Coverage Report

Created: 2023-09-25 06:56

/src/xz/src/liblzma/check/sha256.c
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////////////
2
//
3
/// \file       sha256.c
4
/// \brief      SHA-256
5
///
6
/// \todo       Crypto++ has x86 ASM optimizations. They use SSE so if they
7
///             are imported to liblzma, SSE instructions need to be used
8
///             conditionally to keep the code working on older boxes.
9
//
10
//  This code is based on the code found from 7-Zip, which has a modified
11
//  version of the SHA-256 found from Crypto++ <https://www.cryptopp.com/>.
12
//  The code was modified a little to fit into liblzma.
13
//
14
//  Authors:    Kevin Springle
15
//              Wei Dai
16
//              Igor Pavlov
17
//              Lasse Collin
18
//
19
//  This file has been put into the public domain.
20
//  You can do whatever you want with this file.
21
//
22
///////////////////////////////////////////////////////////////////////////////
23
24
#include "check.h"
25
26
// Rotate a uint32_t. GCC can optimize this to a rotate instruction
27
// at least on x86.
28
static inline uint32_t
29
rotr_32(uint32_t num, unsigned amount)
30
95.5M
{
31
95.5M
        return (num >> amount) | (num << (32 - amount));
32
95.5M
}
33
34
#define blk0(i) (W[i] = conv32be(data[i]))
35
#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
36
    + s0(W[(i - 15) & 15]))
37
38
10.6M
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
39
10.6M
#define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
40
41
165k
#define a(i) T[(0 - i) & 7]
42
165k
#define b(i) T[(1 - i) & 7]
43
165k
#define c(i) T[(2 - i) & 7]
44
10.7M
#define d(i) T[(3 - i) & 7]
45
165k
#define e(i) T[(4 - i) & 7]
46
165k
#define f(i) T[(5 - i) & 7]
47
165k
#define g(i) T[(6 - i) & 7]
48
32.0M
#define h(i) T[(7 - i) & 7]
49
50
#define R(i, j, blk) \
51
10.6M
  h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
52
10.6M
  d(i) += h(i); \
53
10.6M
  h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
54
2.65M
#define R0(i) R(i, 0, blk0(i))
55
7.96M
#define R2(i) R(i, j, blk2(i))
56
57
10.6M
#define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
58
10.6M
#define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
59
#define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
60
#define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
61
62
63
static const uint32_t SHA256_K[64] = {
64
  0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
65
  0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
66
  0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
67
  0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
68
  0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
69
  0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
70
  0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
71
  0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
72
  0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
73
  0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
74
  0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
75
  0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
76
  0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
77
  0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
78
  0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
79
  0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
80
};
81
82
83
static void
84
transform(uint32_t state[8], const uint32_t data[16])
85
165k
{
86
165k
  uint32_t W[16];
87
165k
  uint32_t T[8];
88
89
  // Copy state[] to working vars.
90
165k
  memcpy(T, state, sizeof(T));
91
92
  // The first 16 operations unrolled
93
165k
  R0( 0); R0( 1); R0( 2); R0( 3);
94
165k
  R0( 4); R0( 5); R0( 6); R0( 7);
95
165k
  R0( 8); R0( 9); R0(10); R0(11);
96
165k
  R0(12); R0(13); R0(14); R0(15);
97
98
  // The remaining 48 operations partially unrolled
99
663k
  for (unsigned int j = 16; j < 64; j += 16) {
100
497k
    R2( 0); R2( 1); R2( 2); R2( 3);
101
497k
    R2( 4); R2( 5); R2( 6); R2( 7);
102
497k
    R2( 8); R2( 9); R2(10); R2(11);
103
497k
    R2(12); R2(13); R2(14); R2(15);
104
497k
  }
105
106
  // Add the working vars back into state[].
107
165k
  state[0] += a(0);
108
165k
  state[1] += b(0);
109
165k
  state[2] += c(0);
110
165k
  state[3] += d(0);
111
165k
  state[4] += e(0);
112
165k
  state[5] += f(0);
113
165k
  state[6] += g(0);
114
165k
  state[7] += h(0);
115
165k
}
116
117
118
static void
119
process(lzma_check_state *check)
120
165k
{
121
165k
  transform(check->state.sha256.state, check->buffer.u32);
122
165k
  return;
123
165k
}
124
125
126
extern void
127
lzma_sha256_init(lzma_check_state *check)
128
118k
{
129
118k
  static const uint32_t s[8] = {
130
118k
    0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
131
118k
    0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
132
118k
  };
133
134
118k
  memcpy(check->state.sha256.state, s, sizeof(s));
135
118k
  check->state.sha256.size = 0;
136
137
118k
  return;
138
118k
}
139
140
141
extern void
142
lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
143
273k
{
144
  // Copy the input data into a properly aligned temporary buffer.
145
  // This way we can be called with arbitrarily sized buffers
146
  // (no need to be multiple of 64 bytes), and the code works also
147
  // on architectures that don't allow unaligned memory access.
148
546k
  while (size > 0) {
149
273k
    const size_t copy_start = check->state.sha256.size & 0x3F;
150
273k
    size_t copy_size = 64 - copy_start;
151
273k
    if (copy_size > size)
152
205k
      copy_size = size;
153
154
273k
    memcpy(check->buffer.u8 + copy_start, buf, copy_size);
155
156
273k
    buf += copy_size;
157
273k
    size -= copy_size;
158
273k
    check->state.sha256.size += copy_size;
159
160
273k
    if ((check->state.sha256.size & 0x3F) == 0)
161
67.7k
      process(check);
162
273k
  }
163
164
273k
  return;
165
273k
}
166
167
168
extern void
169
lzma_sha256_finish(lzma_check_state *check)
170
98.1k
{
171
  // Add padding as described in RFC 3174 (it describes SHA-1 but
172
  // the same padding style is used for SHA-256 too).
173
98.1k
  size_t pos = check->state.sha256.size & 0x3F;
174
98.1k
  check->buffer.u8[pos++] = 0x80;
175
176
5.47M
  while (pos != 64 - 8) {
177
5.38M
    if (pos == 64) {
178
0
      process(check);
179
0
      pos = 0;
180
0
    }
181
182
5.38M
    check->buffer.u8[pos++] = 0x00;
183
5.38M
  }
184
185
  // Convert the message size from bytes to bits.
186
98.1k
  check->state.sha256.size *= 8;
187
188
98.1k
  check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
189
190
98.1k
  process(check);
191
192
883k
  for (size_t i = 0; i < 8; ++i)
193
784k
    check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
194
195
98.1k
  return;
196
98.1k
}