/src/moddable/xs/tools/fdlibm/k_rem_pio2.c
Line | Count | Source |
1 | | |
2 | | /* |
3 | | * ==================================================== |
4 | | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 | | * |
6 | | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 | | * Permission to use, copy, modify, and distribute this |
8 | | * software is freely granted, provided that this notice |
9 | | * is preserved. |
10 | | * ==================================================== |
11 | | */ |
12 | | |
13 | | /* |
14 | | * __kernel_rem_pio2(x,y,e0,nx,prec) |
15 | | * double x[],y[]; int e0,nx,prec; |
16 | | * |
17 | | * __kernel_rem_pio2 return the last three digits of N with |
18 | | * y = x - N*pi/2 |
19 | | * so that |y| < pi/2. |
20 | | * |
21 | | * The method is to compute the integer (mod 8) and fraction parts of |
22 | | * (2/pi)*x without doing the full multiplication. In general we |
23 | | * skip the part of the product that are known to be a huge integer ( |
24 | | * more accurately, = 0 mod 8 ). Thus the number of operations are |
25 | | * independent of the exponent of the input. |
26 | | * |
27 | | * (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
28 | | * |
29 | | * Input parameters: |
30 | | * x[] The input value (must be positive) is broken into nx |
31 | | * pieces of 24-bit integers in double precision format. |
32 | | * x[i] will be the i-th 24 bit of x. The scaled exponent |
33 | | * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
34 | | * match x's up to 24 bits. |
35 | | * |
36 | | * Example of breaking a double positive z into x[0]+x[1]+x[2]: |
37 | | * e0 = ilogb(z)-23 |
38 | | * z = scalbn(z,-e0) |
39 | | * for i = 0,1,2 |
40 | | * x[i] = floor(z) |
41 | | * z = (z-x[i])*2**24 |
42 | | * |
43 | | * |
44 | | * y[] output result in an array of double precision numbers. |
45 | | * The dimension of y[] is: |
46 | | * 24-bit precision 1 |
47 | | * 53-bit precision 2 |
48 | | * 64-bit precision 2 |
49 | | * 113-bit precision 3 |
50 | | * The actual value is the sum of them. Thus for 113-bit |
51 | | * precision, one may have to do something like: |
52 | | * |
53 | | * long double t,w,r_head, r_tail; |
54 | | * t = (long double)y[2] + (long double)y[1]; |
55 | | * w = (long double)y[0]; |
56 | | * r_head = t+w; |
57 | | * r_tail = w - (r_head - t); |
58 | | * |
59 | | * e0 The exponent of x[0]. Must be <= 16360 or you need to |
60 | | * expand the ipio2 table. |
61 | | * |
62 | | * nx dimension of x[] |
63 | | * |
64 | | * prec an integer indicating the precision: |
65 | | * 0 24 bits (single) |
66 | | * 1 53 bits (double) |
67 | | * 2 64 bits (extended) |
68 | | * 3 113 bits (quad) |
69 | | * |
70 | | * External function: |
71 | | * double scalbn(), floor(); |
72 | | * |
73 | | * |
74 | | * Here is the description of some local variables: |
75 | | * |
76 | | * jk jk+1 is the initial number of terms of ipio2[] needed |
77 | | * in the computation. The minimum and recommended value |
78 | | * for jk is 3,4,4,6 for single, double, extended, and quad. |
79 | | * jk+1 must be 2 larger than you might expect so that our |
80 | | * recomputation test works. (Up to 24 bits in the integer |
81 | | * part (the 24 bits of it that we compute) and 23 bits in |
82 | | * the fraction part may be lost to cancellation before we |
83 | | * recompute.) |
84 | | * |
85 | | * jz local integer variable indicating the number of |
86 | | * terms of ipio2[] used. |
87 | | * |
88 | | * jx nx - 1 |
89 | | * |
90 | | * jv index for pointing to the suitable ipio2[] for the |
91 | | * computation. In general, we want |
92 | | * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
93 | | * is an integer. Thus |
94 | | * e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
95 | | * Hence jv = max(0,(e0-3)/24). |
96 | | * |
97 | | * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
98 | | * |
99 | | * q[] double array with integral value, representing the |
100 | | * 24-bits chunk of the product of x and 2/pi. |
101 | | * |
102 | | * q0 the corresponding exponent of q[0]. Note that the |
103 | | * exponent for q[i] would be q0-24*i. |
104 | | * |
105 | | * PIo2[] double precision array, obtained by cutting pi/2 |
106 | | * into 24 bits chunks. |
107 | | * |
108 | | * f[] ipio2[] in floating point |
109 | | * |
110 | | * iq[] integer array by breaking up q[] in 24-bits chunk. |
111 | | * |
112 | | * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
113 | | * |
114 | | * ih integer. If >0 it indicates q[] is >= 0.5, hence |
115 | | * it also indicates the *sign* of the result. |
116 | | * |
117 | | */ |
118 | | |
119 | | |
120 | | /* |
121 | | * Constants: |
122 | | * The hexadecimal values are the intended ones for the following |
123 | | * constants. The decimal values may be used, provided that the |
124 | | * compiler will convert from decimal to binary accurately enough |
