Coverage Report

Created: 2025-08-03 06:59

/src/moddable/xs/tools/fdlibm/e_pow.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * ====================================================
3
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Permission to use, copy, modify, and distribute this
6
 * software is freely granted, provided that this notice
7
 * is preserved.
8
 * ====================================================
9
 */
10
11
/* pow(x,y) return x**y
12
 *
13
 *          n
14
 * Method:  Let x =  2   * (1+f)
15
 *  1. Compute and return log2(x) in two pieces:
16
 *    log2(x) = w1 + w2,
17
 *     where w1 has 53-24 = 29 bit trailing zeros.
18
 *  2. Perform y*log2(x) = n+y' by simulating multi-precision
19
 *     arithmetic, where |y'|<=0.5.
20
 *  3. Return x**y = 2**n*exp(y'*log2)
21
 *
22
 * Special cases:
23
 *  1.  (anything) ** 0  is 1
24
 *  2.  (anything) ** 1  is itself
25
 *  3.  (anything) ** NAN is NAN except 1 ** NAN = 1
26
 *  4.  NAN ** (anything except 0) is NAN
27
 *  5.  +-(|x| > 1) **  +INF is +INF
28
 *  6.  +-(|x| > 1) **  -INF is +0
29
 *  7.  +-(|x| < 1) **  +INF is +0
30
 *  8.  +-(|x| < 1) **  -INF is +INF
31
 *  9.  +-1         ** +-INF is 1
32
 *  10. +0 ** (+anything except 0, NAN)               is +0
33
 *  11. -0 ** (+anything except 0, NAN, odd integer)  is +0
34
 *  12. +0 ** (-anything except 0, NAN)               is +INF
35
 *  13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
36
 *  14. -0 ** (odd integer) = -( +0 ** (odd integer) )
37
 *  15. +INF ** (+anything except 0,NAN) is +INF
38
 *  16. +INF ** (-anything except 0,NAN) is +0
39
 *  17. -INF ** (anything)  = -0 ** (-anything)
40
 *  18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
41
 *  19. (-anything except 0 and inf) ** (non-integer) is NAN
42
 *
43
 * Accuracy:
44
 *  pow(x,y) returns x**y nearly rounded. In particular
45
 *      pow(integer,integer)
46
 *  always returns the correct integer provided it is
47
 *  representable.
48
 *
49
 * Constants :
50
 * The hexadecimal values are the intended ones for the following
51
 * constants. The decimal values may be used, provided that the
52
 * compiler will convert from decimal to binary accurately enough
53
 * to produce the hexadecimal values shown.
54
 */
55
56
#include "math_private.h"
57
58
static const double
59
bp[] = {1.0, 1.5,},
60
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
61
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
62
zero    =  0.0,
63
half    =  0.5,
64
qrtr    =  0.25,
65
thrd    =  3.3333333333333331e-01, /* 0x3fd55555, 0x55555555 */
66
one =  1.0,
67
two =  2.0,
68
two53 =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
69
huge  =  1.0e300,
70
tiny    =  1.0e-300,
71
  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
72
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
73
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
74
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
75
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
76
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
77
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
78
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
79
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
80
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
81
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
82
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
83
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
84
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
85
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
86
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
87
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
88
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
89
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
90
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
91
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
92
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
