Coverage Report

Created: 2025-10-29 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/moddable/xs/tools/fdlibm/k_tan.c
Line
Count
Source
1
/*
2
 * ====================================================
3
 * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
4
 *
5
 * Permission to use, copy, modify, and distribute this
6
 * software is freely granted, provided that this notice
7
 * is preserved.
8
 * ====================================================
9
 */
10
11
/* __kernel_tan( x, y, k )
12
 * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
13
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
14
 * Input y is the tail of x.
15
 * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
16
 *
17
 * Algorithm
18
 *  1. Since tan(-x) = -tan(x), we need only to consider positive x.
19
 *  2. Callers must return tan(-0) = -0 without calling here since our
20
 *     odd polynomial is not evaluated in a way that preserves -0.
21
 *     Callers may do the optimization tan(x) ~ x for tiny x.
22
 *  3. tan(x) is approximated by a odd polynomial of degree 27 on
23
 *     [0,0.67434]
24
 *                 3             27
25
 *      tan(x) ~ x + T1*x + ... + T13*x
26
 *     where
27
 *
28
 *          |tan(x)         2     4            26   |     -59.2
29
 *          |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
30
 *          |  x          |
31
 *
32
 *     Note: tan(x+y) = tan(x) + tan'(x)*y
33
 *              ~ tan(x) + (1+x*x)*y
34
 *     Therefore, for better accuracy in computing tan(x+y), let
35
 *         3      2      2       2       2
36
 *    r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
37
 *     then
38
 *            3    2
39
 *    tan(x+y) = x + (T1*x + (x *(r+y)+y))
40
 *
41
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
42
 *    tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
43
 *           = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
44
 */
45
46
#include "math_private.h"
47
static const double xxx[] = {
48
     3.33333333333334091986e-01,  /* 3FD55555, 55555563 */
49
     1.33333333333201242699e-01,  /* 3FC11111, 1110FE7A */
50
     5.39682539762260521377e-02,  /* 3FABA1BA, 1BB341FE */
51
     2.18694882948595424599e-02,  /* 3F9664F4, 8406D637 */
52
     8.86323982359930005737e-03,  /* 3F8226E3, E96E8493 */
53
     3.59207910759131235356e-03,  /* 3F6D6D22, C9560328 */
54
     1.45620945432529025516e-03,  /* 3F57DBC8, FEE08315 */
55
     5.88041240820264096874e-04,  /* 3F4344D8, F2F26501 */
56
     2.46463134818469906812e-04,  /* 3F3026F7, 1A8D1068 */
57
     7.81794442939557092300e-05,  /* 3F147E88, A03792A6 */
58
     7.14072491382608190305e-05,  /* 3F12B80F, 32F0A7E9 */
59
    -1.85586374855275456654e-05,  /* BEF375CB, DB605373 */
60
     2.59073051863633712884e-05,  /* 3EFB2A70, 74BF7AD4 */
61
/* one */  1.00000000000000000000e+00,  /* 3FF00000, 00000000 */
62
/* pio4 */   7.85398163397448278999e-01,  /* 3FE921FB, 54442D18 */
63
/* pio4lo */   3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
64
};
65
#define one xxx[13]
66
2.51k
#define pio4  xxx[14]
67
2.51k
#define pio4lo  xxx[15]
68
125k
#define T xxx
69
/* INDENT ON */
70
71
double
72
9.67k
__kernel_tan(double x, double y, int iy) {
73
9.67k
  double z, r, v, w, s;
74
9.67k
  int32_t ix, hx;
75
76
9.67k
  GET_HIGH_WORD(hx,x);
77
9.67k
  ix = hx & 0x7fffffff;     /* high word of |x| */
78
9.67k
  if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
79
2.51k
    if (hx < 0) {
80
1.43k
      x = -x;
81
1.43k
      y = -y;
82
1.43k
    }
83
2.51k
    z = pio4 - x;
84
2.51k
    w = pio4lo - y;
85
2.51k
    x = z + w;
86
2.51k
    y = 0.0;
87
2.51k
  }
88
9.67k
  z = x * x;
89
9.67k
  w = z * z;
90
  /*
91
   * Break x^5*(T[1]+x^2*T[2]+...) into
92
   * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
93
   * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
94
   */
95
9.67k
  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
96
9.67k
    w * T[11]))));
97
9.67k
  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
98
9.67k
    w * T[12])))));
99
9.67k
  s = z * x;
100
9.67k
  r = y + z * (s * (r + v) + y);
101
9.67k
  r += T[0] * s;
102
9.67k
  w = x + r;
103
9.67k
  if (ix >= 0x3FE59428) {
104
2.51k
    v = (double) iy;
105
2.51k
    return (double) (1 - ((hx >> 30) & 2)) *
106
2.51k
      (v - 2.0 * (x - (w * w / (w + v) - r)));
107
2.51k
  }
108
7.16k
  if (iy == 1)
109
3.72k
    return w;
110
3.44k
  else {
111
    /*
112
     * if allow error up to 2 ulp, simply return
113
     * -1.0 / (x+r) here
114
     */
115
    /* compute -1.0 / (x+r) accurately */
116
3.44k
    double a, t;
117
3.44k
    z = w;
118
3.44k
    SET_LOW_WORD(z,0);
119
3.44k
    v = r - (z - x);  /* z+v = r+x */
120
3.44k
    t = a = -1.0 / w; /* a = -1.0/w */
121
3.44k
    SET_LOW_WORD(t,0);
122
3.44k
    s = 1.0 + t * z;
123
3.44k
    return t + a * (s + t * v);
124
3.44k
  }
125
7.16k
}