | |
3323 | 0 | error = nd6_setifinfo(ifp, oflags, flags); |
3324 | 0 | break; |
3325 | 0 | } |
3326 | | |
3327 | 0 | case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ |
3328 | | /* flush default router list */ |
3329 | | /* |
3330 | | * xxx sumikawa: should not delete route if default |
3331 | | * route equals to the top of default router list |
3332 | | * |
3333 | | * XXX TODO: Needs to be done for RTI as well |
3334 | | * Is very specific flush command with ndp for default routers. |
3335 | | */ |
3336 | 0 | lck_mtx_lock(nd6_mutex); |
3337 | 0 | defrouter_reset(); |
3338 | 0 | defrouter_select(ifp, NULL); |
3339 | 0 | lck_mtx_unlock(nd6_mutex); |
3340 | | /* xxx sumikawa: flush prefix list */ |
3341 | 0 | break; |
3342 | | |
3343 | 0 | case SIOCSPFXFLUSH_IN6: { /* struct in6_ifreq */ |
3344 | | /* flush all the prefix advertised by routers */ |
3345 | 0 | struct nd_prefix *next = NULL; |
3346 | |
|
3347 | 0 | lck_mtx_lock(nd6_mutex); |
3348 | 0 | for (pr = nd_prefix.lh_first; pr; pr = next) { |
3349 | 0 | struct in6_ifaddr *ia = NULL; |
3350 | 0 | bool iterate_pfxlist_again = false; |
3351 | |
|
3352 | 0 | next = pr->ndpr_next; |
3353 | |
|
3354 | 0 | NDPR_LOCK(pr); |
3355 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) { |
3356 | 0 | NDPR_UNLOCK(pr); |
3357 | 0 | continue; /* XXX */ |
3358 | 0 | } |
3359 | 0 | if (ifp != lo_ifp && pr->ndpr_ifp != ifp) { |
3360 | 0 | NDPR_UNLOCK(pr); |
3361 | 0 | continue; |
3362 | 0 | } |
3363 | | /* do we really have to remove addresses as well? */ |
3364 | 0 | NDPR_ADDREF(pr); |
3365 | 0 | NDPR_UNLOCK(pr); |
3366 | 0 | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
3367 | 0 | bool from_begining = true; |
3368 | 0 | while (from_begining) { |
3369 | 0 | from_begining = false; |
3370 | 0 | TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { |
3371 | 0 | IFA_LOCK(&ia->ia_ifa); |
3372 | 0 | if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) { |
3373 | 0 | IFA_UNLOCK(&ia->ia_ifa); |
3374 | 0 | continue; |
3375 | 0 | } |
3376 | | |
3377 | 0 | if (ia->ia6_ndpr == pr) { |
3378 | 0 | IFA_ADDREF_LOCKED(&ia->ia_ifa); |
3379 | 0 | IFA_UNLOCK(&ia->ia_ifa); |
3380 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
3381 | 0 | lck_mtx_unlock(nd6_mutex); |
3382 | 0 | in6_purgeaddr(&ia->ia_ifa); |
3383 | 0 | IFA_REMREF(&ia->ia_ifa); |
3384 | 0 | lck_mtx_lock(nd6_mutex); |
3385 | 0 | lck_rw_lock_exclusive( |
3386 | 0 | &in6_ifaddr_rwlock); |
3387 | | /* |
3388 | | * Purging the address caused |
3389 | | * in6_ifaddr_rwlock to be |
3390 | | * dropped and |
3391 | | * reacquired; therefore search again |
3392 | | * from the beginning of in6_ifaddrs. |
3393 | | * The same applies for the prefix list. |
3394 | | */ |
3395 | 0 | iterate_pfxlist_again = true; |
3396 | 0 | from_begining = true; |
3397 | 0 | break; |
3398 | 0 | } |
3399 | 0 | IFA_UNLOCK(&ia->ia_ifa); |
3400 | 0 | } |
3401 | 0 | } |
3402 | 0 | lck_rw_done(&in6_ifaddr_rwlock); |
3403 | 0 | NDPR_LOCK(pr); |
3404 | 0 | prelist_remove(pr); |
3405 | 0 | NDPR_UNLOCK(pr); |
3406 | 0 | pfxlist_onlink_check(); |
3407 | 0 | NDPR_REMREF(pr); |
3408 | 0 | if (iterate_pfxlist_again) { |
3409 | 0 | next = nd_prefix.lh_first; |
3410 | 0 | } |
3411 | 0 | } |
3412 | 0 | lck_mtx_unlock(nd6_mutex); |
3413 | 0 | break; |
3414 | 0 | } |
3415 | | |
3416 | 0 | case SIOCSRTRFLUSH_IN6: { /* struct in6_ifreq */ |
3417 | | /* flush all the default routers */ |
3418 | 0 | struct nd_defrouter *next; |
3419 | 0 | struct nd_drhead nd_defrouter_tmp; |
3420 | |
|
3421 | 0 | TAILQ_INIT(&nd_defrouter_tmp); |
3422 | 0 | lck_mtx_lock(nd6_mutex); |
3423 | 0 | if ((dr = TAILQ_FIRST(&nd_defrouter_list)) != NULL) { |
3424 | | /* |
3425 | | * The first entry of the list may be stored in |
3426 | | * the routing table, so we'll delete it later. |
3427 | | */ |
3428 | 0 | for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { |
3429 | 0 | next = TAILQ_NEXT(dr, dr_entry); |
3430 | 0 | if (ifp == lo_ifp || dr->ifp == ifp) { |
3431 | | /* |
3432 | | * Remove the entry from default router list |
3433 | | * and add it to the temp list. |
3434 | | * nd_defrouter_tmp will be a local temporary |
3435 | | * list as no one else can get the same |
3436 | | * removed entry once it is removed from default |
3437 | | * router list. |
3438 | | * Remove the reference after calling defrtrlist_de |
3439 | | */ |
3440 | 0 | TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); |
3441 | 0 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
3442 | 0 | } |
3443 | 0 | } |
3444 | | |
3445 | 0 | dr = TAILQ_FIRST(&nd_defrouter_list); |
3446 | 0 | if (ifp == lo_ifp || |
3447 | 0 | dr->ifp == ifp) { |
3448 | 0 | TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry); |
3449 | 0 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
3450 | 0 | } |
3451 | 0 | } |
3452 | | |
3453 | | /* |
3454 | | * Keep the following separate from the above iteration of |
3455 | | * nd_defrouter because it's not safe to call |
3456 | | * defrtrlist_del while iterating global default |
3457 | | * router list. Global list has to be traversed |
3458 | | * while holding nd6_mutex throughout. |
3459 | | * |
3460 | | * The following call to defrtrlist_del should be |
3461 | | * safe as we are iterating a local list of |
3462 | | * default routers. |
3463 | | */ |
3464 | 0 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, next) { |
3465 | 0 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
3466 | 0 | defrtrlist_del(dr, NULL); |
3467 | 0 | NDDR_REMREF(dr); /* remove list reference */ |
3468 | 0 | } |
3469 | | |
3470 | | /* For now flush RTI routes here as well to avoid any regressions */ |
3471 | 0 | nd6_purge_interface_rti_entries((ifp == lo_ifp) ? NULL : ifp); |
3472 | |
|
3473 | 0 | lck_mtx_unlock(nd6_mutex); |
3474 | 0 | break; |
3475 | 0 | } |
3476 | | |
3477 | 0 | case SIOCGNBRINFO_IN6_32: { /* struct in6_nbrinfo_32 */ |
3478 | 0 | struct llinfo_nd6 *ln; |
3479 | 0 | struct in6_nbrinfo_32 nbi_32; |
3480 | 0 | struct in6_addr nb_addr; /* make local for safety */ |
3481 | |
|
3482 | 0 | bcopy(data, &nbi_32, sizeof(nbi_32)); |
3483 | 0 | nb_addr = nbi_32.addr; |
3484 | | /* |
3485 | | * XXX: KAME specific hack for scoped addresses |
3486 | | * XXXX: for other scopes than link-local? |
3487 | | */ |
3488 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&nbi_32.addr) || |
3489 | 0 | IN6_IS_ADDR_MC_LINKLOCAL(&nbi_32.addr)) { |
3490 | 0 | u_int16_t *idp = |
3491 | 0 | (u_int16_t *)(void *)&nb_addr.s6_addr[2]; |
3492 | |
|
3493 | 0 | if (*idp == 0) { |
3494 | 0 | *idp = htons(ifp->if_index); |
3495 | 0 | } |
3496 | 0 | } |
3497 | | |
3498 | | /* Callee returns a locked route upon success */ |
3499 | 0 | if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { |
3500 | 0 | error = EINVAL; |
3501 | 0 | break; |
3502 | 0 | } |
3503 | 0 | RT_LOCK_ASSERT_HELD(rt); |
3504 | 0 | ln = rt->rt_llinfo; |
3505 | 0 | nbi_32.state = ln->ln_state; |
3506 | 0 | nbi_32.asked = ln->ln_asked; |
3507 | 0 | nbi_32.isrouter = ln->ln_router; |
3508 | 0 | nbi_32.expire = (int)ln_getexpire(ln); |
3509 | 0 | RT_REMREF_LOCKED(rt); |
3510 | 0 | RT_UNLOCK(rt); |
3511 | 0 | bcopy(&nbi_32, data, sizeof(nbi_32)); |
3512 | 0 | break; |
3513 | 0 | } |
3514 | | |
3515 | 0 | case SIOCGNBRINFO_IN6_64: { /* struct in6_nbrinfo_64 */ |
3516 | 0 | struct llinfo_nd6 *ln; |
3517 | 0 | struct in6_nbrinfo_64 nbi_64; |
3518 | 0 | struct in6_addr nb_addr; /* make local for safety */ |
3519 | |
|
3520 | 0 | bcopy(data, &nbi_64, sizeof(nbi_64)); |
3521 | 0 | nb_addr = nbi_64.addr; |
3522 | | /* |
3523 | | * XXX: KAME specific hack for scoped addresses |
3524 | | * XXXX: for other scopes than link-local? |
3525 | | */ |
3526 | 0 | if (IN6_IS_ADDR_LINKLOCAL(&nbi_64.addr) || |
3527 | 0 | IN6_IS_ADDR_MC_LINKLOCAL(&nbi_64.addr)) { |
3528 | 0 | u_int16_t *idp = |
3529 | 0 | (u_int16_t *)(void *)&nb_addr.s6_addr[2]; |
3530 | |
|
3531 | 0 | if (*idp == 0) { |
3532 | 0 | *idp = htons(ifp->if_index); |
3533 | 0 | } |
3534 | 0 | } |
3535 | | |
3536 | | /* Callee returns a locked route upon success */ |
3537 | 0 | if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { |
3538 | 0 | error = EINVAL; |
3539 | 0 | break; |
3540 | 0 | } |
3541 | 0 | RT_LOCK_ASSERT_HELD(rt); |
3542 | 0 | ln = rt->rt_llinfo; |
