/src/moddable/xs/tools/fdlibm/e_pow.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * ==================================================== |
3 | | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
4 | | * |
5 | | * Permission to use, copy, modify, and distribute this |
6 | | * software is freely granted, provided that this notice |
7 | | * is preserved. |
8 | | * ==================================================== |
9 | | */ |
10 | | |
11 | | /* pow(x,y) return x**y |
12 | | * |
13 | | * n |
14 | | * Method: Let x = 2 * (1+f) |
15 | | * 1. Compute and return log2(x) in two pieces: |
16 | | * log2(x) = w1 + w2, |
17 | | * where w1 has 53-24 = 29 bit trailing zeros. |
18 | | * 2. Perform y*log2(x) = n+y' by simulating multi-precision |
19 | | * arithmetic, where |y'|<=0.5. |
20 | | * 3. Return x**y = 2**n*exp(y'*log2) |
21 | | * |
22 | | * Special cases: |
23 | | * 1. (anything) ** 0 is 1 |
24 | | * 2. (anything) ** 1 is itself |
25 | | * 3. (anything) ** NAN is NAN except 1 ** NAN = 1 |
26 | | * 4. NAN ** (anything except 0) is NAN |
27 | | * 5. +-(|x| > 1) ** +INF is +INF |
28 | | * 6. +-(|x| > 1) ** -INF is +0 |
29 | | * 7. +-(|x| < 1) ** +INF is +0 |
30 | | * 8. +-(|x| < 1) ** -INF is +INF |
31 | | * 9. +-1 ** +-INF is 1 |
32 | | * 10. +0 ** (+anything except 0, NAN) is +0 |
33 | | * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
34 | | * 12. +0 ** (-anything except 0, NAN) is +INF |
35 | | * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
36 | | * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
37 | | * 15. +INF ** (+anything except 0,NAN) is +INF |
38 | | * 16. +INF ** (-anything except 0,NAN) is +0 |
39 | | * 17. -INF ** (anything) = -0 ** (-anything) |
40 | | * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
41 | | * 19. (-anything except 0 and inf) ** (non-integer) is NAN |
42 | | * |
43 | | * Accuracy: |
44 | | * pow(x,y) returns x**y nearly rounded. In particular |
45 | | * pow(integer,integer) |
46 | | * always returns the correct integer provided it is |
47 | | * representable. |
48 | | * |
49 | | * Constants : |
50 | | * The hexadecimal values are the intended ones for the following |
51 | | * constants. The decimal values may be used, provided that the |
52 | | * compiler will convert from decimal to binary accurately enough |
53 | | * to produce the hexadecimal values shown. |
54 | | */ |
55 | | |
56 | | #include "math_private.h" |
57 | | |
58 | | static const double |
59 | | bp[] = {1.0, 1.5,}, |
60 | | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
61 | | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
62 | | zero = 0.0, |
63 | | half = 0.5, |
64 | | qrtr = 0.25, |
65 | | thrd = 3.3333333333333331e-01, /* 0x3fd55555, 0x55555555 */ |
66 | | one = 1.0, |
67 | | two = 2.0, |
68 | | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
69 | | huge = 1.0e300, |
70 | | tiny = 1.0e-300, |
71 | | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
72 | | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
73 | | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
74 | | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
75 | | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
76 | | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
77 | | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
78 | | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
79 | | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
80 | | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
81 | | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
82 | | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
83 | | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
84 | | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
85 | | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
86 | | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
87 | | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
88 | | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
89 | | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
90 | | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
91 | | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
