Coverage Report

Created: 2025-07-18 07:00

/src/zlib-ng/trees.c
Line
Count
Source (jump to first uncovered line)
1
/* trees.c -- output deflated data using Huffman coding
2
 * Copyright (C) 1995-2024 Jean-loup Gailly
3
 * detect_data_type() function provided freely by Cosmin Truta, 2006
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
33
#include "zbuild.h"
34
#include "deflate.h"
35
#include "trees.h"
36
#include "trees_emit.h"
37
#include "trees_tbl.h"
38
39
/* The lengths of the bit length codes are sent in order of decreasing
40
 * probability, to avoid transmitting the lengths for unused bit length codes.
41
 */
42
43
/* ===========================================================================
44
 * Local data. These are initialized only once.
45
 */
46
47
struct static_tree_desc_s {
48
    const ct_data *static_tree; /* static tree or NULL */
49
    const int     *extra_bits;  /* extra bits for each code or NULL */
50
    int            extra_base;  /* base index for extra_bits */
51
    int            elems;       /* max number of elements in the tree */
52
    unsigned int   max_length;  /* max bit length for the codes */
53
};
54
55
static const static_tree_desc  static_l_desc =
56
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
57
58
static const static_tree_desc  static_d_desc =
59
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
60
61
static const static_tree_desc  static_bl_desc =
62
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
63
64
/* ===========================================================================
65
 * Local (static) routines in this file.
66
 */
67
68
static void init_block       (deflate_state *s);
69
static void pqdownheap       (deflate_state *s, ct_data *tree, int k);
70
static void gen_bitlen       (deflate_state *s, tree_desc *desc);
71
static void build_tree       (deflate_state *s, tree_desc *desc);
72
static void scan_tree        (deflate_state *s, ct_data *tree, int max_code);
73
static void send_tree        (deflate_state *s, ct_data *tree, int max_code);
74
static int  build_bl_tree    (deflate_state *s);
75
static void send_all_trees   (deflate_state *s, int lcodes, int dcodes, int blcodes);
76
static void compress_block   (deflate_state *s, const ct_data *ltree, const ct_data *dtree);
77
static int  detect_data_type (deflate_state *s);
78
79
/* ===========================================================================
80
 * Initialize the tree data structures for a new zlib stream.
81
 */
82
18.3k
void Z_INTERNAL zng_tr_init(deflate_state *s) {
83
18.3k
    s->l_desc.dyn_tree = s->dyn_ltree;
84
18.3k
    s->l_desc.stat_desc = &static_l_desc;
85
86
18.3k
    s->d_desc.dyn_tree = s->dyn_dtree;
87
18.3k
    s->d_desc.stat_desc = &static_d_desc;
88
89
18.3k
    s->bl_desc.dyn_tree = s->bl_tree;
90
18.3k
    s->bl_desc.stat_desc = &static_bl_desc;
91
92
18.3k
    s->bi_buf = 0;
93
18.3k
    s->bi_valid = 0;
94
#ifdef ZLIB_DEBUG
95
    s->compressed_len = 0L;
96
    s->bits_sent = 0L;
97
#endif
98
99
    /* Initialize the first block of the first file: */
100
18.3k
    init_block(s);
101
18.3k
}
102
103
/* ===========================================================================
104
 * Initialize a new block.
105
 */
106
49.2k
static void init_block(deflate_state *s) {
107
49.2k
    int n; /* iterates over tree elements */
108
109
    /* Initialize the trees. */
110
14.1M
    for (n = 0; n < L_CODES;  n++)
111
14.0M
        s->dyn_ltree[n].Freq = 0;
112
1.52M
    for (n = 0; n < D_CODES;  n++)
113
1.47M
        s->dyn_dtree[n].Freq = 0;
114
985k
    for (n = 0; n < BL_CODES; n++)
115
936k
        s->bl_tree[n].Freq = 0;
116
117
49.2k
    s->dyn_ltree[END_BLOCK].Freq = 1;
118
49.2k
    s->opt_len = s->static_len = 0L;
119
49.2k
    s->sym_next = s->matches = 0;
120
49.2k
}
121
122
32.5M
#define SMALLEST 1
123
/* Index within the heap array of least frequent node in the Huffman tree */
124
125
126
/* ===========================================================================
127
 * Remove the smallest element from the heap and recreate the heap with
128
 * one less element. Updates heap and heap_len.
