Coverage Report

Created: 2025-10-10 06:16

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/moddable/xs/tools/fdlibm/s_expm1.c
Line
Count
Source
1
/*
2
 * ====================================================
3
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Developed at SunPro, a Sun Microsystems, Inc. business.
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
12
/* expm1(x)
13
 * Returns exp(x)-1, the exponential of x minus 1.
14
 *
15
 * Method
16
 *   1. Argument reduction:
17
 *  Given x, find r and integer k such that
18
 *
19
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
20
 *
21
 *      Here a correction term c will be computed to compensate
22
 *  the error in r when rounded to a floating-point number.
23
 *
24
 *   2. Approximating expm1(r) by a special rational function on
25
 *  the interval [0,0.34658]:
26
 *  Since
27
 *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
28
 *  we define R1(r*r) by
29
 *      r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
30
 *  That is,
31
 *      R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
32
 *         = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
33
 *         = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
34
 *      We use a special Reme algorithm on [0,0.347] to generate
35
 *  a polynomial of degree 5 in r*r to approximate R1. The
36
 *  maximum error of this polynomial approximation is bounded
37
 *  by 2**-61. In other words,
38
 *      R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
39
 *  where   Q1  =  -1.6666666666666567384E-2,
40
 *    Q2  =   3.9682539681370365873E-4,
41
 *    Q3  =  -9.9206344733435987357E-6,
42
 *    Q4  =   2.5051361420808517002E-7,
43
 *    Q5  =  -6.2843505682382617102E-9;
44
 *    z   =  r*r,
45
 *  with error bounded by
46
 *      |                  5           |     -61
47
 *      | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
48
 *      |                              |
49
 *
50
 *  expm1(r) = exp(r)-1 is then computed by the following
51
 *  specific way which minimize the accumulation rounding error:
52
 *             2     3
53
 *            r     r    [ 3 - (R1 + R1*r/2)  ]
54
 *        expm1(r) = r + --- + --- * [--------------------]
55
 *                  2     2    [ 6 - r*(3 - R1*r/2) ]
56
 *
57
 *  To compensate the error in the argument reduction, we use
58
 *    expm1(r+c) = expm1(r) + c + expm1(r)*c
59
 *         ~ expm1(r) + c + r*c
60
 *  Thus c+r*c will be added in as the correction terms for
61
 *  expm1(r+c). Now rearrange the term to avoid optimization
62
 *  screw up:
63
 *            (      2                                    2 )
64
 *            ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
65
 *   expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
66
 *                  ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
67
 *                      (                                             )
68
 *
69
 *       = r - E
70
 *   3. Scale back to obtain expm1(x):
71
 *  From step 1, we have
72
 *     expm1(x) = either 2^k*[expm1(r)+1] - 1
73
 *        = or     2^k*[expm1(r) + (1-2^-k)]
74
 *   4. Implementation notes:
75
 *  (A). To save one multiplication, we scale the coefficient Qi
76
 *       to Qi*2^i, and replace z by (x^2)/2.
77
 *  (B). To achieve maximum accuracy, we compute expm1(x) by
78
 *    (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
79
 *    (ii)  if k=0, return r-E
80
 *    (iii) if k=-1, return 0.5*(r-E)-0.5
81
 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
82
 *                 else      return  1.0+2.0*(r-E);
83
 *    (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
84
 *    (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
85
 *    (vii) return 2^k(1-((E+2^-k)-r))
86
 *
87
 * Special cases:
88
 *  expm1(INF) is INF, expm1(NaN) is NaN;
89
 *  expm1(-INF) is -1, and
90
 *  for finite argument, only expm1(0)=0 is exact.
91
 *
92
 * Accuracy:
93
 *  according to an error analysis, the error is always less than
94
 *  1 ulp (unit in the last place).
95
 *
96
 * Misc. info.
97
 *  For IEEE double
98
 *      if x >  7.09782712893383973096e+02 then expm1(x) overflow
99
 *
100
 * Constants:
101
 * The hexadecimal values are the intended ones for the following
102
 * constants. The decimal values may be used, provided that the
103
 * compiler will convert from decimal to binary accurately enough
104
 * to produce the hexadecimal values shown.