93
94
double
95
__ieee754_pow(double x, double y)
96
1.73M
{
97
1.73M
  double z,ax,z_h,z_l,p_h,p_l;
98
1.73M
  double y1,t1,t2,r,s,t,u,v,w;
99
1.73M
  int32_t i,j,k,yisint,n;
100
1.73M
  int32_t hx,hy,ix,iy;
101
1.73M
  u_int32_t lx,ly;
102
103
1.73M
  EXTRACT_WORDS(hx,lx,x);
104
1.73M
  EXTRACT_WORDS(hy,ly,y);
105
1.73M
  ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
106
107
    /* y==zero: x**0 = 1 */
108
1.73M
  if((iy|ly)==0) return one;
109
110
    /* x==1: 1**y = 1, even if y is NaN */
111
1.46M
  if (hx==0x3ff00000 && lx == 0) return one;
112
113
    /* y!=zero: result is NaN if either arg is NaN */
114
1.32M
  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
115
1.32M
     iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
116
123k
      return nan_mix(x, y);
117
118
    /* determine if y is an odd int when x < 0
119
     * yisint = 0 ... y is not an integer
120
     * yisint = 1 ... y is an odd int
121
     * yisint = 2 ... y is an even int
122
     */
123
1.19M
  yisint  = 0;
124
1.19M
  if(hx<0) {
125
61.2k
      if(iy>=0x43400000) yisint = 2; /* even integer y */
126
61.1k
      else if(iy>=0x3ff00000) {
127
61.1k
    k = (iy>>20)-0x3ff;    /* exponent */
128
61.1k
    if(k>20) {
129
14
        j = ly>>(52-k);
130
14
        if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1);
131
61.1k
    } else if(ly==0) {
132
61.0k
        j = iy>>(20-k);
133
61.0k
        if((j<<(20-k))==iy) yisint = 2-(j&1);
134
61.0k
    }
135
61.1k
      }
136
61.2k
  }
137
138
    /* special value of y */
139
1.19M
  if(ly==0) {
140
947k
      if (iy==0x7ff00000) { /* y is +-inf */
141
1.49k
          if(((ix-0x3ff00000)|lx)==0)
142
0
        return  one; /* (-1)**+-inf is 1 */
143
1.49k
          else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
144
592
        return (hy>=0)? y: zero;
145
903
          else      /* (|x|<1)**-,+inf = inf,0 */
146
903
        return (hy<0)?-y: zero;
147
1.49k
      }
148
945k
      if(iy==0x3ff00000) { /* y is  +-1 */
149
68.2k
    if(hy<0) return one/x; else return x;
150
68.2k
      }
151
877k
      if(hy==0x40000000) return x*x; /* y is  2 */
152
860k
      if(hy==0x3fe00000) { /* y is  0.5 */
153
260
    if(hx>=0)  /* x >= +0 */
154
257
    return sqrt(x);
155
260
      }
156
860k
  }
157
158
1.11M
  ax   = fabs(x);
159
    /* special value of x */
160
1.11M
  if(lx==0) {
161
975k
      if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
162
1.25k
    z = ax;     /*x is +-0,+-inf,+-1*/
163
1.25k
    if(hy<0) z = one/z; /* z = (1/|x|) */
164
1.25k
    if(hx<0) {
165
106
        if(((ix-0x3ff00000)|yisint)==0) {
166
32
      z = (z-z)/(z-z); /* (-1)**non-int is NaN */
167
74
        } else if(yisint==1)
168
29
      z = -z;   /* (x<0)**odd = -(|x|**odd) */
169
106
    }
170
1.25k
    return z;
171
1.25k
      }
172
975k
  }
173
174
    /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
175
  n = (hx>>31)+1;
176
       but ANSI C says a right shift of a signed negative quantity is
177
       implementation defined.  */
178
1.10M
  n = ((u_int32_t)hx>>31)-1;
179
180
    /* (x<0)**(non-int) is NaN */
181
1.10M
  if((n|yisint)==0) return (x-x)/(x-x);
182
183
1.10M
  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
184
1.10M
  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
185
186
    /* |y| is huge */
187
1.10M
  if(iy>0x41e00000) { /* if |y| > 2**31 */
188
249k
      if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
189
102k
    if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
190
102k
    if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
191
102k
      }
192
  /* over/underflow if x is not close to one */
193
147k
      if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
194
97.5k
      if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
195
  /* now |1-x| is tiny <= 2**-20, suffice to compute
196
     log(x) by x-x^2/2+x^3/3-x^4/4 */
197
0
      t = ax-one;   /* t has 20 trailing zeros */