92 | | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
93 | | |
94 | | double |
95 | | __ieee754_pow(double x, double y) |
96 | 1.73M | { |
97 | 1.73M | double z,ax,z_h,z_l,p_h,p_l; |
98 | 1.73M | double y1,t1,t2,r,s,t,u,v,w; |
99 | 1.73M | int32_t i,j,k,yisint,n; |
100 | 1.73M | int32_t hx,hy,ix,iy; |
101 | 1.73M | u_int32_t lx,ly; |
102 | | |
103 | 1.73M | EXTRACT_WORDS(hx,lx,x); |
104 | 1.73M | EXTRACT_WORDS(hy,ly,y); |
105 | 1.73M | ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
106 | | |
107 | | /* y==zero: x**0 = 1 */ |
108 | 1.73M | if((iy|ly)==0) return one; |
109 | | |
110 | | /* x==1: 1**y = 1, even if y is NaN */ |
111 | 1.46M | if (hx==0x3ff00000 && lx == 0) return one; |
112 | | |
113 | | /* y!=zero: result is NaN if either arg is NaN */ |
114 | 1.32M | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
115 | 1.32M | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
116 | 123k | return nan_mix(x, y); |
117 | | |
118 | | /* determine if y is an odd int when x < 0 |
119 | | * yisint = 0 ... y is not an integer |
120 | | * yisint = 1 ... y is an odd int |
121 | | * yisint = 2 ... y is an even int |
122 | | */ |
123 | 1.19M | yisint = 0; |
124 | 1.19M | if(hx<0) { |
125 | 61.2k | if(iy>=0x43400000) yisint = 2; /* even integer y */ |
126 | 61.1k | else if(iy>=0x3ff00000) { |
127 | 61.1k | k = (iy>>20)-0x3ff; /* exponent */ |
128 | 61.1k | if(k>20) { |
129 | 14 | j = ly>>(52-k); |
130 | 14 | if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1); |
131 | 61.1k | } else if(ly==0) { |
132 | 61.0k | j = iy>>(20-k); |
133 | 61.0k | if((j<<(20-k))==iy) yisint = 2-(j&1); |
134 | 61.0k | } |
135 | 61.1k | } |
136 | 61.2k | } |
137 | | |
138 | | /* special value of y */ |
139 | 1.19M | if(ly==0) { |
140 | 947k | if (iy==0x7ff00000) { /* y is +-inf */ |
141 | 1.49k | if(((ix-0x3ff00000)|lx)==0) |
142 | 0 | return one; /* (-1)**+-inf is 1 */ |
143 | 1.49k | else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
144 | 592 | return (hy>=0)? y: zero; |
145 | 903 | else /* (|x|<1)**-,+inf = inf,0 */ |
146 | 903 | return (hy<0)?-y: zero; |
147 | 1.49k | } |
148 | 945k | if(iy==0x3ff00000) { /* y is +-1 */ |
149 | 68.2k | if(hy<0) return one/x; else return x; |
150 | 68.2k | } |
151 | 877k | if(hy==0x40000000) return x*x; /* y is 2 */ |
152 | 860k | if(hy==0x3fe00000) { /* y is 0.5 */ |
153 | 260 | if(hx>=0) /* x >= +0 */ |
154 | 257 | return sqrt(x); |
155 | 260 | } |
156 | 860k | } |
157 | | |
158 | 1.11M | ax = fabs(x); |
159 | | /* special value of x */ |
160 | 1.11M | if(lx==0) { |
161 | 975k | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
162 | 1.25k | z = ax; /*x is +-0,+-inf,+-1*/ |
163 | 1.25k | if(hy<0) z = one/z; /* z = (1/|x|) */ |
164 | 1.25k | if(hx<0) { |
165 | 106 | if(((ix-0x3ff00000)|yisint)==0) { |
166 | 32 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
167 | 74 | } else if(yisint==1) |
168 | 29 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
169 | 106 | } |
170 | 1.25k | return z; |
171 | 1.25k | } |
172 | 975k | } |
173 | | |
174 | | /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be |
175 | | n = (hx>>31)+1; |
176 | | but ANSI C says a right shift of a signed negative quantity is |
177 | | implementation defined. */ |
178 | 1.10M | n = ((u_int32_t)hx>>31)-1; |
179 | | |
180 | | /* (x<0)**(non-int) is NaN */ |
181 | 1.10M | if((n|yisint)==0) return (x-x)/(x-x); |
182 | | |
183 | 1.10M | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
184 | 1.10M | if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ |
185 | | |
186 | | /* |y| is huge */ |
187 | 1.10M | if(iy>0x41e00000) { /* if |y| > 2**31 */ |
188 | 249k | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
189 | 102k | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
190 | 102k | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
191 | 102k | } |
192 | | /* over/underflow if x is not close to one */ |
193 | 147k | if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; |
194 | 97.5k | if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; |
195 | | /* now |1-x| is tiny <= 2**-20, suffice to compute |
196 | | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
197 | 0 | t = ax-one; /* t has 20 trailing zeros */ |
