/src/moddable/xs/tools/fdlibm/s_expm1.c
Line | Count | Source |
1 | | /* |
2 | | * ==================================================== |
3 | | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | | * |
5 | | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | | * Permission to use, copy, modify, and distribute this |
7 | | * software is freely granted, provided that this notice |
8 | | * is preserved. |
9 | | * ==================================================== |
10 | | */ |
11 | | |
12 | | /* expm1(x) |
13 | | * Returns exp(x)-1, the exponential of x minus 1. |
14 | | * |
15 | | * Method |
16 | | * 1. Argument reduction: |
17 | | * Given x, find r and integer k such that |
18 | | * |
19 | | * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
20 | | * |
21 | | * Here a correction term c will be computed to compensate |
22 | | * the error in r when rounded to a floating-point number. |
23 | | * |
24 | | * 2. Approximating expm1(r) by a special rational function on |
25 | | * the interval [0,0.34658]: |
26 | | * Since |
27 | | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
28 | | * we define R1(r*r) by |
29 | | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
30 | | * That is, |
31 | | * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
32 | | * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
33 | | * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
34 | | * We use a special Reme algorithm on [0,0.347] to generate |
35 | | * a polynomial of degree 5 in r*r to approximate R1. The |
36 | | * maximum error of this polynomial approximation is bounded |
37 | | * by 2**-61. In other words, |
38 | | * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
39 | | * where Q1 = -1.6666666666666567384E-2, |
40 | | * Q2 = 3.9682539681370365873E-4, |
41 | | * Q3 = -9.9206344733435987357E-6, |
42 | | * Q4 = 2.5051361420808517002E-7, |
43 | | * Q5 = -6.2843505682382617102E-9; |
44 | | * z = r*r, |
45 | | * with error bounded by |
46 | | * | 5 | -61 |
47 | | * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
48 | | * | | |
49 | | * |
50 | | * expm1(r) = exp(r)-1 is then computed by the following |
51 | | * specific way which minimize the accumulation rounding error: |
52 | | * 2 3 |
53 | | * r r [ 3 - (R1 + R1*r/2) ] |
54 | | * expm1(r) = r + --- + --- * [--------------------] |
55 | | * 2 2 [ 6 - r*(3 - R1*r/2) ] |
56 | | * |
57 | | * To compensate the error in the argument reduction, we use |
58 | | * expm1(r+c) = expm1(r) + c + expm1(r)*c |
59 | | * ~ expm1(r) + c + r*c |
60 | | * Thus c+r*c will be added in as the correction terms for |
61 | | * expm1(r+c). Now rearrange the term to avoid optimization |
62 | | * screw up: |
63 | | * ( 2 2 ) |
64 | | * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
65 | | * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
66 | | * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
67 | | * ( ) |
68 | | * |
69 | | * = r - E |
70 | | * 3. Scale back to obtain expm1(x): |
71 | | * From step 1, we have |
72 | | * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
73 | | * = or 2^k*[expm1(r) + (1-2^-k)] |
74 | | * 4. Implementation notes: |
75 | | * (A). To save one multiplication, we scale the coefficient Qi |
76 | | * to Qi*2^i, and replace z by (x^2)/2. |
77 | | * (B). To achieve maximum accuracy, we compute expm1(x) by |
78 | | * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
79 | | * (ii) if k=0, return r-E |
80 | | * (iii) if k=-1, return 0.5*(r-E)-0.5 |
81 | | * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
82 | | * else return 1.0+2.0*(r-E); |
83 | | * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
84 | | * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
85 | | * (vii) return 2^k(1-((E+2^-k)-r)) |
86 | | * |
87 | | * Special cases: |
88 | | * expm1(INF) is INF, expm1(NaN) is NaN; |
89 | | * expm1(-INF) is -1, and |
90 | | * for finite argument, only expm1(0)=0 is exact. |
91 | | * |
92 | | * Accuracy: |
93 | | * according to an error analysis, the error is always less than |
94 | | * 1 ulp (unit in the last place). |
95 | | * |
96 | | * Misc. info. |
97 | | * For IEEE double |
98 | | * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
99 | | * |
100 | | * Constants: |
101 | | * The hexadecimal values are the intended ones for the following |
102 | | * constants. The decimal values may be used, provided that the |