3543 | 0 | nbi_64.state = ln->ln_state; |
3544 | 0 | nbi_64.asked = ln->ln_asked; |
3545 | 0 | nbi_64.isrouter = ln->ln_router; |
3546 | 0 | nbi_64.expire = (int)ln_getexpire(ln); |
3547 | 0 | RT_REMREF_LOCKED(rt); |
3548 | 0 | RT_UNLOCK(rt); |
3549 | 0 | bcopy(&nbi_64, data, sizeof(nbi_64)); |
3550 | 0 | break; |
3551 | 0 | } |
3552 | | |
3553 | 0 | case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ |
3554 | 0 | case SIOCGDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ |
3555 | 0 | struct in6_ndifreq_64 *ndif_64 = |
3556 | 0 | (struct in6_ndifreq_64 *)(void *)data; |
3557 | 0 | struct in6_ndifreq_32 *ndif_32 = |
3558 | 0 | (struct in6_ndifreq_32 *)(void *)data; |
3559 | |
|
3560 | 0 | if (cmd == SIOCGDEFIFACE_IN6_64) { |
3561 | 0 | u_int64_t j = nd6_defifindex; |
3562 | 0 | __nochk_bcopy(&j, &ndif_64->ifindex, sizeof(j)); |
3563 | 0 | } else { |
3564 | 0 | bcopy(&nd6_defifindex, &ndif_32->ifindex, |
3565 | 0 | sizeof(u_int32_t)); |
3566 | 0 | } |
3567 | 0 | break; |
3568 | 0 | } |
3569 | | |
3570 | 0 | case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ |
3571 | 0 | case SIOCSDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ |
3572 | 0 | struct in6_ndifreq_64 *ndif_64 = |
3573 | 0 | (struct in6_ndifreq_64 *)(void *)data; |
3574 | 0 | struct in6_ndifreq_32 *ndif_32 = |
3575 | 0 | (struct in6_ndifreq_32 *)(void *)data; |
3576 | 0 | u_int32_t idx; |
3577 | |
|
3578 | 0 | if (cmd == SIOCSDEFIFACE_IN6_64) { |
3579 | 0 | u_int64_t j; |
3580 | 0 | __nochk_bcopy(&ndif_64->ifindex, &j, sizeof(j)); |
3581 | 0 | idx = (u_int32_t)j; |
3582 | 0 | } else { |
3583 | 0 | bcopy(&ndif_32->ifindex, &idx, sizeof(idx)); |
3584 | 0 | } |
3585 | |
|
3586 | 0 | error = nd6_setdefaultiface(idx); |
3587 | 0 | return error; |
3588 | | /* NOTREACHED */ |
3589 | 0 | } |
3590 | 0 | case SIOCGIFCGAPREP_IN6_32: |
3591 | 0 | case SIOCGIFCGAPREP_IN6_64: { |
3592 | | /* get CGA parameters */ |
3593 | 0 | union { |
3594 | 0 | struct in6_cgareq_32 *cga32; |
3595 | 0 | struct in6_cgareq_64 *cga64; |
3596 | 0 | void *data; |
3597 | 0 | } cgareq_u; |
3598 | 0 | struct nd_ifinfo *ndi; |
3599 | 0 | struct in6_cga_modifier *ndi_cga_mod; |
3600 | 0 | struct in6_cga_modifier *req_cga_mod; |
3601 | |
|
3602 | 0 | ndi = ND_IFINFO(ifp); |
3603 | 0 | if ((NULL == ndi) || !ndi->initialized) { |
3604 | 0 | error = EINVAL; |
3605 | 0 | break; |
3606 | 0 | } |
3607 | 0 | cgareq_u.data = data; |
3608 | 0 | req_cga_mod = (cmd == SIOCGIFCGAPREP_IN6_64) |
3609 | 0 | ? &(cgareq_u.cga64->cgar_cgaprep.cga_modifier) |
3610 | 0 | : &(cgareq_u.cga32->cgar_cgaprep.cga_modifier); |
3611 | 0 | lck_mtx_lock(&ndi->lock); |
3612 | 0 | ndi_cga_mod = &(ndi->local_cga_modifier); |
3613 | 0 | bcopy(ndi_cga_mod, req_cga_mod, sizeof(*req_cga_mod)); |
3614 | 0 | lck_mtx_unlock(&ndi->lock); |
3615 | 0 | break; |
3616 | 0 | } |
3617 | 0 | case SIOCSIFCGAPREP_IN6_32: |
3618 | 0 | case SIOCSIFCGAPREP_IN6_64: |
3619 | 0 | { |
3620 | | /* set CGA parameters */ |
3621 | 0 | struct in6_cgareq cgareq; |
3622 | 0 | int is64; |
3623 | 0 | struct nd_ifinfo *ndi; |
3624 | 0 | struct in6_cga_modifier *ndi_cga_mod; |
3625 | 0 | struct in6_cga_modifier *req_cga_mod; |
3626 | |
|
3627 | 0 | ndi = ND_IFINFO(ifp); |
3628 | 0 | if ((NULL == ndi) || !ndi->initialized) { |
3629 | 0 | error = EINVAL; |
3630 | 0 | break; |
3631 | 0 | } |
3632 | 0 | is64 = (cmd == SIOCSIFCGAPREP_IN6_64); |
3633 | 0 | in6_cgareq_copy_from_user(data, is64, &cgareq); |
3634 | 0 | req_cga_mod = &cgareq.cgar_cgaprep.cga_modifier; |
3635 | 0 | lck_mtx_lock(&ndi->lock); |
3636 | 0 | ndi_cga_mod = &(ndi->local_cga_modifier); |
3637 | 0 | bcopy(req_cga_mod, ndi_cga_mod, sizeof(*ndi_cga_mod)); |
3638 | 0 | ndi->cga_initialized = TRUE; |
3639 | 0 | ndi->cga_collision_count = 0; |
3640 | 0 | lck_mtx_unlock(&ndi->lock); |
3641 | 0 | break; |
3642 | 0 | } |
3643 | 0 | default: |
3644 | 0 | break; |
3645 | 0 | } |
3646 | 0 | return error; |
3647 | 0 | } |
3648 | | |
3649 | | /* |
3650 | | * Create neighbor cache entry and cache link-layer address, |
3651 | | * on reception of inbound ND6 packets. (RS/RA/NS/redirect) |
3652 | | */ |
3653 | | void |
3654 | | nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, |
3655 | | int lladdrlen, int type, int code) |
3656 | 4.23k | { |
3657 | 4.23k | #pragma unused(lladdrlen) |
3658 | 4.23k | struct rtentry *rt = NULL; |
3659 | 4.23k | struct llinfo_nd6 *ln = NULL; |
3660 | 4.23k | int is_newentry; |
3661 | 4.23k | struct sockaddr_dl *sdl = NULL; |
3662 | 4.23k | int do_update; |
3663 | 4.23k | int olladdr; |
3664 | 4.23k | int llchange; |
3665 | 4.23k | short newstate = 0; |
3666 | 4.23k | uint64_t timenow; |
3667 | 4.23k | boolean_t sched_timeout = FALSE; |
3668 | 4.23k | struct nd_ifinfo *ndi = NULL; |
3669 | | |
3670 | 4.23k | if (ifp == NULL) { |
3671 | 0 | panic("ifp == NULL in nd6_cache_lladdr"); |
3672 | 0 | } |
3673 | 4.23k | if (from == NULL) { |
3674 | 0 | panic("from == NULL in nd6_cache_lladdr"); |
3675 | 0 | } |
3676 | | |
3677 | | /* nothing must be updated for unspecified address */ |
3678 | 4.23k | if (IN6_IS_ADDR_UNSPECIFIED(from)) { |
3679 | 0 | return; |
3680 | 0 | } |
3681 | | |
3682 | | /* |
3683 | | * Validation about ifp->if_addrlen and lladdrlen must be done in |
3684 | | * the caller. |
3685 | | */ |
3686 | 4.23k | timenow = net_uptime(); |
3687 | | |
3688 | 4.23k | rt = nd6_lookup(from, 0, ifp, 0); |
3689 | 4.23k | if (rt == NULL) { |
3690 | 21 | if ((rt = nd6_lookup(from, 1, ifp, 0)) == NULL) { |
3691 | 0 | return; |
3692 | 0 | } |
3693 | 21 | RT_LOCK_ASSERT_HELD(rt); |
3694 | 21 | is_newentry = 1; |
3695 | 4.21k | } else { |
3696 | 4.21k | RT_LOCK_ASSERT_HELD(rt); |
3697 | | /* do nothing if static ndp is set */ |
3698 | 4.21k | if (rt->rt_flags & RTF_STATIC) { |
3699 | 0 | RT_REMREF_LOCKED(rt); |
3700 | 0 | RT_UNLOCK(rt); |
3701 | 0 | return; |
3702 | 0 | } |
3703 | 4.21k | is_newentry = 0; |
3704 | 4.21k | } |
3705 | | |
3706 | 4.23k | if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { |
3707 | 0 | fail: |
3708 | 0 | RT_UNLOCK(rt); |
3709 | 0 | nd6_free(rt); |
3710 | 0 | rtfree(rt); |
3711 | 0 | return; |
3712 | 0 | } |
3713 | 4.23k | ln = (struct llinfo_nd6 *)rt->rt_llinfo; |
3714 | 4.23k | if (ln == NULL) { |
3715 | 0 | goto fail; |
3716 | 0 | } |
3717 | 4.23k | if (rt->rt_gateway == NULL) { |
3718 | 0 | goto fail; |
3719 | 0 | } |
3720 | 4.23k | if (rt->rt_gateway->sa_family != AF_LINK) { |
3721 | 0 | goto fail; |
3722 | 0 | } |
3723 | 4.23k | sdl = SDL(rt->rt_gateway); |
3724 | | |
3725 | 4.23k | olladdr = (sdl->sdl_alen) ? 1 : 0; |
3726 | 4.23k | if (olladdr && lladdr) { |
3727 | 0 | if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) { |
3728 | 0 | llchange = 1; |
3729 | 0 | } else { |
3730 | 0 | llchange = 0; |
3731 | 0 | } |
3732 | 4.23k | } else { |
3733 | 4.23k | llchange = 0; |
3734 | 4.23k | } |
3735 | | |
3736 | | /* |
3737 | | * newentry olladdr lladdr llchange (*=record) |
3738 | | * 0 n n -- (1) |
3739 | | * 0 y n -- (2) |
3740 | | * 0 n y -- (3) * STALE |
3741 | | * 0 y y n (4) * |
3742 | | * 0 y y y (5) * STALE |
3743 | | * 1 -- n -- (6) NOSTATE(= PASSIVE) |
3744 | | * 1 -- y -- (7) * STALE |
3745 | | */ |
3746 | | |
3747 | 4.23k | if (lladdr != NULL) { /* (3-5) and (7) */ |
3748 | | /* |
3749 | | * Record source link-layer address |
3750 | | * XXX is it dependent to ifp->if_type? |
3751 | | */ |
3752 | 3.75k | sdl->sdl_alen = ifp->if_addrlen; |
3753 | 3.75k | bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); |
3754 | | |
3755 | | /* cache the gateway (sender HW) address */ |
3756 | 3.75k | nd6_llreach_alloc(rt, ifp, LLADDR(sdl), sdl->sdl_alen, FALSE); |
3757 | 3.75k | } |
3758 | | |
3759 | 4.23k | if (is_newentry == 0) { |
3760 | 4.21k | if ((!olladdr && lladdr != NULL) || /* (3) */ |
3761 | 4.21k | (olladdr && lladdr != NULL && llchange)) { /* (5) */ |
3762 | 3.74k | do_update = 1; |
3763 | 3.74k | newstate = ND6_LLINFO_STALE; |
3764 | 3.74k | } else { /* (1-2,4) */ |
3765 | 467 | do_update = 0; |
3766 | 467 | } |
3767 | 4.21k | } else { |
3768 | 21 | do_update = 1; |
3769 | 21 | if (lladdr == NULL) { /* (6) */ |
3770 | 9 | newstate = ND6_LLINFO_NOSTATE; |
3771 | 12 | } else { /* (7) */ |
3772 | 12 | newstate = ND6_LLINFO_STALE; |
3773 | 12 | } |
3774 | 21 | } |
3775 | | |
3776 | | /* |
