Coverage Report

Created: 2025-10-29 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/moddable/xs/tools/fdlibm/e_log.c
Line
Count
Source
1
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice 
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
/* log(x)
14
 * Return the logrithm of x
15
 *
16
 * Method :                  
17
 *   1. Argument Reduction: find k and f such that 
18
 *      x = 2^k * (1+f), 
19
 *     where  sqrt(2)/2 < 1+f < sqrt(2) .
20
 *
21
 *   2. Approximation of log(1+f).
22
 *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
23
 *     = 2s + 2/3 s**3 + 2/5 s**5 + .....,
24
 *         = 2s + s*R
25
 *      We use a special Reme algorithm on [0,0.1716] to generate 
26
 *  a polynomial of degree 14 to approximate R The maximum error 
27
 *  of this polynomial approximation is bounded by 2**-58.45. In
28
 *  other words,
29
 *            2      4      6      8      10      12      14
30
 *      R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
31
 *    (the values of Lg1 to Lg7 are listed in the program)
32
 *  and
33
 *      |      2          14          |     -58.45
34
 *      | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
35
 *      |                             |
36
 *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
37
 *  In order to guarantee error in log below 1ulp, we compute log
38
 *  by
39
 *    log(1+f) = f - s*(f - R)  (if f is not too large)
40
 *    log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
41
 *  
42
 *  3. Finally,  log(x) = k*ln2 + log(1+f).  
43
 *          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
44
 *     Here ln2 is split into two floating point number: 
45
 *      ln2_hi + ln2_lo,
46
 *     where n*ln2_hi is always exact for |n| < 2000.
47
 *
48
 * Special cases:
49
 *  log(x) is NaN with signal if x < 0 (including -INF) ; 
50
 *  log(+INF) is +INF; log(0) is -INF with signal;
51
 *  log(NaN) is that NaN with no signal.
52
 *
53
 * Accuracy:
54
 *  according to an error analysis, the error is always less than
55
 *  1 ulp (unit in the last place).
56
 *
57
 * Constants:
58
 * The hexadecimal values are the intended ones for the following 
59
 * constants. The decimal values may be used, provided that the 
60
 * compiler will convert from decimal to binary accurately enough 
61
 * to produce the hexadecimal values shown.
62
 */
63
64
#include "math_private.h"
65
66
static const double
67
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
68
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
69
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
70
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
71
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
72
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
73
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
74
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
75
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
76
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
77
78
static const double zero   =  0.0;
79
static volatile double vzero = 0.0;
80
81
double
82
__ieee754_log(double x)
83
853k
{
84
853k
  double hfsq,f,s,z,R,w,t1,t2,dk;
85
853k
  int32_t k,hx,i,j;
86
853k
  u_int32_t lx;
87
88
853k
  EXTRACT_WORDS(hx,lx,x);
89
90
853k
  k=0;
91
853k
  if (hx < 0x00100000) {     /* x < 2**-1022  */
92
18
      if (((hx&0x7fffffff)|lx)==0) 
93
7
    return -two54/vzero;    /* log(+-0)=-inf */
94
11
      if (hx<0) return (x-x)/zero;  /* log(-#) = NaN */
95
0
      k -= 54; x *= two54; /* subnormal number, scale up x */
96
0
      GET_HIGH_WORD(hx,x);
97
0
  } 
98
853k
  if (hx >= 0x7ff00000) return x+x;
99
853k
  k += (hx>>20)-1023;
100
853k
  hx &= 0x000fffff;
101
853k
  i = (hx+0x95f64)&0x100000;
102
853k
  SET_HIGH_WORD(x,hx|(i^0x3ff00000));  /* normalize x or x/2 */
103
853k
  k += (i>>20);
104
853k
  f = x-1.0;
105
853k
  if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
106
483k
      if(f==zero) {
107
480k
    if(k==0) {
108
1
        return zero;
109
480k
    } else {
110
480k
        dk=(double)k;
111
480k
        return dk*ln2_hi+dk*ln2_lo;
112
480k
    }
113
480k
      }
114
2.27k
      R = f*f*(0.5-0.33333333333333333*f);
115
2.27k
      if(k==0) return f-R; else {dk=(double)k;
116
2.27k
             return dk*ln2_hi-((R-dk*ln2_lo)-f);}
117
2.27k
  }
118
370k
  s = f/(2.0+f); 
119
370k
  dk = (double)k;
120
370k
  z = s*s;
121
370k
  i = hx-0x6147a;
122
370k
  w = z*z;
123
370k
  j = 0x6b851-hx;
124
370k
  t1= w*(Lg2+w*(Lg4+w*Lg6)); 
125
370k
  t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
126
370k
  i |= j;
127
370k
  R = t2+t1;
128
370k
  if(i>0) {
129
342
      hfsq=0.5*f*f;
130
342
      if(k==0) return f-(hfsq-s*(hfsq+R)); else
131
342
         return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
132
370k
  } else {
133
370k
      if(k==0) return f-s*(f-R); else
134
370k
         return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
135
370k
  }
136
370k
}