129
 */
130
5.40M
#define pqremove(s, tree, top) \
131
5.40M
{\
132
5.40M
    top = s->heap[SMALLEST]; \
133
5.40M
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
134
5.40M
    pqdownheap(s, tree, SMALLEST); \
135
5.40M
}
136
137
/* ===========================================================================
138
 * Compares to subtrees, using the tree depth as tie breaker when
139
 * the subtrees have equal frequency. This minimizes the worst case length.
140
 */
141
#define smaller(tree, n, m, depth) \
142
116M
    (tree[n].Freq < tree[m].Freq || \
143
116M
    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
144
145
/* ===========================================================================
146
 * Restore the heap property by moving down the tree starting at node k,
147
 * exchanging a node with the smallest of its two sons if necessary, stopping
148
 * when the heap property is re-established (each father smaller than its
149
 * two sons).
150
 */
151
13.5M
static void pqdownheap(deflate_state *s, ct_data *tree, int k) {
152
    /* tree: the tree to restore */
153
    /* k: node to move down */
154
13.5M
    int v = s->heap[k];
155
13.5M
    int j = k << 1;  /* left son of k */
156
69.3M
    while (j <= s->heap_len) {
157
        /* Set j to the smallest of the two sons: */
158
58.8M
        if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
159
27.5M
            j++;
160
27.5M
        }
161
        /* Exit if v is smaller than both sons */
162
58.8M
        if (smaller(tree, v, s->heap[j], s->depth))
163
3.06M
            break;
164
165
        /* Exchange v with the smallest son */
166
55.7M
        s->heap[k] = s->heap[j];
167
55.7M
        k = j;
168
169
        /* And continue down the tree, setting j to the left son of k */
170
55.7M
        j <<= 1;
171
55.7M
    }
172
13.5M
    s->heap[k] = v;
173
13.5M
}
174
175
/* ===========================================================================
176
 * Compute the optimal bit lengths for a tree and update the total bit length
177
 * for the current block.
178
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
179
 *    above are the tree nodes sorted by increasing frequency.
180
 * OUT assertions: the field len is set to the optimal bit length, the
181
 *     array bl_count contains the frequencies for each bit length.
182
 *     The length opt_len is updated; static_len is also updated if stree is
183
 *     not null.
184
 */
185
92.5k
static void gen_bitlen(deflate_state *s, tree_desc *desc) {
186
    /* desc: the tree descriptor */
187
92.5k
    ct_data *tree           = desc->dyn_tree;
188
92.5k
    int max_code            = desc->max_code;
189
92.5k
    const ct_data *stree    = desc->stat_desc->static_tree;
190
92.5k
    const int *extra        = desc->stat_desc->extra_bits;
191
92.5k
    int base                = desc->stat_desc->extra_base;
192
92.5k
    unsigned int max_length = desc->stat_desc->max_length;
193
92.5k
    int h;              /* heap index */
194
92.5k
    int n, m;           /* iterate over the tree elements */
195
92.5k
    unsigned int bits;  /* bit length */
196
92.5k
    int xbits;          /* extra bits */
197
92.5k
    uint16_t f;         /* frequency */
198
92.5k
    int overflow = 0;   /* number of elements with bit length too large */
199
200
1.57M
    for (bits = 0; bits <= MAX_BITS; bits++)
201
1.48M
        s->bl_count[bits] = 0;
202
203
    /* In a first pass, compute the optimal bit lengths (which may
204
     * overflow in the case of the bit length tree).
205
     */
206
92.5k
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
207
208
10.8M
    for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
209
10.8M
        n = s->heap[h];
210
10.8M
        bits = tree[tree[n].Dad].Len + 1u;
211
10.8M
        if (bits > max_length){
212
13.3k
            bits = max_length;
213
13.3k
            overflow++;
214
13.3k
        }
215
10.8M
        tree[n].Len = (uint16_t)bits;
216
        /* We overwrite tree[n].Dad which is no longer needed */
217
218
10.8M
        if (n > max_code) /* not a leaf node */
219
5.31M
            continue;
220
221
5.49M
        s->bl_count[bits]++;
222
5.49M
        xbits = 0;
223
5.49M
        if (n >= base)
224
780k
            xbits = extra[n-base];
225
5.49M
        f = tree[n].Freq;
226
5.49M
        s->opt_len += (unsigned long)f * (unsigned int)(bits + xbits);
227
5.49M
        if (stree)
228
5.19M
            s->static_len += (unsigned long)f * (unsigned int)(stree[n].Len + xbits);
229
5.49M
    }
230
92.5k
    if (overflow == 0)
231
88.0k
        return;
232
233
4.47k
    Tracev((stderr, "\nbit length overflow\n"));
234
    /* This happens for example on obj2 and pic of the Calgary corpus */
235
236
    /* Find the first bit length which could increase: */
237
6.66k
    do {
238
6.66k
        bits = max_length - 1;
239
9.09k
        while (s->bl_count[bits] == 0)
240
2.43k
            bits--;
241
6.66k
        s->bl_count[bits]--;       /* move one leaf down the tree */
242
6.66k
        s->bl_count[bits+1] += 2u; /* move one overflow item as its brother */
243
6.66k
        s->bl_count[max_length]--;
244
        /* The brother of the overflow item also moves one step up,
245
         * but this does not affect bl_count[max_length]
246
         */
247
6.66k
        overflow -= 2;
248
6.66k
    } while (overflow > 0);
249
250
    /* Now recompute all bit lengths, scanning in increasing frequency.
