Coverage Report

Created: 2025-06-24 07:03

/src/moddable/xs/tools/fdlibm/e_asin.c
Line
Count
Source (jump to first uncovered line)
1
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
/* asin(x)
14
 * Method :                  
15
 *  Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
16
 *  we approximate asin(x) on [0,0.5] by
17
 *    asin(x) = x + x*x^2*R(x^2)
18
 *  where
19
 *    R(x^2) is a rational approximation of (asin(x)-x)/x^3 
20
 *  and its remez error is bounded by
21
 *    |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
22
 *
23
 *  For x in [0.5,1]
24
 *    asin(x) = pi/2-2*asin(sqrt((1-x)/2))
25
 *  Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
26
 *  then for x>0.98
27
 *    asin(x) = pi/2 - 2*(s+s*z*R(z))
28
 *      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
29
 *  For x<=0.98, let pio4_hi = pio2_hi/2, then
30
 *    f = hi part of s;
31
 *    c = sqrt(z) - f = (z-f*f)/(s+f)   ...f+c=sqrt(z)
32
 *  and
33
 *    asin(x) = pi/2 - 2*(s+s*z*R(z))
34
 *      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
35
 *      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
36
 *
37
 * Special cases:
38
 *  if x is NaN, return x itself;
39
 *  if |x|>1, return NaN with invalid signal.
40
 *
41
 */
42
43
#include "math_private.h"
44
45
static const double
46
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
47
huge =  1.000e+300,
48
pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
49
pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
50
pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
51
  /* coefficient for R(x^2) */
52
pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
53
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
54
pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
55
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
56
pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
57
pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
58
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
59
qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
60
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
61
qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
62
63
double
64
__ieee754_asin(double x)
65
2.47k
{
66
2.47k
  double t=0.0,w,p,q,c,r,s;
67
2.47k
  int32_t hx,ix;
68
2.47k
  GET_HIGH_WORD(hx,x);
69
2.47k
  ix = hx&0x7fffffff;
70
2.47k
  if(ix>= 0x3ff00000) {   /* |x|>= 1 */
71
1.26k
      u_int32_t lx;
72
1.26k
      GET_LOW_WORD(lx,x);
73
1.26k
      if(((ix-0x3ff00000)|lx)==0)
74
        /* asin(1)=+-pi/2 with inexact */
75
1.22k
    return x*pio2_hi+x*pio2_lo;  
76
38
      return (x-x)/(x-x);   /* asin(|x|>1) is NaN */   
77
1.26k
  } else if (ix<0x3fe00000) { /* |x|<0.5 */
78
329
      if(ix<0x3e500000) {   /* if |x| < 2**-26 */
79
254
    if(huge+x>one) return x;/* return x with inexact if x!=0*/
80
254
      }
81
75
      t = x*x;
82
75
      p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
83
75
      q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
84
75
      w = p/q;
85
75
      return x+x*w;
86
329
  }
87
  /* 1> |x|>= 0.5 */
88
883
  w = one-fabs(x);
89
883
  t = w*0.5;
90
883
  p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
91
883
  q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
92
883
  s = sqrt(t);
93
883
  if(ix>=0x3FEF3333) {   /* if |x| > 0.975 */
94
0
      w = p/q;
95
0
      t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
96
883
  } else {
97
883
      w  = s;
98
883
      SET_LOW_WORD(w,0);
99
883
      c  = (t-w*w)/(s+w);
100
883
      r  = p/q;
101
883
      p  = 2.0*s*r-(pio2_lo-2.0*c);
102
883
      q  = pio4_hi-2.0*w;
103
883
      t  = pio4_hi-(p-q);
104
883
  }    
105
883
  if(hx>0) return t; else return -t;    
106
883
}