Coverage Report

Created: 2026-01-10 06:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/moddable/xs/tools/fdlibm/e_hypot.c
Line
Count
Source
1
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice 
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
/* hypot(x,y)
14
 *
15
 * Method :                  
16
 *  If (assume round-to-nearest) z=x*x+y*y 
17
 *  has error less than sqrt(2)/2 ulp, than 
18
 *  sqrt(z) has error less than 1 ulp (exercise).
19
 *
20
 *  So, compute sqrt(x*x+y*y) with some care as 
21
 *  follows to get the error below 1 ulp:
22
 *
23
 *  Assume x>y>0;
24
 *  (if possible, set rounding to round-to-nearest)
25
 *  1. if x > 2y  use
26
 *    x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
27
 *  where x1 = x with lower 32 bits cleared, x2 = x-x1; else
28
 *  2. if x <= 2y use
29
 *    t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
30
 *  where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 
31
 *  y1= y with lower 32 bits chopped, y2 = y-y1.
32
 *    
33
 *  NOTE: scaling may be necessary if some argument is too 
34
 *        large or too tiny
35
 *
36
 * Special cases:
37
 *  hypot(x,y) is INF if x or y is +INF or -INF; else
38
 *  hypot(x,y) is NAN if x or y is NAN.
39
 *
40
 * Accuracy:
41
 *  hypot(x,y) returns sqrt(x^2+y^2) with error less 
42
 *  than 1 ulps (units in the last place) 
43
 */
44
45
#include "math_private.h"
46
47
double
48
__ieee754_hypot(double x, double y)
49
19
{
50
19
  double a,b,t1,t2,y1,y2,w;
51
19
  int32_t j,k,ha,hb;
52
53
19
  GET_HIGH_WORD(ha,x);
54
19
  ha &= 0x7fffffff;
55
19
  GET_HIGH_WORD(hb,y);
56
19
  hb &= 0x7fffffff;
57
19
  if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
58
19
  a = fabs(a);
59
19
  b = fabs(b);
60
19
  if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
61
16
  k=0;
62
16
  if(ha > 0x5f300000) { /* a>2**500 */
63
1
     if(ha >= 0x7ff00000) { /* Inf or NaN */
64
1
         u_int32_t low;
65
         /* Use original arg order iff result is NaN; quieten sNaNs. */
66
1
         w = fabsl(x+0.0L)-fabs(y+0);
67
1
         GET_LOW_WORD(low,a);
68
1
         if(((ha&0xfffff)|low)==0) w = a;
69
1
         GET_LOW_WORD(low,b);
70
1
         if(((hb^0x7ff00000)|low)==0) w = b;
71
1
         return w;
72
1
     }
73
     /* scale a and b by 2**-600 */
74
0
     ha -= 0x25800000; hb -= 0x25800000; k += 600;
75
0
     SET_HIGH_WORD(a,ha);
76
0
     SET_HIGH_WORD(b,hb);
77
0
  }
78
15
  if(hb < 0x20b00000) { /* b < 2**-500 */
79
12
      if(hb <= 0x000fffff) { /* subnormal b or 0 */
80
12
          u_int32_t low;
81
12
    GET_LOW_WORD(low,b);
82
12
    if((hb|low)==0) return a;
83
0
    t1=0;
84
0
    SET_HIGH_WORD(t1,0x7fd00000);  /* t1=2^1022 */
85
0
    b *= t1;
86
0
    a *= t1;
87
0
    k -= 1022;
88
0
      } else {   /* scale a and b by 2^600 */
89
0
          ha += 0x25800000;   /* a *= 2^600 */
90
0
    hb += 0x25800000; /* b *= 2^600 */
91
0
    k -= 600;
92
0
    SET_HIGH_WORD(a,ha);
93
0
    SET_HIGH_WORD(b,hb);
94
0
      }
95
12
  }
96
    /* medium size a and b */
97
3
  w = a-b;
98
3
  if (w>b) {
99
1
      t1 = 0;
100
1
      SET_HIGH_WORD(t1,ha);
101
1
      t2 = a-t1;
102
1
      w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
103
2
  } else {
104
2
      a  = a+a;
105
2
      y1 = 0;
106
2
      SET_HIGH_WORD(y1,hb);
107
2
      y2 = b - y1;
108
2
      t1 = 0;
109
2
      SET_HIGH_WORD(t1,ha+0x00100000);
110
2
      t2 = a - t1;
111
2
      w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
112
2
  }
113
3
  if(k!=0) {
114
0
      t1 = 0.0;
115
0
      SET_HIGH_WORD(t1,(1023+k)<<20);
116
0
      return t1*w;
117
3
  } else return w;
118
3
}