103 | | * compiler will convert from decimal to binary accurately enough |
104 | | * to produce the hexadecimal values shown. |
105 | | */ |
106 | | |
107 | | #include "math_private.h" |
108 | | |
109 | | static const double |
110 | | one = 1.0, |
111 | | tiny = 1.0e-300, |
112 | | o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
113 | | ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
114 | | ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
115 | | invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
116 | | /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ |
117 | | Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
118 | | Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
119 | | Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
120 | | Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
121 | | Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
122 | | |
123 | | static volatile double huge = 1.0e+300; |
124 | | |
125 | | double |
126 | | s_expm1(double x) |
127 | 192k | { |
128 | 192k | double y,hi,lo,c,t,e,hxs,hfx,r1,twopk; |
129 | 192k | int32_t k,xsb; |
130 | 192k | u_int32_t hx; |
131 | | |
132 | 192k | GET_HIGH_WORD(hx,x); |
133 | 192k | xsb = hx&0x80000000; /* sign bit of x */ |
134 | 192k | hx &= 0x7fffffff; /* high word of |x| */ |
135 | | |
136 | | /* filter out huge and non-finite argument */ |
137 | 192k | if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
138 | 103 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
139 | 24 | if(hx>=0x7ff00000) { |
140 | 24 | u_int32_t low; |
141 | 24 | GET_LOW_WORD(low,x); |
142 | 24 | if(((hx&0xfffff)|low)!=0) |
143 | 10 | return x+x; /* NaN */ |
144 | 14 | else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
145 | 24 | } |
146 | 0 | if(x > o_threshold) return huge*huge; /* overflow */ |
147 | 0 | } |
148 | 79 | if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
149 | 0 | if(x+tiny<0.0) /* raise inexact */ |
150 | 0 | return tiny-one; /* return -1 */ |
151 | 0 | } |
152 | 79 | } |
153 | | |
154 | | /* argument reduction */ |
155 | 192k | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
156 | 187k | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
157 | 186k | if(xsb==0) |
158 | 184k | {hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
159 | 1.38k | else |
160 | 1.38k | {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
161 | 186k | } else { |
162 | 1.14k | k = (int32_t)(invln2*x+((xsb==0)?0.5:-0.5)); |
163 | 1.14k | t = k; |
164 | 1.14k | hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
165 | 1.14k | lo = t*ln2_lo; |
166 | 1.14k | } |
167 | 187k | STRICT_ASSIGN(double, x, hi - lo); |
168 | 187k | c = (hi-x)-lo; |
169 | 187k | } |
170 | 4.80k | else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
171 | 823 | t = huge+x; /* return x with inexact flags when x!=0 */ |
172 | 823 | return x - (t-(huge+x)); |
173 | 823 | } |
174 | 3.98k | else k = 0; |
175 | | |
176 | | /* x is now in primary range */ |
177 | 191k | hfx = 0.5*x; |
178 | 191k | hxs = x*hfx; |
179 | 191k | r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
180 | 191k | t = 3.0-r1*hfx; |
181 | 191k | e = hxs*((r1-t)/(6.0 - x*t)); |
182 | 191k | if(k==0) return x - (x*e-hxs); /* c is 0 */ |
183 | 187k | else { |
184 | 187k | INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0); /* 2^k */ |
185 | 187k | e = (x*(e-c)-c); |
186 | 187k | e -= hxs; |
187 | 187k | if(k== -1) return 0.5*(x-e)-0.5; |
188 | 185k | if(k==1) { |
189 | 184k | if(x < -0.25) return -2.0*(e-(x+0.5)); |
190 | 183k | else return one+2.0*(x-e); |
191 | 184k | } |
192 | 1.14k | if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
193 | 445 | y = one-(e-x); |
194 | 445 | if (k == 1024) { |
195 | 0 | double const_0x1p1023 = __ieee754_pow(2, 1023); |
196 | 0 | y = y*2.0*const_0x1p1023; |
197 | 0 | } |
198 | 445 | else y = y*twopk; |
199 | 445 | return y-one; |
200 | 445 | } |
201 | 701 | t = one; |
202 | 701 | if(k<20) { |
203 | 414 | SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ |
204 | 414 | y = t-(e-x); |
205 | 414 | y = y*twopk; |
206 | 414 | } else { |
207 | 287 | SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ |
208 | 287 | y = x-(e+t); |
209 | 287 | y += one; |
210 | 287 | y = y*twopk; |
211 | 287 | } |
212 | 701 | } |
213 | 701 | return y; |
214 | 191k | } |