3777 | | * For interface's that do not perform NUD |
3778 | | * neighbor cache entres must always be marked |
3779 | | * reachable with no expiry |
3780 | | */ |
3781 | 4.23k | ndi = ND_IFINFO(ifp); |
3782 | 4.23k | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
3783 | | |
3784 | 4.23k | if (ndi && !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
3785 | 0 | newstate = ND6_LLINFO_REACHABLE; |
3786 | 0 | ln_setexpire(ln, 0); |
3787 | 0 | } |
3788 | | |
3789 | 4.23k | if (do_update) { |
3790 | | /* |
3791 | | * Update the state of the neighbor cache. |
3792 | | */ |
3793 | 3.76k | ND6_CACHE_STATE_TRANSITION(ln, newstate); |
3794 | | |
3795 | 3.76k | if ((ln->ln_state == ND6_LLINFO_STALE) || |
3796 | 3.76k | (ln->ln_state == ND6_LLINFO_REACHABLE)) { |
3797 | 3.75k | struct mbuf *m = ln->ln_hold; |
3798 | | /* |
3799 | | * XXX: since nd6_output() below will cause |
3800 | | * state tansition to DELAY and reset the timer, |
3801 | | * we must set the timer now, although it is actually |
3802 | | * meaningless. |
3803 | | */ |
3804 | 3.75k | if (ln->ln_state == ND6_LLINFO_STALE) { |
3805 | 3.75k | ln_setexpire(ln, timenow + nd6_gctimer); |
3806 | 3.75k | } |
3807 | | |
3808 | 3.75k | ln->ln_hold = NULL; |
3809 | 3.75k | if (m != NULL) { |
3810 | 0 | struct sockaddr_in6 sin6; |
3811 | |
|
3812 | 0 | rtkey_to_sa6(rt, &sin6); |
3813 | | /* |
3814 | | * we assume ifp is not a p2p here, so just |
3815 | | * set the 2nd argument as the 1st one. |
3816 | | */ |
3817 | 0 | RT_UNLOCK(rt); |
3818 | 0 | nd6_output_list(ifp, ifp, m, &sin6, rt, NULL); |
3819 | 0 | RT_LOCK(rt); |
3820 | 0 | } |
3821 | 3.75k | } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { |
3822 | | /* probe right away */ |
3823 | 0 | ln_setexpire(ln, timenow); |
3824 | 0 | sched_timeout = TRUE; |
3825 | 0 | } |
3826 | 3.76k | } |
3827 | | |
3828 | | /* |
3829 | | * ICMP6 type dependent behavior. |
3830 | | * |
3831 | | * NS: clear IsRouter if new entry |
3832 | | * RS: clear IsRouter |
3833 | | * RA: set IsRouter if there's lladdr |
3834 | | * redir: clear IsRouter if new entry |
3835 | | * |
3836 | | * RA case, (1): |
3837 | | * The spec says that we must set IsRouter in the following cases: |
3838 | | * - If lladdr exist, set IsRouter. This means (1-5). |
3839 | | * - If it is old entry (!newentry), set IsRouter. This means (7). |
3840 | | * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. |
3841 | | * A quetion arises for (1) case. (1) case has no lladdr in the |
3842 | | * neighbor cache, this is similar to (6). |
3843 | | * This case is rare but we figured that we MUST NOT set IsRouter. |
3844 | | * |
3845 | | * newentry olladdr lladdr llchange NS RS RA redir |
3846 | | * D R |
3847 | | * 0 n n -- (1) c ? s |
3848 | | * 0 y n -- (2) c s s |
3849 | | * 0 n y -- (3) c s s |
3850 | | * 0 y y n (4) c s s |
3851 | | * 0 y y y (5) c s s |
3852 | | * 1 -- n -- (6) c c c s |
3853 | | * 1 -- y -- (7) c c s c s |
3854 | | * |
3855 | | * (c=clear s=set) |
3856 | | */ |
3857 | 4.23k | switch (type & 0xff) { |
3858 | 4.23k | case ND_NEIGHBOR_SOLICIT: |
3859 | | /* |
3860 | | * New entry must have is_router flag cleared. |
3861 | | */ |
3862 | 4.23k | if (is_newentry) { /* (6-7) */ |
3863 | 21 | ln->ln_router = 0; |
3864 | 21 | } |
3865 | 4.23k | break; |
3866 | 0 | case ND_REDIRECT: |
3867 | | /* |
3868 | | * If the ICMP message is a Redirect to a better router, always |
3869 | | * set the is_router flag. Otherwise, if the entry is newly |
3870 | | * created, then clear the flag. [RFC 4861, sec 8.3] |
3871 | | */ |
3872 | 0 | if (code == ND_REDIRECT_ROUTER) { |
3873 | 0 | ln->ln_router = 1; |
3874 | 0 | } else if (is_newentry) { /* (6-7) */ |
3875 | 0 | ln->ln_router = 0; |
3876 | 0 | } |
3877 | 0 | break; |
3878 | 0 | case ND_ROUTER_SOLICIT: |
3879 | | /* |
3880 | | * is_router flag must always be cleared. |
3881 | | */ |
3882 | 0 | ln->ln_router = 0; |
3883 | 0 | break; |
3884 | 0 | case ND_ROUTER_ADVERT: |
3885 | | /* |
3886 | | * Mark an entry with lladdr as a router. |
3887 | | */ |
3888 | 0 | if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ |
3889 | 0 | (is_newentry && lladdr)) { /* (7) */ |
3890 | 0 | ln->ln_router = 1; |
3891 | 0 | } |
3892 | 0 | break; |
3893 | 4.23k | } |
3894 | | |
3895 | 4.23k | if (do_update) { |
3896 | 3.76k | int route_ev_code = 0; |
3897 | | |
3898 | 3.76k | if (llchange) { |
3899 | 0 | route_ev_code = ROUTE_LLENTRY_CHANGED; |
3900 | 3.76k | } else { |
3901 | 3.76k | route_ev_code = ROUTE_LLENTRY_RESOLVED; |
3902 | 3.76k | } |
3903 | | |
3904 | | /* Enqueue work item to invoke callback for this route entry */ |
3905 | 3.76k | route_event_enqueue_nwk_wq_entry(rt, NULL, route_ev_code, NULL, TRUE); |
3906 | | |
3907 | 3.76k | if (ln->ln_router || (rt->rt_flags & RTF_ROUTER)) { |
3908 | 586 | struct radix_node_head *rnh = NULL; |
3909 | 586 | struct route_event rt_ev; |
3910 | 586 | route_event_init(&rt_ev, rt, NULL, llchange ? ROUTE_LLENTRY_CHANGED : |
3911 | 586 | ROUTE_LLENTRY_RESOLVED); |
3912 | | /* |
3913 | | * We already have a valid reference on rt. |
3914 | | * The function frees that before returning. |
3915 | | * We therefore don't need an extra reference here |
3916 | | */ |
3917 | 586 | RT_UNLOCK(rt); |
3918 | 586 | lck_mtx_lock(rnh_lock); |
3919 | | |
3920 | 586 | rnh = rt_tables[AF_INET6]; |
3921 | 586 | if (rnh != NULL) { |
3922 | 586 | (void) rnh->rnh_walktree(rnh, route_event_walktree, |
3923 | 586 | (void *)&rt_ev); |
3924 | 586 | } |
3925 | 586 | lck_mtx_unlock(rnh_lock); |
3926 | 586 | RT_LOCK(rt); |
3927 | 586 | } |
3928 | 3.76k | } |
3929 | | |
3930 | | /* |
3931 | | * When the link-layer address of a router changes, select the |
3932 | | * best router again. In particular, when the neighbor entry is newly |
3933 | | * created, it might affect the selection policy. |
3934 | | * Question: can we restrict the first condition to the "is_newentry" |
3935 | | * case? |
3936 | | * |
3937 | | * Note: Perform default router selection even when we are a router, |
3938 | | * if Scoped Routing is enabled. |
3939 | | */ |
3940 | 4.23k | if (do_update && ln->ln_router) { |
3941 | | /* |
3942 | | * XXX TODO: This should also be iterated over router list |
3943 | | * for route information option's router lists as well. |
3944 | | */ |
3945 | 586 | RT_REMREF_LOCKED(rt); |
3946 | 586 | RT_UNLOCK(rt); |
3947 | 586 | lck_mtx_lock(nd6_mutex); |
3948 | 586 | defrouter_select(ifp, NULL); |
3949 | 586 | nd6_router_select_rti_entries(ifp); |
3950 | 586 | lck_mtx_unlock(nd6_mutex); |
3951 | 3.64k | } else { |
3952 | 3.64k | RT_REMREF_LOCKED(rt); |
3953 | 3.64k | RT_UNLOCK(rt); |
3954 | 3.64k | } |
3955 | 4.23k | if (sched_timeout) { |
3956 | 0 | lck_mtx_lock(rnh_lock); |
3957 | 0 | nd6_sched_timeout(NULL, NULL); |
3958 | 0 | lck_mtx_unlock(rnh_lock); |
3959 | 0 | } |
3960 | 4.23k | } |
3961 | | |
3962 | | void |
3963 | | nd6_slowtimo(void *arg) |
3964 | 408k | { |
3965 | 408k | #pragma unused(arg) |
3966 | 408k | struct nd_ifinfo *nd6if = NULL; |
3967 | 408k | struct ifnet *ifp = NULL; |
3968 | | |
3969 | 408k | ifnet_head_lock_shared(); |
3970 | 1.22M | for (ifp = ifnet_head.tqh_first; ifp; |
3971 | 817k | ifp = ifp->if_link.tqe_next) { |
3972 | 817k | nd6if = ND_IFINFO(ifp); |
3973 | 817k | if ((NULL == nd6if) || (FALSE == nd6if->initialized)) { |
3974 | 408k | continue; |
3975 | 408k | } |
3976 | | |
3977 | 408k | lck_mtx_lock(&nd6if->lock); |
3978 | 408k | if (nd6if->basereachable && /* already initialized */ |
3979 | 408k | (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { |
3980 | | /* |
3981 | | * Since reachable time rarely changes by router |
3982 | | * advertisements, we SHOULD insure that a new random |
3983 | | * value gets recomputed at least once every few hours. |
3984 | | * (RFC 4861, 6.3.4) |
3985 | | */ |
3986 | 204k | nd6if->recalctm = nd6_recalc_reachtm_interval; |
3987 | 204k | nd6if->reachable = |
3988 | 204k | ND_COMPUTE_RTIME(nd6if->basereachable); |
3989 | 204k | } |
3990 | 408k | lck_mtx_unlock(&nd6if->lock); |
3991 | 408k | } |
3992 | 408k | ifnet_head_done(); |
3993 | | // timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); |
3994 | 408k | } |
3995 | | |
3996 | | int |
3997 | | nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, |