125 | | * to produce the hexadecimal values shown. |
126 | | */ |
127 | | |
128 | | #include "math_private.h" |
129 | | |
130 | | static const int init_jk[] = {3,4,4,6}; /* initial value for jk */ |
131 | | |
132 | | /* |
133 | | * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
134 | | * |
135 | | * integer array, contains the (24*i)-th to (24*i+23)-th |
136 | | * bit of 2/pi after binary point. The corresponding |
137 | | * floating value is |
138 | | * |
139 | | * ipio2[i] * 2^(-24(i+1)). |
140 | | * |
141 | | * NB: This table must have at least (e0-3)/24 + jk terms. |
142 | | * For quad precision (e0 <= 16360, jk = 6), this is 686. |
143 | | */ |
144 | | static const int32_t ipio2[] = { |
145 | | 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, |
146 | | 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, |
147 | | 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, |
148 | | 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, |
149 | | 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, |
150 | | 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, |
151 | | 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
152 | | 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, |
153 | | 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, |
154 | | 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, |
155 | | 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, |
156 | | |
157 | | #if LDBL_MAX_EXP > 1024 |
158 | | #if LDBL_MAX_EXP > 16384 |
159 | | #error "ipio2 table needs to be expanded" |
160 | | #endif |
161 | | 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, |
162 | | 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, |
163 | | 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, |
164 | | 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, |
165 | | 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, |
166 | | 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4, |
167 | | 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, |
168 | | 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, |
169 | | 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, |
170 | | 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, |
171 | | 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, |
172 | | 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6, |
173 | | 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, |
174 | | 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, |
175 | | 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, |
176 | | 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, |
177 | | 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, |
178 | | 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612, |
179 | | 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, |
180 | | 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, |
181 | | 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B, |
182 | | 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, |
183 | | 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, |
184 | | 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, |
185 | | 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, |
186 | | 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, |
187 | | 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F, |
188 | | 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, |
189 | | 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, |
190 | | 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, |
191 | | 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, |
192 | | 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, |
193 | | 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3, |
194 | | 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, |
195 | | 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, |
196 | | 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, |
197 | | 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, |
198 | | 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, |
199 | | 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51, |
200 | | 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, |
201 | | 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, |
202 | | 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6, |
203 | | 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, |
204 | | 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, |
205 | | 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, |
206 | | 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, |
207 | | 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, |
208 | | 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B, |
209 | | 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, |
210 | | 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, |
