Coverage Report

Created: 2025-08-03 06:59

/src/moddable/xs/tools/fdlibm/k_cos.c
Line
Count
Source
1
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice 
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
/*
14
 * __kernel_cos( x,  y )
15
 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
16
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17
 * Input y is the tail of x. 
18
 *
19
 * Algorithm
20
 *  1. Since cos(-x) = cos(x), we need only to consider positive x.
21
 *  2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
22
 *  3. cos(x) is approximated by a polynomial of degree 14 on
23
 *     [0,pi/4]
24
 *                         4            14
25
 *      cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
26
 *     where the remez error is
27
 *  
28
 *  |              2     4     6     8     10    12     14 |     -58
29
 *  |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
30
 *  |                            | 
31
 * 
32
 *                 4     6     8     10    12     14 
33
 *  4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
34
 *         cos(x) ~ 1 - x*x/2 + r
35
 *     since cos(x+y) ~ cos(x) - sin(x)*y 
36
 *        ~ cos(x) - x*y,
37
 *     a correction term is necessary in cos(x) and hence
38
 *    cos(x+y) = 1 - (x*x/2 - (r - x*y))
39
 *     For better accuracy, rearrange to
40
 *    cos(x+y) ~ w + (tmp + (r-x*y))
41
 *     where w = 1 - x*x/2 and tmp is a tiny correction term
42
 *     (1 - x*x/2 == w + tmp exactly in infinite precision).
43
 *     The exactness of w + tmp in infinite precision depends on w
44
 *     and tmp having the same precision as x.  If they have extra
45
 *     precision due to compiler bugs, then the extra precision is
46
 *     only good provided it is retained in all terms of the final
47
 *     expression for cos().  Retention happens in all cases tested
48
 *     under FreeBSD, so don't pessimize things by forcibly clipping
49
 *     any extra precision in w.
50
 */
51
52
#include "math_private.h"
53
54
static const double
55
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
56
C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
57
C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
58
C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
59
C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
60
C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
61
C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
62
63
double
64
__kernel_cos(double x, double y)
65
9.25k
{
66
9.25k
  double hz,z,r,w;
67
68
9.25k
  z  = x*x;
69
9.25k
  w  = z*z;
70
9.25k
  r  = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
71
9.25k
  hz = 0.5*z;
72
9.25k
  w  = one-hz;
73
9.25k
  return w + (((one-w)-hz) + (z*r-x*y));
74
9.25k
}