3998 | | struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) |
3999 | 0 | { |
4000 | 0 | return nd6_output_list(ifp, origifp, m0, dst, hint0, adv); |
4001 | 0 | } |
4002 | | |
4003 | | /* |
4004 | | * nd6_output_list() |
4005 | | * |
4006 | | * Assumption: route determination for first packet can be correctly applied to |
4007 | | * all packets in the chain. |
4008 | | */ |
4009 | 0 | #define senderr(e) { error = (e); goto bad; } |
4010 | | int |
4011 | | nd6_output_list(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, |
4012 | | struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) |
4013 | 11.7k | { |
4014 | 11.7k | struct rtentry *rt = hint0, *hint = hint0; |
4015 | 11.7k | struct llinfo_nd6 *ln = NULL; |
4016 | 11.7k | int error = 0; |
4017 | 11.7k | uint64_t timenow; |
4018 | 11.7k | struct rtentry *rtrele = NULL; |
4019 | 11.7k | struct nd_ifinfo *ndi = NULL; |
4020 | | |
4021 | 11.7k | if (rt != NULL) { |
4022 | 11.7k | RT_LOCK_SPIN(rt); |
4023 | 11.7k | RT_ADDREF_LOCKED(rt); |
4024 | 11.7k | } |
4025 | | |
4026 | 11.7k | if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr) || !nd6_need_cache(ifp)) { |
4027 | 11.7k | if (rt != NULL) { |
4028 | 11.7k | RT_UNLOCK(rt); |
4029 | 11.7k | } |
4030 | 11.7k | goto sendpkt; |
4031 | 11.7k | } |
4032 | | |
4033 | | /* |
4034 | | * Next hop determination. Because we may involve the gateway route |
4035 | | * in addition to the original route, locking is rather complicated. |
4036 | | * The general concept is that regardless of whether the route points |
4037 | | * to the original route or to the gateway route, this routine takes |
4038 | | * an extra reference on such a route. This extra reference will be |
4039 | | * released at the end. |
4040 | | * |
4041 | | * Care must be taken to ensure that the "hint0" route never gets freed |
4042 | | * via rtfree(), since the caller may have stored it inside a struct |
4043 | | * route with a reference held for that placeholder. |
4044 | | * |
4045 | | * This logic is similar to, though not exactly the same as the one |
4046 | | * used by route_to_gwroute(). |
4047 | | */ |
4048 | 0 | if (rt != NULL) { |
4049 | | /* |
4050 | | * We have a reference to "rt" by now (or below via rtalloc1), |
4051 | | * which will either be released or freed at the end of this |
4052 | | * routine. |
4053 | | */ |
4054 | 0 | RT_LOCK_ASSERT_HELD(rt); |
4055 | 0 | if (!(rt->rt_flags & RTF_UP)) { |
4056 | 0 | RT_REMREF_LOCKED(rt); |
4057 | 0 | RT_UNLOCK(rt); |
4058 | 0 | if ((hint = rt = rtalloc1_scoped(SA(dst), 1, 0, |
4059 | 0 | ifp->if_index)) != NULL) { |
4060 | 0 | RT_LOCK_SPIN(rt); |
4061 | 0 | if (rt->rt_ifp != ifp) { |
4062 | | /* XXX: loop care? */ |
4063 | 0 | RT_UNLOCK(rt); |
4064 | 0 | error = nd6_output_list(ifp, origifp, m0, |
4065 | 0 | dst, rt, adv); |
4066 | 0 | rtfree(rt); |
4067 | 0 | return error; |
4068 | 0 | } |
4069 | 0 | } else { |
4070 | 0 | senderr(EHOSTUNREACH); |
4071 | 0 | } |
4072 | 0 | } |
4073 | | |
4074 | 0 | if (rt->rt_flags & RTF_GATEWAY) { |
4075 | 0 | struct rtentry *gwrt; |
4076 | 0 | struct in6_ifaddr *ia6 = NULL; |
4077 | 0 | struct sockaddr_in6 gw6; |
4078 | |
|
4079 | 0 | rtgw_to_sa6(rt, &gw6); |
4080 | | /* |
4081 | | * Must drop rt_lock since nd6_is_addr_neighbor() |
4082 | | * calls nd6_lookup() and acquires rnh_lock. |
4083 | | */ |
4084 | 0 | RT_UNLOCK(rt); |
4085 | | |
4086 | | /* |
4087 | | * We skip link-layer address resolution and NUD |
4088 | | * if the gateway is not a neighbor from ND point |
4089 | | * of view, regardless of the value of nd_ifinfo.flags. |
4090 | | * The second condition is a bit tricky; we skip |
4091 | | * if the gateway is our own address, which is |
4092 | | * sometimes used to install a route to a p2p link. |
4093 | | */ |
4094 | 0 | if (!nd6_is_addr_neighbor(&gw6, ifp, 0) || |
4095 | 0 | (ia6 = in6ifa_ifpwithaddr(ifp, &gw6.sin6_addr))) { |
4096 | | /* |
4097 | | * We allow this kind of tricky route only |
4098 | | * when the outgoing interface is p2p. |
4099 | | * XXX: we may need a more generic rule here. |
4100 | | */ |
4101 | 0 | if (ia6 != NULL) { |
4102 | 0 | IFA_REMREF(&ia6->ia_ifa); |
4103 | 0 | } |
4104 | 0 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { |
4105 | 0 | senderr(EHOSTUNREACH); |
4106 | 0 | } |
4107 | 0 | goto sendpkt; |
4108 | 0 | } |
4109 | | |
4110 | 0 | RT_LOCK_SPIN(rt); |
4111 | 0 | gw6 = *(SIN6(rt->rt_gateway)); |
4112 | | |
4113 | | /* If hint is now down, give up */ |
4114 | 0 | if (!(rt->rt_flags & RTF_UP)) { |
4115 | 0 | RT_UNLOCK(rt); |
4116 | 0 | senderr(EHOSTUNREACH); |
4117 | 0 | } |
4118 | | |
4119 | | /* If there's no gateway route, look it up */ |
4120 | 0 | if ((gwrt = rt->rt_gwroute) == NULL) { |
4121 | 0 | RT_UNLOCK(rt); |
4122 | 0 | goto lookup; |
4123 | 0 | } |
4124 | | /* Become a regular mutex */ |
4125 | 0 | RT_CONVERT_LOCK(rt); |
4126 | | |
4127 | | /* |
4128 | | * Take gwrt's lock while holding route's lock; |
4129 | | * this is okay since gwrt never points back |
4130 | | * to rt, so no lock ordering issues. |
4131 | | */ |
4132 | 0 | RT_LOCK_SPIN(gwrt); |
4133 | 0 | if (!(gwrt->rt_flags & RTF_UP)) { |
4134 | 0 | rt->rt_gwroute = NULL; |
4135 | 0 | RT_UNLOCK(gwrt); |
4136 | 0 | RT_UNLOCK(rt); |
4137 | 0 | rtfree(gwrt); |
4138 | 0 | lookup: |
4139 | 0 | lck_mtx_lock(rnh_lock); |
4140 | 0 | gwrt = rtalloc1_scoped_locked(SA(&gw6), 1, 0, |
4141 | 0 | ifp->if_index); |
4142 | |
|
4143 | 0 | RT_LOCK(rt); |
4144 | | /* |
4145 | | * Bail out if the route is down, no route |
4146 | | * to gateway, circular route, or if the |
4147 | | * gateway portion of "rt" has changed. |
4148 | | */ |
4149 | 0 | if (!(rt->rt_flags & RTF_UP) || |
4150 | 0 | gwrt == NULL || gwrt == rt || |
4151 | 0 | !equal(SA(&gw6), rt->rt_gateway)) { |
4152 | 0 | if (gwrt == rt) { |
4153 | 0 | RT_REMREF_LOCKED(gwrt); |
4154 | 0 | gwrt = NULL; |
4155 | 0 | } |
4156 | 0 | RT_UNLOCK(rt); |
4157 | 0 | if (gwrt != NULL) { |
4158 | 0 | rtfree_locked(gwrt); |
4159 | 0 | } |
4160 | 0 | lck_mtx_unlock(rnh_lock); |
4161 | 0 | senderr(EHOSTUNREACH); |
4162 | 0 | } |
4163 | 0 | VERIFY(gwrt != NULL); |
4164 | | /* |
4165 | | * Set gateway route; callee adds ref to gwrt; |
4166 | | * gwrt has an extra ref from rtalloc1() for |
4167 | | * this routine. |
4168 | | */ |
4169 | 0 | rt_set_gwroute(rt, rt_key(rt), gwrt); |
4170 | 0 | RT_UNLOCK(rt); |
4171 | 0 | lck_mtx_unlock(rnh_lock); |
4172 | | /* Remember to release/free "rt" at the end */ |
4173 | 0 | rtrele = rt; |
4174 | 0 | rt = gwrt; |
4175 | 0 | } else { |
4176 | 0 | RT_ADDREF_LOCKED(gwrt); |
4177 | 0 | RT_UNLOCK(gwrt); |
4178 | 0 | RT_UNLOCK(rt); |
4179 | | /* Remember to release/free "rt" at the end */ |
4180 | 0 | rtrele = rt; |
4181 | 0 | rt = gwrt; |
4182 | 0 | } |
4183 | 0 | VERIFY(rt == gwrt); |
4184 | | |
4185 | | /* |
4186 | | * This is an opportunity to revalidate the parent |
4187 | | * route's gwroute, in case it now points to a dead |
4188 | | * route entry. Parent route won't go away since the |
4189 | | * clone (hint) holds a reference to it. rt == gwrt. |
4190 | | */ |
4191 | 0 | RT_LOCK_SPIN(hint); |
4192 | 0 | if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) == |
4193 | 0 | (RTF_WASCLONED | RTF_UP)) { |
4194 | 0 | struct rtentry *prt = hint->rt_parent; |
4195 | 0 | VERIFY(prt != NULL); |
4196 | | |
4197 | 0 | RT_CONVERT_LOCK(hint); |
4198 | 0 | RT_ADDREF(prt); |
4199 | 0 | RT_UNLOCK(hint); |
4200 | 0 | rt_revalidate_gwroute(prt, rt); |
4201 | 0 | RT_REMREF(prt); |
4202 | 0 | } else { |
4203 | 0 | RT_UNLOCK(hint); |
4204 | 0 | } |
4205 | | |
4206 | 0 | RT_LOCK_SPIN(rt); |
4207 | | /* rt == gwrt; if it is now down, give up */ |
4208 | 0 | if (!(rt->rt_flags & RTF_UP)) { |
4209 | 0 | RT_UNLOCK(rt); |
4210 | 0 | rtfree(rt); |
4211 | 0 | rt = NULL; |
4212 | | /* "rtrele" == original "rt" */ |
4213 | 0 | senderr(EHOSTUNREACH); |
4214 | 0 | } |
4215 | 0 | } |
4216 | | |
4217 | | /* Become a regular mutex */ |
4218 | 0 | RT_CONVERT_LOCK(rt); |
4219 | 0 | } |
4220 | | |
4221 | | /* |
4222 | | * Address resolution or Neighbor Unreachability Detection |
4223 | | * for the next hop. |
4224 | | * At this point, the destination of the packet must be a unicast |
4225 | | * or an anycast address(i.e. not a multicast). |
4226 | | */ |
4227 | | |
4228 | | /* Look up the neighbor cache for the nexthop */ |