251
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
252
     * lengths instead of fixing only the wrong ones. This idea is taken
253
     * from 'ar' written by Haruhiko Okumura.)
254
     */
255
35.8k
    for (bits = max_length; bits != 0; bits--) {
256
31.3k
        n = s->bl_count[bits];
257
133k
        while (n != 0) {
258
102k
            m = s->heap[--h];
259
102k
            if (m > max_code)
260
43.1k
                continue;
261
59.1k
            if (tree[m].Len != bits) {
262
6.45k
                Tracev((stderr, "code %d bits %d->%u\n", m, tree[m].Len, bits));
263
6.45k
                s->opt_len += (unsigned long)(bits * tree[m].Freq);
264
6.45k
                s->opt_len -= (unsigned long)(tree[m].Len * tree[m].Freq);
265
6.45k
                tree[m].Len = (uint16_t)bits;
266
6.45k
            }
267
59.1k
            n--;
268
59.1k
        }
269
31.3k
    }
270
4.47k
}
271
272
/* ===========================================================================
273
 * Generate the codes for a given tree and bit counts (which need not be
274
 * optimal).
275
 * IN assertion: the array bl_count contains the bit length statistics for
276
 * the given tree and the field len is set for all tree elements.
277
 * OUT assertion: the field code is set for all tree elements of non
278
 *     zero code length.
279
 */
280
92.5k
Z_INTERNAL void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) {
281
    /* tree: the tree to decorate */
282
    /* max_code: largest code with non zero frequency */
283
    /* bl_count: number of codes at each bit length */
284
92.5k
    uint16_t next_code[MAX_BITS+1];  /* next code value for each bit length */
285
92.5k
    unsigned int code = 0;           /* running code value */
286
92.5k
    int bits;                        /* bit index */
287
92.5k
    int n;                           /* code index */
288
289
    /* The distribution counts are first used to generate the code values
290
     * without bit reversal.
291
     */
292
1.48M
    for (bits = 1; bits <= MAX_BITS; bits++) {
293
1.38M
        code = (code + bl_count[bits-1]) << 1;
294
1.38M
        next_code[bits] = (uint16_t)code;
295
1.38M
    }
296
    /* Check that the bit counts in bl_count are consistent. The last code
297
     * must be all ones.
298
     */
299
92.5k
    Assert(code + bl_count[MAX_BITS]-1 == (1 << MAX_BITS)-1, "inconsistent bit counts");
300
92.5k
    Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
301
302
9.54M
    for (n = 0;  n <= max_code; n++) {
303
9.45M
        int len = tree[n].Len;
304
9.45M
        if (len == 0)
305
3.95M
            continue;
306
        /* Now reverse the bits */
307
5.49M
        tree[n].Code = PREFIX(bi_reverse)(next_code[len]++, len);
308
309
5.49M
        Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ",
310
5.49M
             n, (isgraph(n & 0xff) ? n : ' '), len, tree[n].Code, next_code[len]-1));
311
5.49M
    }
312
92.5k
}
313
314
/* ===========================================================================
315
 * Construct one Huffman tree and assigns the code bit strings and lengths.
316
 * Update the total bit length for the current block.
317
 * IN assertion: the field freq is set for all tree elements.
318
 * OUT assertions: the fields len and code are set to the optimal bit length
319
 *     and corresponding code. The length opt_len is updated; static_len is
320
 *     also updated if stree is not null. The field max_code is set.
321
 */
322
92.5k
static void build_tree(deflate_state *s, tree_desc *desc) {
323
    /* desc: the tree descriptor */
324
92.5k
    ct_data *tree         = desc->dyn_tree;
325
92.5k
    const ct_data *stree  = desc->stat_desc->static_tree;
326
92.5k
    int elems             = desc->stat_desc->elems;
327
92.5k
    int n, m;          /* iterate over heap elements */
328
92.5k
    int max_code = -1; /* largest code with non zero frequency */
329
92.5k
    int node;          /* new node being created */
330
331
    /* Construct the initial heap, with least frequent element in
332
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
333
     * heap[0] is not used.