198 | 0 | w = (t*t)*(half-t*(thrd-t*qrtr)); |
199 | 0 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
200 | 0 | v = t*ivln2_l-w*ivln2; |
201 | 0 | t1 = u+v; |
202 | 0 | SET_LOW_WORD(t1,0); |
203 | 0 | t2 = v-(t1-u); |
204 | 859k | } else { |
205 | 859k | double ss,s2,s_h,s_l,t_h,t_l; |
206 | 859k | n = 0; |
207 | | /* take care subnormal number */ |
208 | 859k | if(ix<0x00100000) |
209 | 0 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
210 | 859k | n += ((ix)>>20)-0x3ff; |
211 | 859k | j = ix&0x000fffff; |
212 | | /* determine interval */ |
213 | 859k | ix = j|0x3ff00000; /* normalize ix */ |
214 | 859k | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
215 | 212k | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
216 | 57.1k | else {k=0;n+=1;ix -= 0x00100000;} |
217 | 859k | SET_HIGH_WORD(ax,ix); |
218 | | |
219 | | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
220 | 859k | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
221 | 859k | v = one/(ax+bp[k]); |
222 | 859k | ss = u*v; |
223 | 859k | s_h = ss; |
224 | 859k | SET_LOW_WORD(s_h,0); |
225 | | /* t_h=ax+bp[k] High */ |
226 | 859k | t_h = zero; |
227 | 859k | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
228 | 859k | t_l = ax - (t_h-bp[k]); |
229 | 859k | s_l = v*((u-s_h*t_h)-s_h*t_l); |
230 | | /* compute log(ax) */ |
231 | 859k | s2 = ss*ss; |
232 | 859k | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
233 | 859k | r += s_l*(s_h+ss); |
234 | 859k | s2 = s_h*s_h; |
235 | 859k | t_h = 3+s2+r; |
236 | 859k | SET_LOW_WORD(t_h,0); |
237 | 859k | t_l = r-((t_h-3)-s2); |
238 | | /* u+v = ss*(1+...) */ |
239 | 859k | u = s_h*t_h; |
240 | 859k | v = s_l*t_h+t_l*ss; |
241 | | /* 2/(3log2)*(ss+...) */ |
242 | 859k | p_h = u+v; |
243 | 859k | SET_LOW_WORD(p_h,0); |
244 | 859k | p_l = v-(p_h-u); |
245 | 859k | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
246 | 859k | z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
247 | | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
248 | 859k | t = n; |
249 | 859k | t1 = (((z_h+z_l)+dp_h[k])+t); |
250 | 859k | SET_LOW_WORD(t1,0); |
251 | 859k | t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
252 | 859k | } |
253 | | |
254 | | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
255 | 859k | y1 = y; |
256 | 859k | SET_LOW_WORD(y1,0); |
257 | 859k | p_l = (y-y1)*t1+y*t2; |
258 | 859k | p_h = y1*t1; |
259 | 859k | z = p_l+p_h; |
260 | 859k | EXTRACT_WORDS(j,i,z); |
261 | 859k | if (j>=0x40900000) { /* z >= 1024 */ |
262 | 90.2k | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
263 | 88.5k | return s*huge*huge; /* overflow */ |
264 | 1.63k | else { |
265 | 1.63k | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
266 | 1.63k | } |
267 | 768k | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
268 | 92.6k | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
269 | 92.6k | return s*tiny*tiny; /* underflow */ |
270 | 9 | else { |
271 | 9 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
272 | 9 | } |
273 | 92.6k | } |
274 | | /* |
275 | | * compute 2**(p_h+p_l) |
276 | | */ |
277 | 676k | i = j&0x7fffffff; |
278 | 676k | k = (i>>20)-0x3ff; |
279 | 676k | n = 0; |
280 | 676k | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
281 | 665k | n = j+(0x00100000>>(k+1)); |
282 | 665k | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
283 | 665k | t = zero; |
284 | 665k | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
285 | 665k | n = ((n&0x000fffff)|0x00100000)>>(20-k); |
286 | 665k | if(j<0) n = -n; |
287 | 665k | p_h -= t; |
288 | 665k | } |
289 | 676k | t = p_l+p_h; |
290 | 676k | SET_LOW_WORD(t,0); |
291 | 676k | u = t*lg2_h; |
292 | 676k | v = (p_l-(t-p_h))*lg2+t*lg2_l; |
293 | 676k | z = u+v; |
294 | 676k | w = v-(z-u); |
295 | 676k | t = z*z; |
296 | 676k | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
297 | 676k | r = (z*t1)/(t1-two)-(w+z*w); |
298 | 676k | z = one-(r-z); |
299 | 676k | GET_HIGH_WORD(j,z); |
300 | 676k | j += (int32_t)((u_int32_t)n<<20); |
301 | 676k | if((j>>20)<=0) z = s_scalbn(z,n); /* subnormal output */ |
302 | 674k | else SET_HIGH_WORD(z,j); |
303 | 676k | return s*z; |
304 | 859k | } |