4229 | 0 | if (rt && (rt->rt_flags & RTF_LLINFO) != 0) { |
4230 | 0 | ln = rt->rt_llinfo; |
4231 | 0 | } else { |
4232 | 0 | struct sockaddr_in6 sin6; |
4233 | | /* |
4234 | | * Clear out Scope ID field in case it is set. |
4235 | | */ |
4236 | 0 | sin6 = *dst; |
4237 | 0 | sin6.sin6_scope_id = 0; |
4238 | | /* |
4239 | | * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), |
4240 | | * the condition below is not very efficient. But we believe |
4241 | | * it is tolerable, because this should be a rare case. |
4242 | | * Must drop rt_lock since nd6_is_addr_neighbor() calls |
4243 | | * nd6_lookup() and acquires rnh_lock. |
4244 | | */ |
4245 | 0 | if (rt != NULL) { |
4246 | 0 | RT_UNLOCK(rt); |
4247 | 0 | } |
4248 | 0 | if (nd6_is_addr_neighbor(&sin6, ifp, 0)) { |
4249 | | /* "rtrele" may have been used, so clean up "rt" now */ |
4250 | 0 | if (rt != NULL) { |
4251 | | /* Don't free "hint0" */ |
4252 | 0 | if (rt == hint0) { |
4253 | 0 | RT_REMREF(rt); |
4254 | 0 | } else { |
4255 | 0 | rtfree(rt); |
4256 | 0 | } |
4257 | 0 | } |
4258 | | /* Callee returns a locked route upon success */ |
4259 | 0 | rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 0); |
4260 | 0 | if (rt != NULL) { |
4261 | 0 | RT_LOCK_ASSERT_HELD(rt); |
4262 | 0 | ln = rt->rt_llinfo; |
4263 | 0 | } |
4264 | 0 | } else if (rt != NULL) { |
4265 | 0 | RT_LOCK(rt); |
4266 | 0 | } |
4267 | 0 | } |
4268 | |
|
4269 | 0 | if (!ln || !rt) { |
4270 | 0 | if (rt != NULL) { |
4271 | 0 | RT_UNLOCK(rt); |
4272 | 0 | } |
4273 | 0 | ndi = ND_IFINFO(ifp); |
4274 | 0 | VERIFY(ndi != NULL && ndi->initialized); |
4275 | 0 | lck_mtx_lock(&ndi->lock); |
4276 | 0 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && |
4277 | 0 | !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
4278 | 0 | lck_mtx_unlock(&ndi->lock); |
4279 | 0 | log(LOG_DEBUG, |
4280 | 0 | "nd6_output: can't allocate llinfo for %s " |
4281 | 0 | "(ln=0x%llx, rt=0x%llx)\n", |
4282 | 0 | ip6_sprintf(&dst->sin6_addr), |
4283 | 0 | (uint64_t)VM_KERNEL_ADDRPERM(ln), |
4284 | 0 | (uint64_t)VM_KERNEL_ADDRPERM(rt)); |
4285 | 0 | senderr(EIO); /* XXX: good error? */ |
4286 | 0 | } |
4287 | 0 | lck_mtx_unlock(&ndi->lock); |
4288 | |
|
4289 | 0 | goto sendpkt; /* send anyway */ |
4290 | 0 | } |
4291 | | |
4292 | 0 | net_update_uptime(); |
4293 | 0 | timenow = net_uptime(); |
4294 | | |
4295 | | /* We don't have to do link-layer address resolution on a p2p link. */ |
4296 | 0 | if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && |
4297 | 0 | ln->ln_state < ND6_LLINFO_REACHABLE) { |
4298 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); |
4299 | 0 | ln_setexpire(ln, timenow + nd6_gctimer); |
4300 | 0 | } |
4301 | | |
4302 | | /* |
4303 | | * The first time we send a packet to a neighbor whose entry is |
4304 | | * STALE, we have to change the state to DELAY and a sets a timer to |
4305 | | * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do |
4306 | | * neighbor unreachability detection on expiration. |
4307 | | * (RFC 4861 7.3.3) |
4308 | | */ |
4309 | 0 | if (ln->ln_state == ND6_LLINFO_STALE) { |
4310 | 0 | ln->ln_asked = 0; |
4311 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_DELAY); |
4312 | 0 | ln_setexpire(ln, timenow + nd6_delay); |
4313 | | /* N.B.: we will re-arm the timer below. */ |
4314 | 0 | _CASSERT(ND6_LLINFO_DELAY > ND6_LLINFO_INCOMPLETE); |
4315 | 0 | } |
4316 | | |
4317 | | /* |
4318 | | * If the neighbor cache entry has a state other than INCOMPLETE |
4319 | | * (i.e. its link-layer address is already resolved), just |
4320 | | * send the packet. |
4321 | | */ |
4322 | 0 | if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { |
4323 | 0 | RT_UNLOCK(rt); |
4324 | | /* |
4325 | | * Move this entry to the head of the queue so that it is |
4326 | | * less likely for this entry to be a target of forced |
4327 | | * garbage collection (see nd6_rtrequest()). Do this only |
4328 | | * if the entry is non-permanent (as permanent ones will |
4329 | | * never be purged), and if the number of active entries |
4330 | | * is at least half of the threshold. |
4331 | | */ |
4332 | 0 | if (ln->ln_state == ND6_LLINFO_DELAY || |
4333 | 0 | (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
4334 | 0 | nd6_inuse >= (ip6_neighborgcthresh >> 1))) { |
4335 | 0 | lck_mtx_lock(rnh_lock); |
4336 | 0 | if (ln->ln_state == ND6_LLINFO_DELAY) { |
4337 | 0 | nd6_sched_timeout(NULL, NULL); |
4338 | 0 | } |
4339 | 0 | if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
4340 | 0 | nd6_inuse >= (ip6_neighborgcthresh >> 1)) { |
4341 | 0 | RT_LOCK_SPIN(rt); |
4342 | 0 | if (ln->ln_flags & ND6_LNF_IN_USE) { |
4343 | 0 | LN_DEQUEUE(ln); |
4344 | 0 | LN_INSERTHEAD(ln); |
4345 | 0 | } |
4346 | 0 | RT_UNLOCK(rt); |
4347 | 0 | } |
4348 | 0 | lck_mtx_unlock(rnh_lock); |
4349 | 0 | } |
4350 | 0 | goto sendpkt; |
4351 | 0 | } |
4352 | | |
4353 | | /* |
4354 | | * If this is a prefix proxy route, record the inbound interface |
4355 | | * so that it can be excluded from the list of interfaces eligible |
4356 | | * for forwarding the proxied NS in nd6_prproxy_ns_output(). |
4357 | | */ |
4358 | 0 | if (rt->rt_flags & RTF_PROXY) { |
4359 | 0 | ln->ln_exclifp = ((origifp == ifp) ? NULL : origifp); |
4360 | 0 | } |
4361 | | |
4362 | | /* |
4363 | | * There is a neighbor cache entry, but no ethernet address |
4364 | | * response yet. Replace the held mbuf (if any) with this |
4365 | | * latest one. |
4366 | | * |
4367 | | * This code conforms to the rate-limiting rule described in Section |
4368 | | * 7.2.2 of RFC 4861, because the timer is set correctly after sending |
4369 | | * an NS below. |
4370 | | */ |
4371 | 0 | if (ln->ln_state == ND6_LLINFO_NOSTATE) { |
4372 | 0 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); |
4373 | 0 | } |
4374 | 0 | if (ln->ln_hold) { |
4375 | 0 | m_freem_list(ln->ln_hold); |
4376 | 0 | } |
4377 | 0 | ln->ln_hold = m0; |
4378 | 0 | if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { |
4379 | 0 | ln->ln_asked++; |
4380 | 0 | ndi = ND_IFINFO(ifp); |
4381 | 0 | VERIFY(ndi != NULL && ndi->initialized); |
4382 | 0 | lck_mtx_lock(&ndi->lock); |
4383 | 0 | ln_setexpire(ln, timenow + ndi->retrans / 1000); |
4384 | 0 | lck_mtx_unlock(&ndi->lock); |
4385 | 0 | RT_UNLOCK(rt); |
4386 | | /* We still have a reference on rt (for ln) */ |
4387 | 0 | if (ip6_forwarding) { |
4388 | 0 | nd6_prproxy_ns_output(ifp, origifp, NULL, |
4389 | 0 | &dst->sin6_addr, ln); |
4390 | 0 | } else { |
4391 | 0 | nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, NULL); |
4392 | 0 | } |
4393 | 0 | lck_mtx_lock(rnh_lock); |
4394 | 0 | nd6_sched_timeout(NULL, NULL); |
4395 | 0 | lck_mtx_unlock(rnh_lock); |
4396 | 0 | } else { |
4397 | 0 | RT_UNLOCK(rt); |
4398 | 0 | } |
4399 | | /* |
4400 | | * Move this entry to the head of the queue so that it is |
4401 | | * less likely for this entry to be a target of forced |
4402 | | * garbage collection (see nd6_rtrequest()). Do this only |
4403 | | * if the entry is non-permanent (as permanent ones will |
4404 | | * never be purged), and if the number of active entries |
4405 | | * is at least half of the threshold. |
4406 | | */ |
4407 | 0 | if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
4408 | 0 | nd6_inuse >= (ip6_neighborgcthresh >> 1)) { |
4409 | 0 | lck_mtx_lock(rnh_lock); |
4410 | 0 | RT_LOCK_SPIN(rt); |
4411 | 0 | if (ln->ln_flags & ND6_LNF_IN_USE) { |
4412 | 0 | LN_DEQUEUE(ln); |
4413 | 0 | LN_INSERTHEAD(ln); |
4414 | 0 | } |
4415 | | /* Clean up "rt" now while we can */ |
4416 | 0 | if (rt == hint0) { |
4417 | 0 | RT_REMREF_LOCKED(rt); |
4418 | 0 | RT_UNLOCK(rt); |
4419 | 0 | } else { |
4420 | 0 | RT_UNLOCK(rt); |
4421 | 0 | rtfree_locked(rt); |
4422 | 0 | } |
4423 | 0 | rt = NULL; /* "rt" has been taken care of */ |
4424 | 0 | lck_mtx_unlock(rnh_lock); |
4425 | 0 | } |
4426 | 0 | error = 0; |
4427 | 0 | goto release; |
4428 | | |
4429 | 11.7k | sendpkt: |
4430 | 11.7k | if (rt != NULL) { |
4431 | 11.7k | RT_LOCK_ASSERT_NOTHELD(rt); |
4432 | 11.7k | } |
4433 | | |
4434 | | /* discard the packet if IPv6 operation is disabled on the interface */ |
4435 | 11.7k | if (ifp->if_eflags & IFEF_IPV6_DISABLED) { |
4436 | 0 | error = ENETDOWN; /* better error? */ |
4437 | 0 | goto bad; |