334
     */
335
92.5k
    s->heap_len = 0;
336
92.5k
    s->heap_max = HEAP_SIZE;
337
338
10.4M
    for (n = 0; n < elems; n++) {
339
10.3M
        if (tree[n].Freq != 0) {
340
5.47M
            s->heap[++(s->heap_len)] = max_code = n;
341
5.47M
            s->depth[n] = 0;
342
5.47M
        } else {
343
4.85M
            tree[n].Len = 0;
344
4.85M
        }
345
10.3M
    }
346
347
    /* The pkzip format requires that at least one distance code exists,
348
     * and that at least one bit should be sent even if there is only one
349
     * possible code. So to avoid special checks later on we force at least
350
     * two codes of non zero frequency.
351
     */
352
109k
    while (s->heap_len < 2) {
353
17.3k
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
354
17.3k
        tree[node].Freq = 1;
355
17.3k
        s->depth[node] = 0;
356
17.3k
        s->opt_len--;
357
17.3k
        if (stree)
358
17.3k
            s->static_len -= stree[node].Len;
359
        /* node is 0 or 1 so it does not have extra bits */
360
17.3k
    }
361
92.5k
    desc->max_code = max_code;
362
363
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
364
     * establish sub-heaps of increasing lengths:
365
     */
366
2.82M
    for (n = s->heap_len/2; n >= 1; n--)
367
2.72M
        pqdownheap(s, tree, n);
368
369
    /* Construct the Huffman tree by repeatedly combining the least two
370
     * frequent nodes.
371
     */
372
92.5k
    node = elems;              /* next internal node of the tree */
373
5.40M
    do {
374
5.40M
        pqremove(s, tree, n);  /* n = node of least frequency */
375
5.40M
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
376
377
5.40M
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
378
5.40M
        s->heap[--(s->heap_max)] = m;
379
380
        /* Create a new node father of n and m */
381
5.40M
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
382
5.40M
        s->depth[node] = (unsigned char)((s->depth[n] >= s->depth[m] ?
383
4.71M
                                          s->depth[n] : s->depth[m]) + 1);
384
5.40M
        tree[n].Dad = tree[m].Dad = (uint16_t)node;
385
#ifdef DUMP_BL_TREE
386
        if (tree == s->bl_tree) {
387
            fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
388
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
389
        }
390
#endif
391
        /* and insert the new node in the heap */
392
5.40M
        s->heap[SMALLEST] = node++;
393
5.40M
        pqdownheap(s, tree, SMALLEST);
394
5.40M
    } while (s->heap_len >= 2);
395
396
92.5k
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
397
398
    /* At this point, the fields freq and dad are set. We can now
399
     * generate the bit lengths.
400
     */
401
92.5k
    gen_bitlen(s, (tree_desc *)desc);
402
403
    /* The field len is now set, we can generate the bit codes */
404
92.5k
    gen_codes((ct_data *)tree, max_code, s->bl_count);
405
92.5k
}
406
407
/* ===========================================================================
408
 * Scan a literal or distance tree to determine the frequencies of the codes
409
 * in the bit length tree.