105
 */
106
107
#include "math_private.h"
108
109
static const double
110
one   = 1.0,
111
tiny    = 1.0e-300,
112
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
113
ln2_hi    = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
114
ln2_lo    = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
115
invln2    = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
116
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
117
Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
118
Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
119
Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
120
Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
121
Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
122
123
static volatile double huge = 1.0e+300;
124
125
double
126
s_expm1(double x)
127
192k
{
128
192k
  double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
129
192k
  int32_t k,xsb;
130
192k
  u_int32_t hx;
131
132
192k
  GET_HIGH_WORD(hx,x);
133
192k
  xsb = hx&0x80000000;    /* sign bit of x */
134
192k
  hx &= 0x7fffffff;   /* high word of |x| */
135
136
    /* filter out huge and non-finite argument */
137
192k
  if(hx >= 0x4043687A) {     /* if |x|>=56*ln2 */
138
103
      if(hx >= 0x40862E42) {   /* if |x|>=709.78... */
139
24
                if(hx>=0x7ff00000) {
140
24
        u_int32_t low;
141
24
        GET_LOW_WORD(low,x);
142
24
        if(((hx&0xfffff)|low)!=0)
143
10
             return x+x;   /* NaN */
144
14
        else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
145
24
          }
146
0
          if(x > o_threshold) return huge*huge; /* overflow */
147
0
      }
148
79
      if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
149
0
    if(x+tiny<0.0)   /* raise inexact */
150
0
    return tiny-one; /* return -1 */
151
0
      }
152
79
  }
153
154
    /* argument reduction */
155
192k
  if(hx > 0x3fd62e42) {   /* if  |x| > 0.5 ln2 */
156
187k
      if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
157
186k
    if(xsb==0)
158
184k
        {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
159
1.38k
    else
160
1.38k
        {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
161
186k
      } else {
162
1.14k
    k  = (int32_t)(invln2*x+((xsb==0)?0.5:-0.5));
163
1.14k
    t  = k;
164
1.14k
    hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
165
1.14k
    lo = t*ln2_lo;
166
1.14k
      }
167
187k
      STRICT_ASSIGN(double, x, hi - lo);
168
187k
      c  = (hi-x)-lo;
169
187k
  }
170
4.80k
  else if(hx < 0x3c900000) {   /* when |x|<2**-54, return x */
171
823
      t = huge+x; /* return x with inexact flags when x!=0 */
172
823
      return x - (t-(huge+x));
173
823
  }
174
3.98k
  else k = 0;
175
176
    /* x is now in primary range */
177
191k
  hfx = 0.5*x;
178
191k
  hxs = x*hfx;
179
191k
  r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
180
191k
  t  = 3.0-r1*hfx;
181
191k
  e  = hxs*((r1-t)/(6.0 - x*t));
182
191k
  if(k==0) return x - (x*e-hxs);    /* c is 0 */
183
187k
  else {
184
187k
      INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0); /* 2^k */
185
187k
      e  = (x*(e-c)-c);
186
187k
      e -= hxs;
187
187k
      if(k== -1) return 0.5*(x-e)-0.5;
188
185k
      if(k==1) {
189
184k
          if(x < -0.25) return -2.0*(e-(x+0.5));
190
183k
          else        return  one+2.0*(x-e);
191
184k
      }
192
1.14k
      if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
193
445
          y = one-(e-x);
194
445
    if (k == 1024) {
195
0
        double const_0x1p1023 = __ieee754_pow(2, 1023);
196
0
        y = y*2.0*const_0x1p1023;
197
0
    }
198
445
    else y = y*twopk;
199
445
          return y-one;
200
445
      }
201
701
      t = one;
202
701
      if(k<20) {
203
414
          SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
204
414
          y = t-(e-x);
205
414
    y = y*twopk;
206
414
     } else {
207
287
    SET_HIGH_WORD(t,((0x3ff-k)<<20));  /* 2^-k */
208
287
          y = x-(e+t);
209
287
          y += one;
210
287
    y = y*twopk;
211
287
      }
212
701
  }
213
701
  return y;
214
191k
}