4438 | 0 | } |
4439 | | |
4440 | 11.7k | if (ifp->if_flags & IFF_LOOPBACK) { |
4441 | | /* forwarding rules require the original scope_id */ |
4442 | 11.7k | m0->m_pkthdr.rcvif = origifp; |
4443 | 11.7k | error = dlil_output(origifp, PF_INET6, m0, (caddr_t)rt, |
4444 | 11.7k | SA(dst), 0, adv); |
4445 | 11.7k | goto release; |
4446 | 11.7k | } else { |
4447 | | /* Do not allow loopback address to wind up on a wire */ |
4448 | 0 | struct ip6_hdr *ip6 = mtod(m0, struct ip6_hdr *); |
4449 | |
|
4450 | 0 | if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) || |
4451 | 0 | IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) { |
4452 | 0 | ip6stat.ip6s_badscope++; |
4453 | 0 | error = EADDRNOTAVAIL; |
4454 | 0 | goto bad; |
4455 | 0 | } |
4456 | 0 | } |
4457 | | |
4458 | 0 | if (rt != NULL) { |
4459 | 0 | RT_LOCK_SPIN(rt); |
4460 | | /* Mark use timestamp */ |
4461 | 0 | if (rt->rt_llinfo != NULL) { |
4462 | 0 | nd6_llreach_use(rt->rt_llinfo); |
4463 | 0 | } |
4464 | 0 | RT_UNLOCK(rt); |
4465 | 0 | } |
4466 | |
|
4467 | 0 | struct mbuf *mcur = m0; |
4468 | 0 | uint32_t pktcnt = 0; |
4469 | |
|
4470 | 0 | while (mcur) { |
4471 | 0 | if (hint != NULL && nstat_collect) { |
4472 | 0 | int scnt; |
4473 | |
|
4474 | 0 | if ((mcur->m_pkthdr.csum_flags & CSUM_TSO_IPV6) && |
4475 | 0 | (mcur->m_pkthdr.tso_segsz > 0)) { |
4476 | 0 | scnt = mcur->m_pkthdr.len / mcur->m_pkthdr.tso_segsz; |
4477 | 0 | } else { |
4478 | 0 | scnt = 1; |
4479 | 0 | } |
4480 | |
|
4481 | 0 | nstat_route_tx(hint, scnt, mcur->m_pkthdr.len, 0); |
4482 | 0 | } |
4483 | 0 | pktcnt++; |
4484 | |
|
4485 | 0 | mcur->m_pkthdr.rcvif = NULL; |
4486 | 0 | mcur = mcur->m_nextpkt; |
4487 | 0 | } |
4488 | 0 | if (pktcnt > ip6_maxchainsent) { |
4489 | 0 | ip6_maxchainsent = pktcnt; |
4490 | 0 | } |
4491 | 0 | error = dlil_output(ifp, PF_INET6, m0, (caddr_t)rt, SA(dst), 0, adv); |
4492 | 0 | goto release; |
4493 | | |
4494 | 0 | bad: |
4495 | 0 | if (m0 != NULL) { |
4496 | 0 | m_freem_list(m0); |
4497 | 0 | } |
4498 | |
|
4499 | 11.7k | release: |
4500 | | /* Clean up "rt" unless it's already been done */ |
4501 | 11.7k | if (rt != NULL) { |
4502 | 11.7k | RT_LOCK_SPIN(rt); |
4503 | 11.7k | if (rt == hint0) { |
4504 | 11.7k | RT_REMREF_LOCKED(rt); |
4505 | 11.7k | RT_UNLOCK(rt); |
4506 | 11.7k | } else { |
4507 | 0 | RT_UNLOCK(rt); |
4508 | 0 | rtfree(rt); |
4509 | 0 | } |
4510 | 11.7k | } |
4511 | | /* And now clean up "rtrele" if there is any */ |
4512 | 11.7k | if (rtrele != NULL) { |
4513 | 0 | RT_LOCK_SPIN(rtrele); |
4514 | 0 | if (rtrele == hint0) { |
4515 | 0 | RT_REMREF_LOCKED(rtrele); |
4516 | 0 | RT_UNLOCK(rtrele); |
4517 | 0 | } else { |
4518 | 0 | RT_UNLOCK(rtrele); |
4519 | 0 | rtfree(rtrele); |
4520 | 0 | } |
4521 | 0 | } |
4522 | 11.7k | return error; |
4523 | 0 | } |
4524 | | #undef senderr |
4525 | | |
4526 | | int |
4527 | | nd6_need_cache(struct ifnet *ifp) |
4528 | 11.7k | { |
4529 | | /* |
4530 | | * XXX: we currently do not make neighbor cache on any interface |
4531 | | * other than ARCnet, Ethernet, FDDI and GIF. |
4532 | | * |
4533 | | * RFC2893 says: |
4534 | | * - unidirectional tunnels needs no ND |
4535 | | */ |
4536 | 11.7k | switch (ifp->if_type) { |
4537 | 0 | case IFT_ARCNET: |
4538 | 0 | case IFT_ETHER: |
4539 | 0 | case IFT_FDDI: |
4540 | 0 | case IFT_IEEE1394: |
4541 | 0 | case IFT_L2VLAN: |
4542 | 0 | case IFT_IEEE8023ADLAG: |
4543 | | #if IFT_IEEE80211 |
4544 | | case IFT_IEEE80211: |
4545 | | #endif |
4546 | 0 | case IFT_GIF: /* XXX need more cases? */ |
4547 | 0 | case IFT_PPP: |
4548 | | #if IFT_TUNNEL |
4549 | | case IFT_TUNNEL: |
4550 | | #endif |
4551 | 0 | case IFT_BRIDGE: |
4552 | 0 | case IFT_CELLULAR: |
4553 | 0 | case IFT_6LOWPAN: |
4554 | 0 | return 1; |
4555 | 11.7k | default: |
4556 | 11.7k | return 0; |
4557 | 11.7k | } |
4558 | 11.7k | } |
4559 | | |
4560 | | int |
4561 | | nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, |
4562 | | struct sockaddr *dst, u_char *desten) |
4563 | 0 | { |
4564 | 0 | int i; |
4565 | 0 | struct sockaddr_dl *sdl; |
4566 | |
|
4567 | 0 | if (m->m_flags & M_MCAST) { |
4568 | 0 | switch (ifp->if_type) { |
4569 | 0 | case IFT_ETHER: |
4570 | 0 | case IFT_FDDI: |
4571 | 0 | case IFT_L2VLAN: |
4572 | 0 | case IFT_IEEE8023ADLAG: |
4573 | | #if IFT_IEEE80211 |
4574 | | case IFT_IEEE80211: |
4575 | | #endif |
4576 | 0 | case IFT_BRIDGE: |
4577 | 0 | ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); |
4578 | 0 | return 1; |
4579 | 0 | case IFT_IEEE1394: |
4580 | 0 | for (i = 0; i < ifp->if_addrlen; i++) { |
4581 | 0 | desten[i] = ~0; |
4582 | 0 | } |
4583 | 0 | return 1; |
4584 | 0 | case IFT_ARCNET: |
4585 | 0 | *desten = 0; |
4586 | 0 | return 1; |
4587 | 0 | default: |
4588 | 0 | return 0; /* caller will free mbuf */ |
4589 | 0 | } |
4590 | 0 | } |
4591 | | |
4592 | 0 | if (rt == NULL) { |
4593 | | /* this could happen, if we could not allocate memory */ |
4594 | 0 | return 0; /* caller will free mbuf */ |
4595 | 0 | } |
4596 | 0 | RT_LOCK(rt); |
4597 | 0 | if (rt->rt_gateway->sa_family != AF_LINK) { |
4598 | 0 | printf("nd6_storelladdr: something odd happens\n"); |
4599 | 0 | RT_UNLOCK(rt); |
4600 | 0 | return 0; /* caller will free mbuf */ |
4601 | 0 | } |
4602 | 0 | sdl = SDL(rt->rt_gateway); |
4603 | 0 | if (sdl->sdl_alen == 0) { |
4604 | | /* this should be impossible, but we bark here for debugging */ |
4605 | 0 | printf("nd6_storelladdr: sdl_alen == 0\n"); |
4606 | 0 | RT_UNLOCK(rt); |
4607 | 0 | return 0; /* caller will free mbuf */ |
4608 | 0 | } |
4609 | | |
4610 | 0 | bcopy(LLADDR(sdl), desten, sdl->sdl_alen); |
4611 | 0 | RT_UNLOCK(rt); |
4612 | 0 | return 1; |
4613 | 0 | } |
4614 | | |
4615 | | /* |
4616 | | * This is the ND pre-output routine; care must be taken to ensure that |
4617 | | * the "hint" route never gets freed via rtfree(), since the caller may |
4618 | | * have stored it inside a struct route with a reference held for that |
4619 | | * placeholder. |
4620 | | */ |
4621 | | errno_t |
4622 | | nd6_lookup_ipv6(ifnet_t ifp, const struct sockaddr_in6 *ip6_dest, |
4623 | | struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint, |
4624 | | mbuf_t packet) |
4625 | 0 | { |
4626 | 0 | route_t route = hint; |
4627 | 0 | errno_t result = 0; |
4628 | 0 | struct sockaddr_dl *sdl = NULL; |
4629 | 0 | size_t copy_len; |
4630 | |
|
4631 | 0 | if (ifp == NULL || ip6_dest == NULL) { |
4632 | 0 | return EINVAL; |
4633 | 0 | } |
4634 | | |
4635 | 0 | if (ip6_dest->sin6_family != AF_INET6) { |
4636 | 0 | return EAFNOSUPPORT; |
4637 | 0 | } |
4638 | | |
4639 | 0 | if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) { |
4640 | 0 | return ENETDOWN; |
4641 | 0 | } |
4642 | | |
4643 | 0 | if (hint != NULL) { |
4644 | | /* |
4645 | | * Callee holds a reference on the route and returns |
4646 | | * with the route entry locked, upon success. |
4647 | | */ |
4648 | 0 | result = route_to_gwroute((const struct sockaddr *)ip6_dest, |
4649 | 0 | hint, &route); |
4650 | 0 | if (result != 0) { |
4651 | 0 | return result; |
4652 | 0 | } |
4653 | 0 | if (route != NULL) { |
4654 | 0 | RT_LOCK_ASSERT_HELD(route); |
4655 | 0 | } |
4656 | 0 | } |
4657 | | |
4658 | 0 | if ((packet != NULL && (packet->m_flags & M_MCAST) != 0) || |
4659 | 0 | ((ifp->if_flags & IFF_MULTICAST) && |
4660 | 0 | IN6_IS_ADDR_MULTICAST(&ip6_dest->sin6_addr))) { |
4661 | 0 | if (route != NULL) { |
4662 | 0 | RT_UNLOCK(route); |
4663 | 0 | } |
4664 | 0 | result = dlil_resolve_multi(ifp, |
4665 | 0 | (const struct sockaddr *)ip6_dest, |
4666 | 0 | SA(ll_dest), ll_dest_len); |
4667 | 0 | if (route != NULL) { |
4668 | 0 | RT_LOCK(route); |
4669 | 0 | } |
4670 | 0 | goto release; |
4671 | 0 | } else if (route == NULL) { |
4672 | | /* |
4673 | | * rdar://24596652 |
4674 | | * For unicast, lookup existing ND6 entries but |
4675 | | * do not trigger a resolution |
4676 | | */ |
4677 | 0 | lck_mtx_lock(rnh_lock); |
4678 | 0 | route = rt_lookup(TRUE, |
4679 | 0 | __DECONST(struct sockaddr *, ip6_dest), NULL, |
4680 | 0 | rt_tables[AF_INET6], ifp->if_index); |
4681 | 0 | lck_mtx_unlock(rnh_lock); |
4682 | |
|
4683 | 0 | if (route != NULL) { |
4684 | 0 | RT_LOCK(route); |
4685 | 0 | } |
4686 | 0 | } |
4687 | | |
4688 | 0 | if (route == NULL) { |
4689 | | /* |
4690 | | * This could happen, if we could not allocate memory or |