410
 */
411
61.6k
static void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
412
    /* tree: the tree to be scanned */
413
    /* max_code: and its largest code of non zero frequency */
414
61.6k
    int n;                     /* iterates over all tree elements */
415
61.6k
    int prevlen = -1;          /* last emitted length */
416
61.6k
    int curlen;                /* length of current code */
417
61.6k
    int nextlen = tree[0].Len; /* length of next code */
418
61.6k
    uint16_t count = 0;        /* repeat count of the current code */
419
61.6k
    uint16_t max_count = 7;    /* max repeat count */
420
61.6k
    uint16_t min_count = 4;    /* min repeat count */
421
422
61.6k
    if (nextlen == 0)
423
11.2k
        max_count = 138, min_count = 3;
424
425
61.6k
    tree[max_code+1].Len = (uint16_t)0xffff; /* guard */
426
427
8.94M
    for (n = 0; n <= max_code; n++) {
428
8.88M
        curlen = nextlen;
429
8.88M
        nextlen = tree[n+1].Len;
430
8.88M
        if (++count < max_count && curlen == nextlen) {
431
6.30M
            continue;
432
6.30M
        } else if (count < min_count) {
433
1.84M
            s->bl_tree[curlen].Freq += count;
434
1.84M
        } else if (curlen != 0) {
435
528k
            if (curlen != prevlen)
436
206k
                s->bl_tree[curlen].Freq++;
437
528k
            s->bl_tree[REP_3_6].Freq++;
438
528k
        } else if (count <= 10) {
439
128k
            s->bl_tree[REPZ_3_10].Freq++;
440
128k
        } else {
441
71.4k
            s->bl_tree[REPZ_11_138].Freq++;
442
71.4k
        }
443
2.57M
        count = 0;
444
2.57M
        prevlen = curlen;
445
2.57M
        if (nextlen == 0) {
446
391k
            max_count = 138, min_count = 3;
447
2.17M
        } else if (curlen == nextlen) {
448
355k
            max_count = 6, min_count = 3;
449
1.82M
        } else {
450
1.82M
            max_count = 7, min_count = 4;
451
1.82M
        }
452
2.57M
    }
453
61.6k
}
454
455
/* ===========================================================================
456
 * Send a literal or distance tree in compressed form, using the codes in
457
 * bl_tree.
458
 */
459
32.2k
static void send_tree(deflate_state *s, ct_data *tree, int max_code) {
460
    /* tree: the tree to be scanned */
461
    /* max_code and its largest code of non zero frequency */
462
32.2k
    int n;                     /* iterates over all tree elements */
463
32.2k
    int prevlen = -1;          /* last emitted length */
464
32.2k
    int curlen;                /* length of current code */
465
32.2k
    int nextlen = tree[0].Len; /* length of next code */
466
32.2k
    int count = 0;             /* repeat count of the current code */
467
32.2k
    int max_count = 7;         /* max repeat count */
468
32.2k
    int min_count = 4;         /* min repeat count */
469
470
    /* tree[max_code+1].Len = -1; */  /* guard already set */
471
32.2k
    if (nextlen == 0)
472
7.24k
        max_count = 138, min_count = 3;
473
474
    // Temp local variables
475
32.2k
    uint32_t bi_valid = s->bi_valid;
476
32.2k
    uint64_t bi_buf = s->bi_buf;
477
478
4.91M
    for (n = 0; n <= max_code; n++) {
479
4.88M
        curlen = nextlen;
480
4.88M
        nextlen = tree[n+1].Len;
481
4.88M
        if (++count < max_count && curlen == nextlen) {
482
2.99M
            continue;
483
2.99M
        } else if (count < min_count) {
484
1.96M
            do {
485
1.96M
                send_code(s, curlen, s->bl_tree, bi_buf, bi_valid);
486
1.96M
            } while (--count != 0);
487
488
1.48M
        } else if (curlen != 0) {
489
299k
            if (curlen != prevlen) {
490
176k
                send_code(s, curlen, s->bl_tree, bi_buf, bi_valid);
491
176k
                count--;
492
176k
            }
493
299k
            Assert(count >= 3 && count <= 6, " 3_6?");
494
299k
            send_code(s, REP_3_6, s->bl_tree, bi_buf, bi_valid);
495
299k
            send_bits(s, count-3, 2, bi_buf, bi_valid);
496
497
299k
        } else if (count <= 10) {
498
78.3k
            send_code(s, REPZ_3_10, s->bl_tree, bi_buf, bi_valid);
499
78.3k
            send_bits(s, count-3, 3, bi_buf, bi_valid);
500
501
78.3k
        } else {
502
28.2k
            send_code(s, REPZ_11_138, s->bl_tree, bi_buf, bi_valid);
503
28.2k
            send_bits(s, count-11, 7, bi_buf, bi_valid);
504
28.2k
        }
505
1.89M
        count = 0;
506
1.89M
        prevlen = curlen;
507
1.89M
        if (nextlen == 0) {
508
241k
            max_count = 138, min_count = 3;
509
1.65M
        } else if (curlen == nextlen) {
510
148k
            max_count = 6, min_count = 3;
511
1.50M
        } else {
512
1.50M
            max_count = 7, min_count = 4;
513
1.50M
        }
514
1.89M
    }
515
516
    // Store back temp variables
517
32.2k
    s->bi_buf = bi_buf;
518
32.2k
    s->bi_valid = bi_valid;
519
32.2k
}
520
521
/* ===========================================================================
522
 * Construct the Huffman tree for the bit lengths and return the index in
523
 * bl_order of the last bit length code to send.