211 | | 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, |
212 | | 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, |
213 | | 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, |
214 | | 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4, |
215 | | 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, |
216 | | 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, |
217 | | 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, |
218 | | 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, |
219 | | 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, |
220 | | 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1, |
221 | | 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, |
222 | | 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, |
223 | | 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08, |
224 | | 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, |
225 | | 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, |
226 | | 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, |
227 | | 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, |
228 | | 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, |
229 | | 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0, |
230 | | 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, |
231 | | 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, |
232 | | 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, |
233 | | 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, |
234 | | 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, |
235 | | 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7, |
236 | | 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, |
237 | | 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, |
238 | | 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, |
239 | | 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, |
240 | | 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, |
241 | | 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2, |
242 | | 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, |
243 | | 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, |
244 | | 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569, |
245 | | 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, |
246 | | 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, |
247 | | 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, |
248 | | 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, |
249 | | 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, |
250 | | 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569, |
251 | | 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, |
252 | | 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, |
253 | | 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, |
254 | | 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, |
255 | | 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, |
256 | | 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110, |
257 | | 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, |
258 | | 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, |
259 | | 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, |
260 | | 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, |
261 | | 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, |
262 | | 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616, |
263 | | 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, |
264 | | 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, |
265 | | #endif |
266 | | |
267 | | }; |
268 | | |
269 | | static const double PIo2[] = { |
270 | | 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
271 | | 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
272 | | 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
273 | | 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
274 | | 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
275 | | 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
276 | | 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
277 | | 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
278 | | }; |
279 | | |
280 | | static const double |
281 | | zero = 0.0, |
282 | | one = 1.0, |
283 | | two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
284 | | twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
285 | | |
286 | | int |
287 | | __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec) |
288 | 17.6k | { |
289 | 17.6k | int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
290 | 17.6k | double z,fw,f[20],fq[20],q[20]; |
291 | | |
292 | | /* initialize jk*/ |
293 | 17.6k | jk = init_jk[prec]; |
294 | 17.6k | jp = jk; |
295 | | |
296 | | /* determine jx,jv,q0, note that 3>q0 */ |
297 | 17.6k | jx = nx-1; |
298 | 17.6k | jv = (e0-3)/24; if(jv<0) jv=0; |