198
0
      w = (t*t)*(half-t*(thrd-t*qrtr));
199
0
      u = ivln2_h*t;  /* ivln2_h has 21 sig. bits */
200
0
      v = t*ivln2_l-w*ivln2;
201
0
      t1 = u+v;
202
0
      SET_LOW_WORD(t1,0);
203
0
      t2 = v-(t1-u);
204
859k
  } else {
205
859k
      double ss,s2,s_h,s_l,t_h,t_l;
206
859k
      n = 0;
207
  /* take care subnormal number */
208
859k
      if(ix<0x00100000)
209
0
    {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
210
859k
      n  += ((ix)>>20)-0x3ff;
211
859k
      j  = ix&0x000fffff;
212
  /* determine interval */
213
859k
      ix = j|0x3ff00000;    /* normalize ix */
214
859k
      if(j<=0x3988E) k=0;    /* |x|<sqrt(3/2) */
215
212k
      else if(j<0xBB67A) k=1;  /* |x|<sqrt(3)   */
216
57.1k
      else {k=0;n+=1;ix -= 0x00100000;}
217
859k
      SET_HIGH_WORD(ax,ix);
218
219
  /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
220
859k
      u = ax-bp[k];   /* bp[0]=1.0, bp[1]=1.5 */
221
859k
      v = one/(ax+bp[k]);
222
859k
      ss = u*v;
223
859k
      s_h = ss;
224
859k
      SET_LOW_WORD(s_h,0);
225
  /* t_h=ax+bp[k] High */
226
859k
      t_h = zero;
227
859k
      SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
228
859k
      t_l = ax - (t_h-bp[k]);
229
859k
      s_l = v*((u-s_h*t_h)-s_h*t_l);
230
  /* compute log(ax) */
231
859k
      s2 = ss*ss;
232
859k
      r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
233
859k
      r += s_l*(s_h+ss);
234
859k
      s2  = s_h*s_h;
235
859k
      t_h = 3+s2+r;
236
859k
      SET_LOW_WORD(t_h,0);
237
859k
      t_l = r-((t_h-3)-s2);
238
  /* u+v = ss*(1+...) */
239
859k
      u = s_h*t_h;
240
859k
      v = s_l*t_h+t_l*ss;
241
  /* 2/(3log2)*(ss+...) */
242
859k
      p_h = u+v;
243
859k
      SET_LOW_WORD(p_h,0);
244
859k
      p_l = v-(p_h-u);
245
859k
      z_h = cp_h*p_h;   /* cp_h+cp_l = 2/(3*log2) */
246
859k
      z_l = cp_l*p_h+p_l*cp+dp_l[k];
247
  /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
248
859k
      t = n;
249
859k
      t1 = (((z_h+z_l)+dp_h[k])+t);
250
859k
      SET_LOW_WORD(t1,0);
251
859k
      t2 = z_l-(((t1-t)-dp_h[k])-z_h);
252
859k
  }
253
254
    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
255
859k
  y1  = y;
256
859k
  SET_LOW_WORD(y1,0);
257
859k
  p_l = (y-y1)*t1+y*t2;
258
859k
  p_h = y1*t1;
259
859k
  z = p_l+p_h;
260
859k
  EXTRACT_WORDS(j,i,z);
261
859k
  if (j>=0x40900000) {       /* z >= 1024 */
262
90.2k
      if(((j-0x40900000)|i)!=0)      /* if z > 1024 */
263
88.5k
    return s*huge*huge;      /* overflow */
264
1.63k
      else {
265
1.63k
    if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
266
1.63k
      }
267
768k
  } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
268
92.6k
      if(((j-0xc090cc00)|i)!=0)    /* z < -1075 */
269
92.6k
    return s*tiny*tiny;    /* underflow */
270
9
      else {
271
9
    if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
272
9
      }
273
92.6k
  }
274
    /*
275
     * compute 2**(p_h+p_l)
276
     */
277
676k
  i = j&0x7fffffff;
278
676k
  k = (i>>20)-0x3ff;
279
676k
  n = 0;
280
676k
  if(i>0x3fe00000) {   /* if |z| > 0.5, set n = [z+0.5] */
281
665k
      n = j+(0x00100000>>(k+1));
282
665k
      k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
283
665k
      t = zero;
284
665k
      SET_HIGH_WORD(t,n&~(0x000fffff>>k));
285
665k
      n = ((n&0x000fffff)|0x00100000)>>(20-k);
286
665k
      if(j<0) n = -n;
287
665k
      p_h -= t;
288
665k
  }
289
676k
  t = p_l+p_h;
290
676k
  SET_LOW_WORD(t,0);
291
676k
  u = t*lg2_h;
292
676k
  v = (p_l-(t-p_h))*lg2+t*lg2_l;
293
676k
  z = u+v;
294
676k
  w = v-(z-u);
295
676k
  t  = z*z;
296
676k
  t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
297
676k
  r  = (z*t1)/(t1-two)-(w+z*w);
298
676k
  z  = one-(r-z);
299
676k
  GET_HIGH_WORD(j,z);
300
676k
  j += (int32_t)((u_int32_t)n<<20);
301
676k
  if((j>>20)<=0) z = s_scalbn(z,n);  /* subnormal output */
302
674k
  else SET_HIGH_WORD(z,j);
303
676k
  return s*z;
304
859k
}