4691 | | * if route_to_gwroute() didn't return a route. |
4692 | | */ |
4693 | 0 | result = ENOBUFS; |
4694 | 0 | goto release; |
4695 | 0 | } |
4696 | | |
4697 | 0 | if (route->rt_gateway->sa_family != AF_LINK) { |
4698 | 0 | nd6log0(error, "%s: route %s on %s%d gateway address not AF_LINK\n", |
4699 | 0 | __func__, ip6_sprintf(&ip6_dest->sin6_addr), |
4700 | 0 | route->rt_ifp->if_name, route->rt_ifp->if_unit); |
4701 | 0 | result = EADDRNOTAVAIL; |
4702 | 0 | goto release; |
4703 | 0 | } |
4704 | | |
4705 | 0 | sdl = SDL(route->rt_gateway); |
4706 | 0 | if (sdl->sdl_alen == 0) { |
4707 | | /* this should be impossible, but we bark here for debugging */ |
4708 | 0 | nd6log(error, "%s: route %s on %s%d sdl_alen == 0\n", __func__, |
4709 | 0 | ip6_sprintf(&ip6_dest->sin6_addr), route->rt_ifp->if_name, |
4710 | 0 | route->rt_ifp->if_unit); |
4711 | 0 | result = EHOSTUNREACH; |
4712 | 0 | goto release; |
4713 | 0 | } |
4714 | | |
4715 | 0 | copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len; |
4716 | 0 | bcopy(sdl, ll_dest, copy_len); |
4717 | |
|
4718 | 0 | release: |
4719 | 0 | if (route != NULL) { |
4720 | 0 | if (route == hint) { |
4721 | 0 | RT_REMREF_LOCKED(route); |
4722 | 0 | RT_UNLOCK(route); |
4723 | 0 | } else { |
4724 | 0 | RT_UNLOCK(route); |
4725 | 0 | rtfree(route); |
4726 | 0 | } |
4727 | 0 | } |
4728 | 0 | return result; |
4729 | 0 | } |
4730 | | |
4731 | | #if (DEVELOPMENT || DEBUG) |
4732 | | |
4733 | | static int sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS; |
4734 | | SYSCTL_PROC(_net_inet6_icmp6, OID_AUTO, nd6_lookup_ipv6, |
4735 | | CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, |
4736 | | sysctl_nd6_lookup_ipv6, "S", ""); |
4737 | | |
4738 | | int |
4739 | | sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS |
4740 | 0 | { |
4741 | 0 | #pragma unused(oidp, arg1, arg2) |
4742 | 0 | int error = 0; |
4743 | 0 | struct nd6_lookup_ipv6_args nd6_lookup_ipv6_args; |
4744 | 0 | ifnet_t ifp = NULL; |
4745 | | |
4746 | | /* |
4747 | | * Only root can lookup MAC addresses |
4748 | | */ |
4749 | 0 | error = proc_suser(current_proc()); |
4750 | 0 | if (error != 0) { |
4751 | 0 | nd6log0(error, "%s: proc_suser() error %d\n", |
4752 | 0 | __func__, error); |
4753 | 0 | goto done; |
4754 | 0 | } |
4755 | 0 | if (req->oldptr == USER_ADDR_NULL) { |
4756 | 0 | req->oldidx = sizeof(struct nd6_lookup_ipv6_args); |
4757 | 0 | } |
4758 | 0 | if (req->newptr == USER_ADDR_NULL) { |
4759 | 0 | goto done; |
4760 | 0 | } |
4761 | 0 | if (req->oldlen != sizeof(struct nd6_lookup_ipv6_args) || |
4762 | 0 | req->newlen != sizeof(struct nd6_lookup_ipv6_args)) { |
4763 | 0 | error = EINVAL; |
4764 | 0 | nd6log0(error, "%s: bad req, error %d\n", |
4765 | 0 | __func__, error); |
4766 | 0 | goto done; |
4767 | 0 | } |
4768 | 0 | error = SYSCTL_IN(req, &nd6_lookup_ipv6_args, |
4769 | 0 | sizeof(struct nd6_lookup_ipv6_args)); |
4770 | 0 | if (error != 0) { |
4771 | 0 | nd6log0(error, "%s: SYSCTL_IN() error %d\n", |
4772 | 0 | __func__, error); |
4773 | 0 | goto done; |
4774 | 0 | } |
4775 | | |
4776 | 0 | if (nd6_lookup_ipv6_args.ll_dest_len > sizeof(nd6_lookup_ipv6_args.ll_dest_)) { |
4777 | 0 | error = EINVAL; |
4778 | 0 | nd6log0(error, "%s: bad ll_dest_len, error %d\n", |
4779 | 0 | __func__, error); |
4780 | 0 | goto done; |
4781 | 0 | } |
4782 | | |
4783 | | /* Make sure to terminate the string */ |
4784 | 0 | nd6_lookup_ipv6_args.ifname[IFNAMSIZ - 1] = 0; |
4785 | |
|
4786 | 0 | error = ifnet_find_by_name(nd6_lookup_ipv6_args.ifname, &ifp); |
4787 | 0 | if (error != 0) { |
4788 | 0 | nd6log0(error, "%s: ifnet_find_by_name() error %d\n", |
4789 | 0 | __func__, error); |
4790 | 0 | goto done; |
4791 | 0 | } |
4792 | | |
4793 | 0 | error = nd6_lookup_ipv6(ifp, &nd6_lookup_ipv6_args.ip6_dest, |
4794 | 0 | &nd6_lookup_ipv6_args.ll_dest_._sdl, |
4795 | 0 | nd6_lookup_ipv6_args.ll_dest_len, NULL, NULL); |
4796 | 0 | if (error != 0) { |
4797 | 0 | nd6log0(error, "%s: nd6_lookup_ipv6() error %d\n", |
4798 | 0 | __func__, error); |
4799 | 0 | goto done; |
4800 | 0 | } |
4801 | | |
4802 | 0 | error = SYSCTL_OUT(req, &nd6_lookup_ipv6_args, |
4803 | 0 | sizeof(struct nd6_lookup_ipv6_args)); |
4804 | 0 | if (error != 0) { |
4805 | 0 | nd6log0(error, "%s: SYSCTL_OUT() error %d\n", |
4806 | 0 | __func__, error); |
4807 | 0 | goto done; |
4808 | 0 | } |
4809 | 0 | done: |
4810 | 0 | return error; |
4811 | 0 | } |
4812 | | |
4813 | | #endif /* (DEVELOPEMENT || DEBUG) */ |
4814 | | |
4815 | | int |
4816 | | nd6_setifinfo(struct ifnet *ifp, u_int32_t before, u_int32_t after) |
4817 | 0 | { |
4818 | 0 | uint32_t b, a; |
4819 | 0 | int err = 0; |
4820 | | |
4821 | | /* |
4822 | | * Handle ND6_IFF_IFDISABLED |
4823 | | */ |
4824 | 0 | if ((before & ND6_IFF_IFDISABLED) || |
4825 | 0 | (after & ND6_IFF_IFDISABLED)) { |
4826 | 0 | b = (before & ND6_IFF_IFDISABLED); |
4827 | 0 | a = (after & ND6_IFF_IFDISABLED); |
4828 | |
|
4829 | 0 | if (b != a && (err = nd6_if_disable(ifp, |
4830 | 0 | ((int32_t)(a - b) > 0))) != 0) { |
4831 | 0 | goto done; |
4832 | 0 | } |
4833 | 0 | } |
4834 | | |
4835 | | /* |
4836 | | * Handle ND6_IFF_PROXY_PREFIXES |
4837 | | */ |
4838 | 0 | if ((before & ND6_IFF_PROXY_PREFIXES) || |
4839 | 0 | (after & ND6_IFF_PROXY_PREFIXES)) { |
4840 | 0 | b = (before & ND6_IFF_PROXY_PREFIXES); |
4841 | 0 | a = (after & ND6_IFF_PROXY_PREFIXES); |
4842 | |
|
4843 | 0 | if (b != a && (err = nd6_if_prproxy(ifp, |
4844 | 0 | ((int32_t)(a - b) > 0))) != 0) { |
4845 | 0 | goto done; |
4846 | 0 | } |
4847 | 0 | } |
4848 | 0 | done: |
4849 | 0 | return err; |
4850 | 0 | } |
4851 | | |
4852 | | /* |
4853 | | * Enable/disable IPv6 on an interface, called as part of |
4854 | | * setting/clearing ND6_IFF_IFDISABLED, or during DAD failure. |
4855 | | */ |
4856 | | int |
4857 | | nd6_if_disable(struct ifnet *ifp, boolean_t enable) |
4858 | 0 | { |
4859 | 0 | if (enable) { |
4860 | 0 | if_set_eflags(ifp, IFEF_IPV6_DISABLED); |
4861 | 0 | } else { |
4862 | 0 | if_clear_eflags(ifp, IFEF_IPV6_DISABLED); |
4863 | 0 | } |
4864 | |
|
4865 | 0 | return 0; |
4866 | 0 | } |
4867 | | |
4868 | | static int |
4869 | | nd6_sysctl_drlist SYSCTL_HANDLER_ARGS |
4870 | 0 | { |
4871 | 0 | #pragma unused(oidp, arg1, arg2) |
4872 | 0 | char pbuf[MAX_IPv6_STR_LEN]; |
4873 | 0 | struct nd_defrouter *dr; |
4874 | 0 | int error = 0; |
4875 | |
|
4876 | 0 | if (req->newptr != USER_ADDR_NULL) { |
4877 | 0 | return EPERM; |
4878 | 0 | } |
4879 | | |
4880 | | /* XXX Handle mapped defrouter entries */ |
4881 | 0 | lck_mtx_lock(nd6_mutex); |
4882 | 0 | if (proc_is64bit(req->p)) { |
4883 | 0 | struct in6_defrouter_64 d; |
4884 | |
|
4885 | 0 | bzero(&d, sizeof(d)); |
4886 | 0 | d.rtaddr.sin6_family = AF_INET6; |
4887 | 0 | d.rtaddr.sin6_len = sizeof(d.rtaddr); |
4888 | |
|
4889 | 0 | TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) { |
4890 | 0 | d.rtaddr.sin6_addr = dr->rtaddr; |
4891 | 0 | if (in6_recoverscope(&d.rtaddr, |
4892 | 0 | &dr->rtaddr, dr->ifp) != 0) { |
4893 | 0 | log(LOG_ERR, "scope error in default router " |
4894 | 0 | "list (%s)\n", inet_ntop(AF_INET6, |
4895 | 0 | &dr->rtaddr, pbuf, sizeof(pbuf))); |
4896 | 0 | } |
4897 | 0 | d.flags = dr->flags; |
4898 | 0 | d.stateflags = dr->stateflags; |
4899 | 0 | d.rtlifetime = (u_short)dr->rtlifetime; |
4900 | 0 | d.expire = (int)nddr_getexpire(dr); |
4901 | 0 | d.if_index = dr->ifp->if_index; |
4902 | 0 | error = SYSCTL_OUT(req, &d, sizeof(d)); |
4903 | 0 | if (error != 0) { |
4904 | 0 | break; |
4905 | 0 | } |
4906 | 0 | } |
4907 | 0 | } else { |
4908 | 0 | struct in6_defrouter_32 d; |
4909 | |
|
4910 | 0 | bzero(&d, sizeof(d)); |
4911 | 0 | d.rtaddr.sin6_family = AF_INET6; |
4912 | 0 | d.rtaddr.sin6_len = sizeof(d.rtaddr); |
4913 | |
|
4914 | 0 | TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) { |
4915 | 0 | d.rtaddr.sin6_addr = dr->rtaddr; |
4916 | 0 | if (in6_recoverscope(&d.rtaddr, |
4917 | 0 | &dr->rtaddr, dr->ifp) != 0) { |
4918 | 0 | log(LOG_ERR, "scope error in default router " |
4919 | 0 | "list (%s)\n", inet_ntop(AF_INET6, |
4920 | 0 | &dr->rtaddr, pbuf, sizeof(pbuf))); |
4921 | 0 | } |
4922 | 0 | d.flags = dr->flags; |
4923 | 0 | d.stateflags = dr->stateflags; |
4924 | 0 | d.rtlifetime = (u_short)dr->rtlifetime; |