524
 */
525
30.8k
static int build_bl_tree(deflate_state *s) {
526
30.8k
    int max_blindex;  /* index of last bit length code of non zero freq */
527
528
    /* Determine the bit length frequencies for literal and distance trees */
529
30.8k
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
530
30.8k
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
531
532
    /* Build the bit length tree: */
533
30.8k
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
534
    /* opt_len now includes the length of the tree representations, except
535
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
536
     */
537
538
    /* Determine the number of bit length codes to send. The pkzip format
539
     * requires that at least 4 bit length codes be sent. (appnote.txt says
540
     * 3 but the actual value used is 4.)
541
     */
542
83.0k
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
543
83.0k
        if (s->bl_tree[bl_order[max_blindex]].Len != 0)
544
30.8k
            break;
545
83.0k
    }
546
    /* Update opt_len to include the bit length tree and counts */
547
30.8k
    s->opt_len += 3*((unsigned long)max_blindex+1) + 5+5+4;
548
30.8k
    Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", s->opt_len, s->static_len));
549
550
30.8k
    return max_blindex;
551
30.8k
}
552
553
/* ===========================================================================
554
 * Send the header for a block using dynamic Huffman trees: the counts, the
555
 * lengths of the bit length codes, the literal tree and the distance tree.
556
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
557
 */
558
16.1k
static void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes) {
559
16.1k
    int rank;                    /* index in bl_order */
560
561
16.1k
    Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
562
16.1k
    Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes");
563
564
    // Temp local variables
565
16.1k
    uint32_t bi_valid = s->bi_valid;
566
16.1k
    uint64_t bi_buf = s->bi_buf;
567
568
16.1k
    Tracev((stderr, "\nbl counts: "));
569
16.1k
    send_bits(s, lcodes-257, 5, bi_buf, bi_valid); /* not +255 as stated in appnote.txt */
570
16.1k
    send_bits(s, dcodes-1,   5, bi_buf, bi_valid);
571
16.1k
    send_bits(s, blcodes-4,  4, bi_buf, bi_valid); /* not -3 as stated in appnote.txt */
572
288k
    for (rank = 0; rank < blcodes; rank++) {
573
271k
        Tracev((stderr, "\nbl code %2u ", bl_order[rank]));
574
271k
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3, bi_buf, bi_valid);
575
271k
    }
576
16.1k
    Tracev((stderr, "\nbl tree: sent %lu", s->bits_sent));
577
578
    // Store back temp variables
579
16.1k
    s->bi_buf = bi_buf;
580
16.1k
    s->bi_valid = bi_valid;
581
582
16.1k
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
583
16.1k
    Tracev((stderr, "\nlit tree: sent %lu", s->bits_sent));
584
585
16.1k
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
586
16.1k
    Tracev((stderr, "\ndist tree: sent %lu", s->bits_sent));
587
16.1k
}
588
589
/* ===========================================================================
590
 * Send a stored block
591
 */
592
6.20k
void Z_INTERNAL zng_tr_stored_block(deflate_state *s, char *buf, uint32_t stored_len, int last) {
593
    /* buf: input block */
594
    /* stored_len: length of input block */
595
    /* last: one if this is the last block for a file */
596
6.20k
    zng_tr_emit_tree(s, STORED_BLOCK, last); /* send block type */
597
6.20k
    zng_tr_emit_align(s);                    /* align on byte boundary */
598
6.20k
    cmpr_bits_align(s);
599
6.20k
    put_short(s, (uint16_t)stored_len);
600
6.20k
    put_short(s, (uint16_t)~stored_len);
601
6.20k
    cmpr_bits_add(s, 32);
602
6.20k
    sent_bits_add(s, 32);
603
6.20k
    if (stored_len) {
604
6.20k
        memcpy(s->pending_buf + s->pending, (unsigned char *)buf, stored_len);
605
6.20k
        s->pending += stored_len;
606
6.20k
        cmpr_bits_add(s, stored_len << 3);
607
6.20k
        sent_bits_add(s, stored_len << 3);
608
6.20k
    }
609
6.20k
}
610
611
/* ===========================================================================
612
 * Send one empty static block to give enough lookahead for inflate.
613
 * This takes 10 bits, of which 7 may remain in the bit buffer.
614
 */
615
0
void Z_INTERNAL zng_tr_align(deflate_state *s) {
616
0
    zng_tr_emit_tree(s, STATIC_TREES, 0);
617
0
    zng_tr_emit_end_block(s, static_ltree, 0);
618
0
    zng_tr_flush_bits(s);
619
0
}
620
621
/* ===========================================================================
622
 * Determine the best encoding for the current block: dynamic trees, static
623
 * trees or store, and write out the encoded block.