299 | 17.6k | q0 = e0-24*(jv+1); |
300 | | |
301 | | /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
302 | 17.6k | j = jv-jx; m = jx+jk; |
303 | 127k | for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
304 | | |
305 | | /* compute q[0],q[1],...q[jk] */ |
306 | 105k | for (i=0;i<=jk;i++) { |
307 | 286k | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
308 | 88.1k | q[i] = fw; |
309 | 88.1k | } |
310 | | |
311 | 17.6k | jz = jk; |
312 | 22.0k | recompute: |
313 | | /* distill q[] into iq[] reversingly */ |
314 | 114k | for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
315 | 92.5k | fw = (double)((int32_t)(twon24* z)); |
316 | 92.5k | iq[i] = (int32_t)(z-two24*fw); |
317 | 92.5k | z = q[j-1]+fw; |
318 | 92.5k | } |
319 | | |
320 | | /* compute n */ |
321 | 22.0k | z = s_scalbn(z,q0); /* actual value of z */ |
322 | 22.0k | z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
323 | 22.0k | n = (int32_t) z; |
324 | 22.0k | z -= (double)n; |
325 | 22.0k | ih = 0; |
326 | 22.0k | if(q0>0) { /* need iq[jz-1] to determine n */ |
327 | 2.63k | i = (iq[jz-1]>>(24-q0)); n += i; |
328 | 2.63k | iq[jz-1] -= i<<(24-q0); |
329 | 2.63k | ih = iq[jz-1]>>(23-q0); |
330 | 2.63k | } |
331 | 19.4k | else if(q0==0) ih = iq[jz-1]>>23; |
332 | 18.5k | else if(z>=0.5) ih=2; |
333 | | |
334 | 22.0k | if(ih>0) { /* q > 0.5 */ |
335 | 10.5k | n += 1; carry = 0; |
336 | 54.6k | for(i=0;i<jz ;i++) { /* compute 1-q */ |
337 | 44.1k | j = iq[i]; |
338 | 44.1k | if(carry==0) { |
339 | 10.7k | if(j!=0) { |
340 | 10.5k | carry = 1; iq[i] = 0x1000000- j; |
341 | 10.5k | } |
342 | 33.3k | } else iq[i] = 0xffffff - j; |
343 | 44.1k | } |
344 | 10.5k | if(q0>0) { /* rare case: chance is 1 in 12 */ |
345 | 1.38k | switch(q0) { |
346 | 544 | case 1: |
347 | 544 | iq[jz-1] &= 0x7fffff; break; |
348 | 842 | case 2: |
349 | 842 | iq[jz-1] &= 0x3fffff; break; |
350 | 1.38k | } |
351 | 1.38k | } |
352 | 10.5k | if(ih==2) { |
353 | 8.76k | z = one - z; |
354 | 8.76k | if(carry!=0) z -= s_scalbn(one,q0); |
355 | 8.76k | } |
356 | 10.5k | } |
357 | | |
358 | | /* check if recomputation is needed */ |
359 | 22.0k | if(z==zero) { |
360 | 8.81k | j = 0; |
361 | 13.2k | for (i=jz-1;i>=jk;i--) j |= iq[i]; |
362 | 8.81k | if(j==0) { /* need recomputation */ |
363 | 4.40k | for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
364 | | |
365 | 8.81k | for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
366 | 4.40k | f[jx+i] = (double) ipio2[jv+i]; |
367 | 13.9k | for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
368 | 4.40k | q[i] = fw; |
369 | 4.40k | } |
370 | 4.40k | jz += k; |
371 | 4.40k | goto recompute; |
372 | 4.40k | } |
373 | 8.81k | } |
374 | | |
375 | | /* chop off zero terms */ |
376 | 17.6k | if(z==0.0) { |
377 | 4.40k | jz -= 1; q0 -= 24; |
378 | 4.40k | while(iq[jz]==0) { jz--; q0-=24;} |
379 | 13.2k | } else { /* break z into 24-bit if necessary */ |
380 | 13.2k | z = s_scalbn(z,-q0); |
381 | 13.2k | if(z>=two24) { |
382 | 2.03k | fw = (double)((int32_t)(twon24*z)); |
383 | 2.03k | iq[jz] = (int32_t)(z-two24*fw); |
384 | 2.03k | jz += 1; q0 += 24; |
385 | 2.03k | iq[jz] = (int32_t) fw; |
386 | 11.1k | } else iq[jz] = (int32_t) z ; |
387 | 13.2k | } |
388 | | |
389 | | /* convert integer "bit" chunk to floating-point value */ |
390 | 17.6k | fw = s_scalbn(one,q0); |
391 | 107k | for(i=jz;i>=0;i--) { |
392 | 90.1k | q[i] = fw*(double)iq[i]; fw*=twon24; |
393 | 90.1k | } |
394 | | |
395 | | /* compute PIo2[0,...,jp]*q[jz,...,0] */ |
396 | 107k | for(i=jz;i>=0;i--) { |
397 | 364k | for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
398 | 90.1k | fq[jz-i] = fw; |
399 | 90.1k | } |
400 | | |
401 | | /* compress fq[] into y[] */ |
402 | 17.6k | switch(prec) { |
403 | 0 | case 0: |
404 | 0 | fw = 0.0; |
405 | 0 | for (i=jz;i>=0;i--) fw += fq[i]; |
406 | 0 | y[0] = (ih==0)? fw: -fw; |
407 | 0 | break; |
408 | 17.6k | case 1: |
409 | 17.6k | case 2: |
410 | 17.6k | fw = 0.0; |
411 | 107k | for (i=jz;i>=0;i--) fw += fq[i]; |
412 | 17.6k | STRICT_ASSIGN(double,fw,fw); |
413 | 17.6k | y[0] = (ih==0)? fw: -fw; |
414 | 17.6k | fw = fq[0]-fw; |
415 | 90.1k | for (i=1;i<=jz;i++) fw += fq[i]; |
416 | 17.6k | y[1] = (ih==0)? fw: -fw; |
417 | 17.6k | break; |
418 | 0 | case 3: /* painful */ |
419 | 0 | for (i=jz;i>0;i--) { |
420 | 0 | fw = fq[i-1]+fq[i]; |
421 | 0 | fq[i] += fq[i-1]-fw; |
422 | 0 | fq[i-1] = fw; |
423 | 0 | } |
424 | 0 | for (i=jz;i>1;i--) { |
425 | 0 | fw = fq[i-1]+fq[i]; |
426 | 0 | fq[i] += fq[i-1]-fw; |
427 | 0 | fq[i-1] = fw; |
428 | 0 | } |
429 | 0 | for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
430 | 0 | if(ih==0) { |
431 | 0 | y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
432 | 0 | } else { |
433 | 0 | y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
434 | 0 | } |
435 | 17.6k | } |
436 | 17.6k | return n&7; |
437 | 17.6k | } |