4925 | 0 | d.expire = (int)nddr_getexpire(dr); |
4926 | 0 | d.if_index = dr->ifp->if_index; |
4927 | 0 | error = SYSCTL_OUT(req, &d, sizeof(d)); |
4928 | 0 | if (error != 0) { |
4929 | 0 | break; |
4930 | 0 | } |
4931 | 0 | } |
4932 | 0 | } |
4933 | 0 | lck_mtx_unlock(nd6_mutex); |
4934 | 0 | return error; |
4935 | 0 | } |
4936 | | |
4937 | | static int |
4938 | | nd6_sysctl_prlist SYSCTL_HANDLER_ARGS |
4939 | 0 | { |
4940 | 0 | #pragma unused(oidp, arg1, arg2) |
4941 | 0 | char pbuf[MAX_IPv6_STR_LEN]; |
4942 | 0 | struct nd_pfxrouter *pfr; |
4943 | 0 | struct sockaddr_in6 s6; |
4944 | 0 | struct nd_prefix *pr; |
4945 | 0 | int error = 0; |
4946 | |
|
4947 | 0 | if (req->newptr != USER_ADDR_NULL) { |
4948 | 0 | return EPERM; |
4949 | 0 | } |
4950 | | |
4951 | 0 | bzero(&s6, sizeof(s6)); |
4952 | 0 | s6.sin6_family = AF_INET6; |
4953 | 0 | s6.sin6_len = sizeof(s6); |
4954 | | |
4955 | | /* XXX Handle mapped defrouter entries */ |
4956 | 0 | lck_mtx_lock(nd6_mutex); |
4957 | 0 | if (proc_is64bit(req->p)) { |
4958 | 0 | struct in6_prefix_64 p; |
4959 | |
|
4960 | 0 | bzero(&p, sizeof(p)); |
4961 | 0 | p.origin = PR_ORIG_RA; |
4962 | |
|
4963 | 0 | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
4964 | 0 | NDPR_LOCK(pr); |
4965 | 0 | p.prefix = pr->ndpr_prefix; |
4966 | 0 | if (in6_recoverscope(&p.prefix, |
4967 | 0 | &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) { |
4968 | 0 | log(LOG_ERR, "scope error in " |
4969 | 0 | "prefix list (%s)\n", inet_ntop(AF_INET6, |
4970 | 0 | &p.prefix.sin6_addr, pbuf, sizeof(pbuf))); |
4971 | 0 | } |
4972 | 0 | p.raflags = pr->ndpr_raf; |
4973 | 0 | p.prefixlen = pr->ndpr_plen; |
4974 | 0 | p.vltime = pr->ndpr_vltime; |
4975 | 0 | p.pltime = pr->ndpr_pltime; |
4976 | 0 | p.if_index = pr->ndpr_ifp->if_index; |
4977 | 0 | p.expire = (u_long)ndpr_getexpire(pr); |
4978 | 0 | p.refcnt = pr->ndpr_addrcnt; |
4979 | 0 | p.flags = pr->ndpr_stateflags; |
4980 | 0 | p.advrtrs = 0; |
4981 | 0 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) |
4982 | 0 | p.advrtrs++; |
4983 | 0 | error = SYSCTL_OUT(req, &p, sizeof(p)); |
4984 | 0 | if (error != 0) { |
4985 | 0 | NDPR_UNLOCK(pr); |
4986 | 0 | break; |
4987 | 0 | } |
4988 | 0 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { |
4989 | 0 | s6.sin6_addr = pfr->router->rtaddr; |
4990 | 0 | if (in6_recoverscope(&s6, &pfr->router->rtaddr, |
4991 | 0 | pfr->router->ifp) != 0) { |
4992 | 0 | log(LOG_ERR, |
4993 | 0 | "scope error in prefix list (%s)\n", |
4994 | 0 | inet_ntop(AF_INET6, &s6.sin6_addr, |
4995 | 0 | pbuf, sizeof(pbuf))); |
4996 | 0 | } |
4997 | 0 | error = SYSCTL_OUT(req, &s6, sizeof(s6)); |
4998 | 0 | if (error != 0) { |
4999 | 0 | break; |
5000 | 0 | } |
5001 | 0 | } |
5002 | 0 | NDPR_UNLOCK(pr); |
5003 | 0 | if (error != 0) { |
5004 | 0 | break; |
5005 | 0 | } |
5006 | 0 | } |
5007 | 0 | } else { |
5008 | 0 | struct in6_prefix_32 p; |
5009 | |
|
5010 | 0 | bzero(&p, sizeof(p)); |
5011 | 0 | p.origin = PR_ORIG_RA; |
5012 | |
|
5013 | 0 | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
5014 | 0 | NDPR_LOCK(pr); |
5015 | 0 | p.prefix = pr->ndpr_prefix; |
5016 | 0 | if (in6_recoverscope(&p.prefix, |
5017 | 0 | &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) { |
5018 | 0 | log(LOG_ERR, |
5019 | 0 | "scope error in prefix list (%s)\n", |
5020 | 0 | inet_ntop(AF_INET6, &p.prefix.sin6_addr, |
5021 | 0 | pbuf, sizeof(pbuf))); |
5022 | 0 | } |
5023 | 0 | p.raflags = pr->ndpr_raf; |
5024 | 0 | p.prefixlen = pr->ndpr_plen; |
5025 | 0 | p.vltime = pr->ndpr_vltime; |
5026 | 0 | p.pltime = pr->ndpr_pltime; |
5027 | 0 | p.if_index = pr->ndpr_ifp->if_index; |
5028 | 0 | p.expire = (u_int32_t)ndpr_getexpire(pr); |
5029 | 0 | p.refcnt = pr->ndpr_addrcnt; |
5030 | 0 | p.flags = pr->ndpr_stateflags; |
5031 | 0 | p.advrtrs = 0; |
5032 | 0 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) |
5033 | 0 | p.advrtrs++; |
5034 | 0 | error = SYSCTL_OUT(req, &p, sizeof(p)); |
5035 | 0 | if (error != 0) { |
5036 | 0 | NDPR_UNLOCK(pr); |
5037 | 0 | break; |
5038 | 0 | } |
5039 | 0 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { |
5040 | 0 | s6.sin6_addr = pfr->router->rtaddr; |
5041 | 0 | if (in6_recoverscope(&s6, &pfr->router->rtaddr, |
5042 | 0 | pfr->router->ifp) != 0) { |
5043 | 0 | log(LOG_ERR, |
5044 | 0 | "scope error in prefix list (%s)\n", |
5045 | 0 | inet_ntop(AF_INET6, &s6.sin6_addr, |
5046 | 0 | pbuf, sizeof(pbuf))); |
5047 | 0 | } |
5048 | 0 | error = SYSCTL_OUT(req, &s6, sizeof(s6)); |
5049 | 0 | if (error != 0) { |
5050 | 0 | break; |
5051 | 0 | } |
5052 | 0 | } |
5053 | 0 | NDPR_UNLOCK(pr); |
5054 | 0 | if (error != 0) { |
5055 | 0 | break; |
5056 | 0 | } |
5057 | 0 | } |
5058 | 0 | } |
5059 | 0 | lck_mtx_unlock(nd6_mutex); |
5060 | |
|
5061 | 0 | return error; |
5062 | 0 | } |
5063 | | |
5064 | | void |
5065 | | in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia) |
5066 | 0 | { |
5067 | 0 | struct ifnet* ifp = ia->ia_ifp; |
5068 | 0 | uint32_t flags = IN6_IFF_TENTATIVE; |
5069 | 0 | uint32_t optdad = nd6_optimistic_dad; |
5070 | 0 | struct nd_ifinfo *ndi = NULL; |
5071 | |
|
5072 | 0 | ndi = ND_IFINFO(ifp); |
5073 | 0 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
5074 | 0 | if (!(ndi->flags & ND6_IFF_DAD)) { |
5075 | 0 | return; |
5076 | 0 | } |
5077 | | |
5078 | 0 | if (optdad) { |
5079 | 0 | if (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE) { |
5080 | 0 | optdad = 0; |
5081 | 0 | } else { |
5082 | 0 | lck_mtx_lock(&ndi->lock); |
5083 | 0 | if ((ndi->flags & ND6_IFF_REPLICATED) != 0) { |
5084 | 0 | optdad = 0; |
5085 | 0 | } |
5086 | 0 | lck_mtx_unlock(&ndi->lock); |
5087 | 0 | } |
5088 | 0 | } |
5089 | |
|
5090 | 0 | if (optdad) { |
5091 | 0 | if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) && |
5092 | 0 | IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { |
5093 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5094 | 0 | } else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) && |
5095 | 0 | (ia->ia6_flags & IN6_IFF_AUTOCONF)) { |
5096 | 0 | if (ia->ia6_flags & IN6_IFF_TEMPORARY) { |
5097 | 0 | if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) { |
5098 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5099 | 0 | } |
5100 | 0 | } else if (ia->ia6_flags & IN6_IFF_SECURED) { |
5101 | 0 | if (optdad & ND6_OPTIMISTIC_DAD_SECURED) { |
5102 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5103 | 0 | } |
5104 | 0 | } else { |
5105 | | /* |
5106 | | * Keeping the behavior for temp and CGA |
5107 | | * SLAAC addresses to have a knob for optimistic |
5108 | | * DAD. |
5109 | | * Other than that if ND6_OPTIMISTIC_DAD_AUTOCONF |
5110 | | * is set, we should default to optimistic |
5111 | | * DAD. |
5112 | | * For now this means SLAAC addresses with interface |
5113 | | * identifier derived from modified EUI-64 bit |
5114 | | * identifiers. |
5115 | | */ |
5116 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5117 | 0 | } |
5118 | 0 | } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) && |
5119 | 0 | (ia->ia6_flags & IN6_IFF_DYNAMIC)) { |
5120 | 0 | if (ia->ia6_flags & IN6_IFF_TEMPORARY) { |
5121 | 0 | if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) { |
5122 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5123 | 0 | } |
5124 | 0 | } else { |
5125 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5126 | 0 | } |
5127 | 0 | } else if ((optdad & ND6_OPTIMISTIC_DAD_MANUAL) && |
5128 | 0 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC)) { |
5129 | | /* |
5130 | | * rdar://17483438 |
5131 | | * Bypass tentative for address assignments |
5132 | | * not covered above (e.g. manual) upon request |
5133 | | */ |
5134 | 0 | if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr) && |
5135 | 0 | !(ia->ia6_flags & IN6_IFF_AUTOCONF) && |
5136 | 0 | !(ia->ia6_flags & IN6_IFF_DYNAMIC)) { |
5137 | 0 | flags = IN6_IFF_OPTIMISTIC; |
5138 | 0 | } |
5139 | 0 | } |
5140 | 0 | } |
5141 | |
|
5142 | 0 | ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS); |
5143 | 0 | ia->ia6_flags |= flags; |
5144 | |
|
5145 | 0 | nd6log2(debug, "%s - %s ifp %s ia6_flags 0x%x\n", |
5146 | 0 | __func__, |
5147 | 0 | ip6_sprintf(&ia->ia_addr.sin6_addr), |
5148 | 0 | if_name(ia->ia_ifp), |
5149 | 0 | ia->ia6_flags); |
5150 | 0 | } |