624
 */
625
30.8k
void Z_INTERNAL zng_tr_flush_block(deflate_state *s, char *buf, uint32_t stored_len, int last) {
626
    /* buf: input block, or NULL if too old */
627
    /* stored_len: length of input block */
628
    /* last: one if this is the last block for a file */
629
30.8k
    unsigned long opt_lenb, static_lenb; /* opt_len and static_len in bytes */
630
30.8k
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
631
632
    /* Build the Huffman trees unless a stored block is forced */
633
30.8k
    if (UNLIKELY(s->sym_next == 0)) {
634
        /* Emit an empty static tree block with no codes */
635
32
        opt_lenb = static_lenb = 0;
636
32
        s->static_len = 7;
637
30.8k
    } else if (s->level > 0) {
638
        /* Check if the file is binary or text */
639
30.8k
        if (s->strm->data_type == Z_UNKNOWN)
640
13.7k
            s->strm->data_type = detect_data_type(s);
641
642
        /* Construct the literal and distance trees */
643
30.8k
        build_tree(s, (tree_desc *)(&(s->l_desc)));
644
30.8k
        Tracev((stderr, "\nlit data: dyn %lu, stat %lu", s->opt_len, s->static_len));
645
646
30.8k
        build_tree(s, (tree_desc *)(&(s->d_desc)));
647
30.8k
        Tracev((stderr, "\ndist data: dyn %lu, stat %lu", s->opt_len, s->static_len));
648
        /* At this point, opt_len and static_len are the total bit lengths of
649
         * the compressed block data, excluding the tree representations.
650
         */
651
652
        /* Build the bit length tree for the above two trees, and get the index
653
         * in bl_order of the last bit length code to send.
654
         */
655
30.8k
        max_blindex = build_bl_tree(s);
656
657
        /* Determine the best encoding. Compute the block lengths in bytes. */
658
30.8k
        opt_lenb = (s->opt_len+3+7) >> 3;
659
30.8k
        static_lenb = (s->static_len+3+7) >> 3;
660
661
30.8k
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %u lit %u ",
662
30.8k
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
663
30.8k
                s->sym_next / 3));
664
665
30.8k
        if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
666
9.08k
            opt_lenb = static_lenb;
667
668
30.8k
    } else {
669
0
        Assert(buf != NULL, "lost buf");
670
0
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
671
0
    }
672
673
30.8k
    if (stored_len+4 <= opt_lenb && buf != NULL) {
674
        /* 4: two words for the lengths
675
         * The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
676
         * Otherwise we can't have processed more than WSIZE input bytes since
677
         * the last block flush, because compression would have been
678
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
679
         * transform a block into a stored block.
680
         */
681
6.20k
        zng_tr_stored_block(s, buf, stored_len, last);
682
683
24.6k
    } else if (static_lenb == opt_lenb) {
684
8.54k
        zng_tr_emit_tree(s, STATIC_TREES, last);
685
8.54k
        compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
686
8.54k
        cmpr_bits_add(s, s->static_len);
687
16.1k
    } else {
688
16.1k
        zng_tr_emit_tree(s, DYN_TREES, last);
689
16.1k
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1);
690
16.1k
        compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
691
16.1k
        cmpr_bits_add(s, s->opt_len);
692
16.1k
    }
693
30.8k
    Assert(s->compressed_len == s->bits_sent, "bad compressed size");
694
    /* The above check is made mod 2^32, for files larger than 512 MB
695
     * and unsigned long implemented on 32 bits.
