Coverage Report

Created: 2025-09-04 06:38

/src/moddable/xs/tools/fdlibm/s_atan.c
Line
Count
Source
1
/*
2
 * ====================================================
3
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Developed at SunPro, a Sun Microsystems, Inc. business.
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
12
/* atan(x)
13
 * Method
14
 *   1. Reduce x to positive by atan(x) = -atan(-x).
15
 *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
16
 *      is further reduced to one of the following intervals and the
17
 *      arctangent of t is evaluated by the corresponding formula:
18
 *
19
 *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
20
 *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
21
 *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
22
 *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
23
 *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
24
 *
25
 * Constants:
26
 * The hexadecimal values are the intended ones for the following
27
 * constants. The decimal values may be used, provided that the
28
 * compiler will convert from decimal to binary accurately enough
29
 * to produce the hexadecimal values shown.
30
 */
31
32
#include "math_private.h"
33
34
static const double atanhi[] = {
35
  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
36
  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
37
  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
38
  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
39
};
40
41
static const double atanlo[] = {
42
  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
43
  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
44
  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
45
  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
46
};
47
48
static const double aT[] = {
49
  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
50
 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
51
  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
52
 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
53
  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
54
 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
55
  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
56
 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
57
  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
58
 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
59
  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
60
};
61
62
  static const double
63
one   = 1.0,
64
huge   = 1.0e300;
65
66
double
67
s_atan(double x)
68
171k
{
69
171k
  double w,s1,s2,z;
70
171k
  int32_t ix,hx,id;
71
72
171k
  GET_HIGH_WORD(hx,x);
73
171k
  ix = hx&0x7fffffff;
74
171k
  if(ix>=0x44100000) { /* if |x| >= 2^66 */
75
5.03k
      u_int32_t low;
76
5.03k
      GET_LOW_WORD(low,x);
77
5.03k
      if(ix>0x7ff00000||
78
5.03k
    (ix==0x7ff00000&&(low!=0)))
79
1.87k
    return x+x;    /* NaN */
80
3.15k
      if(hx>0) return  atanhi[3]+*(volatile double *)&atanlo[3];
81
1.78k
      else     return -atanhi[3]-*(volatile double *)&atanlo[3];
82
166k
  } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
83
145k
      if (ix < 0x3e400000) { /* |x| < 2^-27 */
84
1.01k
    if(huge+x>one) return x; /* raise inexact */
85
1.01k
      }
86
144k
      id = -1;
87
144k
  } else {
88
20.5k
  x = fabs(x);
89
20.5k
  if (ix < 0x3ff30000) {   /* |x| < 1.1875 */
90
11.4k
      if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
91
6.54k
    id = 0; x = (2.0*x-one)/(2.0+x);
92
6.54k
      } else {     /* 11/16<=|x|< 19/16 */
93
4.92k
    id = 1; x  = (x-one)/(x+one);
94
4.92k
      }
95
11.4k
  } else {
96
9.03k
      if (ix < 0x40038000) { /* |x| < 2.4375 */
97
4.16k
    id = 2; x  = (x-1.5)/(one+1.5*x);
98
4.86k
      } else {     /* 2.4375 <= |x| < 2^66 */
99
4.86k
    id = 3; x  = -1.0/x;
100
4.86k
      }
101
9.03k
  }}
102
    /* end of argument reduction */
103
165k
  z = x*x;
104
165k
  w = z*z;
105
    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
106
165k
  s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
107
165k
  s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
108
165k
  if (id<0) return x - x*(s1+s2);
109
20.5k
  else {
110
20.5k
      z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
111
20.5k
      return (hx<0)? -z:z;
112
20.5k
  }
113
165k
}