Coverage Report

Created: 2025-06-13 06:17

/src/moddable/xs/tools/fdlibm/s_log1p.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * ====================================================
3
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Developed at SunPro, a Sun Microsystems, Inc. business.
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
12
/* double log1p(double x)
13
 *
14
 * Method :
15
 *   1. Argument Reduction: find k and f such that
16
 *      1+x = 2^k * (1+f),
17
 *     where  sqrt(2)/2 < 1+f < sqrt(2) .
18
 *
19
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
20
 *  may not be representable exactly. In that case, a correction
21
 *  term is need. Let u=1+x rounded. Let c = (1+x)-u, then
22
 *  log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
23
 *  and add back the correction term c/u.
24
 *  (Note: when x > 2**53, one can simply return log(x))
25
 *
26
 *   2. Approximation of log1p(f).
27
 *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28
 *     = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29
 *         = 2s + s*R
30
 *      We use a special Reme algorithm on [0,0.1716] to generate
31
 *  a polynomial of degree 14 to approximate R The maximum error
32
 *  of this polynomial approximation is bounded by 2**-58.45. In
33
 *  other words,
34
 *            2      4      6      8      10      12      14
35
 *      R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
36
 *    (the values of Lp1 to Lp7 are listed in the program)
37
 *  and
38
 *      |      2          14          |     -58.45
39
 *      | Lp1*s +...+Lp7*s    -  R(z) | <= 2
40
 *      |                             |
41
 *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42
 *  In order to guarantee error in log below 1ulp, we compute log
43
 *  by
44
 *    log1p(f) = f - (hfsq - s*(hfsq+R)).
45
 *
46
 *  3. Finally, log1p(x) = k*ln2 + log1p(f).
47
 *           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48
 *     Here ln2 is split into two floating point number:
49
 *      ln2_hi + ln2_lo,
50
 *     where n*ln2_hi is always exact for |n| < 2000.
51
 *
52
 * Special cases:
53
 *  log1p(x) is NaN with signal if x < -1 (including -INF) ;
54
 *  log1p(+INF) is +INF; log1p(-1) is -INF with signal;
55
 *  log1p(NaN) is that NaN with no signal.
56
 *
57
 * Accuracy:
58
 *  according to an error analysis, the error is always less than
59
 *  1 ulp (unit in the last place).
60
 *
61
 * Constants:
62
 * The hexadecimal values are the intended ones for the following
63
 * constants. The decimal values may be used, provided that the
64
 * compiler will convert from decimal to binary accurately enough
65
 * to produce the hexadecimal values shown.
66
 *
67
 * Note: Assuming log() return accurate answer, the following
68
 *   algorithm can be used to compute log1p(x) to within a few ULP:
69
 *
70
 *    u = 1+x;
71
 *    if(u==1.0) return x ; else
72
 *         return log(u)*(x/(u-1.0));
73
 *
74
 *   See HP-15C Advanced Functions Handbook, p.193.
75
 */
76
77
#include "math_private.h"
78
79
static const double
80
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
81
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
82
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
83
Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
84
Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
85
Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
86
Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
87
Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
88
Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
89
Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
90
91
static const double zero = 0.0;
92
static volatile double vzero = 0.0;
93
94
double
95
s_log1p(double x)
96
434k
{
97
434k
  double hfsq,f,c,s,z,R,u;
98
434k
  int32_t k,hx,hu,ax;
99
100
434k
  GET_HIGH_WORD(hx,x);
101
434k
  ax = hx&0x7fffffff;
102
103
434k
  k = 1;
104
434k
  if (hx < 0x3FDA827A) {     /* 1+x < sqrt(2)+ */
105
3.02k
      if(ax>=0x3ff00000) {   /* x <= -1.0 */
106
234
    if(x==-1.0) return -two54/vzero; /* log1p(-1)=+inf */
107
85
    else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
108
234
      }
109
2.78k
      if(ax<0x3e200000) {     /* |x| < 2**-29 */
110
461
    if(two54+x>zero      /* raise inexact */
111
461
              &&ax<0x3c900000)     /* |x| < 2**-54 */
112
461
        return x;
113
0
    else
114
0
        return x - x*x*0.5;
115
461
      }
116
2.32k
      if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
117
2.32k
    k=0;f=x;hu=1;}    /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
118
2.32k
  }
119
434k
  if (hx >= 0x7ff00000) return x+x;
120
433k
  if(k!=0) {
121
430k
      if(hx<0x43400000) {
122
155k
    STRICT_ASSIGN(double,u,1.0+x);
123
155k
    GET_HIGH_WORD(hu,u);
124
155k
          k  = (hu>>20)-1023;
125
155k
          c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
126
155k
    c /= u;
127
275k
      } else {
128
275k
    u  = x;
129
275k
    GET_HIGH_WORD(hu,u);
130
275k
          k  = (hu>>20)-1023;
131
275k
    c  = 0;
132
275k
      }
133
430k
      hu &= 0x000fffff;
134
      /*
135
       * The approximation to sqrt(2) used in thresholds is not
136
       * critical.  However, the ones used above must give less
137
       * strict bounds than the one here so that the k==0 case is
138
       * never reached from here, since here we have committed to
139
       * using the correction term but don't use it if k==0.
140
       */
141
430k
      if(hu<0x6a09e) {     /* u ~< sqrt(2) */
142
405k
          SET_HIGH_WORD(u,hu|0x3ff00000);  /* normalize u */
143
405k
      } else {
144
25.2k
          k += 1;
145
25.2k
    SET_HIGH_WORD(u,hu|0x3fe00000);  /* normalize u/2 */
146
25.2k
          hu = (0x00100000-hu)>>2;
147
25.2k
      }
148
430k
      f = u-1.0;
149
430k
  }
150
433k
  hfsq=0.5*f*f;
151
433k
  if(hu==0) { /* |f| < 2**-20 */
152
128k
      if(f==zero) {
153
127k
    if(k==0) {
154
0
        return zero;
155
127k
    } else {
156
127k
        c += k*ln2_lo;
157
127k
        return k*ln2_hi+c;
158
127k
    }
159
127k
      }
160
1.73k
      R = hfsq*(1.0-0.66666666666666666*f);
161
1.73k
      if(k==0) return f-R; else
162
1.73k
             return k*ln2_hi-((R-(k*ln2_lo+c))-f);
163
1.73k
  }
164
304k
  s = f/(2.0+f);
165
304k
  z = s*s;
166
304k
  R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
167
304k
  if(k==0) return f-(hfsq-s*(hfsq+R)); else
168
301k
     return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
169
304k
}