696
     */
697
30.8k
    init_block(s);
698
699
30.8k
    if (last) {
700
13.7k
        zng_tr_emit_align(s);
701
13.7k
    }
702
30.8k
    Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last));
703
30.8k
}
704
705
/* ===========================================================================
706
 * Send the block data compressed using the given Huffman trees
707
 */
708
24.6k
static void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree) {
709
    /* ltree: literal tree */
710
    /* dtree: distance tree */
711
24.6k
    unsigned dist;      /* distance of matched string */
712
24.6k
    int lc;             /* match length or unmatched char (if dist == 0) */
713
24.6k
    unsigned sx = 0;    /* running index in symbol buffers */
714
715
24.6k
    if (s->sym_next != 0) {
716
208M
        do {
717
208M
#ifdef LIT_MEM
718
208M
            dist = s->d_buf[sx];
719
208M
            lc = s->l_buf[sx++];
720
#else
721
            dist = s->sym_buf[sx++] & 0xff;
722
            dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
723
            lc = s->sym_buf[sx++];
724
#endif
725
208M
            if (dist == 0) {
726
193M
                zng_emit_lit(s, ltree, lc);
727
193M
            } else {
728
15.1M
                zng_emit_dist(s, ltree, dtree, lc, dist);
729
15.1M
            } /* literal or match pair ? */
730
731
            /* Check for no overlay of pending_buf on needed symbols */
732
208M
#ifdef LIT_MEM
733
208M
            Assert(s->pending < 2 * (s->lit_bufsize + sx), "pending_buf overflow");
734
#else
735
            Assert(s->pending < s->lit_bufsize + sx, "pending_buf overflow");
736
#endif
737
208M
        } while (sx < s->sym_next);
738
24.6k
    }
739
740
24.6k
    zng_emit_end_block(s, ltree, 0);
741
24.6k
}
742
743
/* ===========================================================================
744
 * Check if the data type is TEXT or BINARY, using the following algorithm:
745
 * - TEXT if the two conditions below are satisfied:
746
 *    a) There are no non-portable control characters belonging to the
747
 *       "black list" (0..6, 14..25, 28..31).
748
 *    b) There is at least one printable character belonging to the
749
 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
750
 * - BINARY otherwise.
751
 * - The following partially-portable control characters form a
752
 *   "gray list" that is ignored in this detection algorithm:
753
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
754
 * IN assertion: the fields Freq of dyn_ltree are set.
755
 */
756
13.7k
static int detect_data_type(deflate_state *s) {
757
    /* black_mask is the bit mask of black-listed bytes
758
     * set bits 0..6, 14..25, and 28..31
759
     * 0xf3ffc07f = binary 11110011111111111100000001111111
760
     */
761
13.7k
    unsigned long black_mask = 0xf3ffc07fUL;
762
13.7k
    int n;
763
764
    /* Check for non-textual ("black-listed") bytes. */
765
87.6k
    for (n = 0; n <= 31; n++, black_mask >>= 1)
766
85.6k
        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
767
11.7k
            return Z_BINARY;
768
769
    /* Check for textual ("white-listed") bytes. */
770
2.02k
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0)
771
665
        return Z_TEXT;
772
78.8k
    for (n = 32; n < LITERALS; n++)
773
78.7k
        if (s->dyn_ltree[n].Freq != 0)
774
1.36k
            return Z_TEXT;
775
776
    /* There are no "black-listed" or "white-listed" bytes:
777
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
778
     */
779
3
    return Z_BINARY;
780
1.36k
}
781
782
/* ===========================================================================
783
 * Flush the bit buffer, keeping at most 7 bits in it.
784
 */
785
73.6k
void Z_INTERNAL zng_tr_flush_bits(deflate_state *s) {
786
73.6k
    if (s->bi_valid >= 48) {
787
2.79k
        put_uint32(s, (uint32_t)s->bi_buf);
788
2.79k
        put_short(s, (uint16_t)(s->bi_buf >> 32));
789
2.79k
        s->bi_buf >>= 48;
790
2.79k
        s->bi_valid -= 48;
791
70.8k
    } else if (s->bi_valid >= 32) {
792
3.03k
        put_uint32(s, (uint32_t)s->bi_buf);
793
3.03k
        s->bi_buf >>= 32;
794
3.03k
        s->bi_valid -= 32;
795
3.03k
    }
796
73.6k
    if (s->bi_valid >= 16) {
797
3.08k
        put_short(s, (uint16_t)s->bi_buf);
798
3.08k
        s->bi_buf >>= 16;
799
3.08k
        s->bi_valid -= 16;
800
3.08k
    }
801
73.6k
    if (s->bi_valid >= 8) {
802
6.14k
        put_byte(s, s->bi_buf);
803
6.14k
        s->bi_buf >>= 8;
804
6.14k
        s->bi_valid -= 8;
805
6.14k
    }
806
73.6k
}
807
808
/* ===========================================================================
809
 * Reverse the first len bits of a code using bit manipulation
810
 */
811
5.49M
Z_INTERNAL uint16_t PREFIX(bi_reverse)(unsigned code, int len) {
812
    /* code: the value to invert */
813
    /* len: its bit length */
814
5.49M
    Assert(len >= 1 && len <= 15, "code length must be 1-15");
815
5.49M
#define bitrev8(b) \
816
10.9M
    (uint8_t)((((uint8_t)(b) * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32)
817
5.49M
    return (bitrev8(code >> 8) | (uint16_t)bitrev8(code) << 8) >> (16 - len);
818
5.49M
}