/src/zlib-ng/arch/x86/adler32_avx2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* adler32_avx2.c -- compute the Adler-32 checksum of a data stream |
2 | | * Copyright (C) 1995-2011 Mark Adler |
3 | | * Copyright (C) 2022 Adam Stylinski |
4 | | * Authors: |
5 | | * Brian Bockelman <bockelman@gmail.com> |
6 | | * Adam Stylinski <kungfujesus06@gmail.com> |
7 | | * For conditions of distribution and use, see copyright notice in zlib.h |
8 | | */ |
9 | | |
10 | | #ifdef X86_AVX2 |
11 | | |
12 | | #include "zbuild.h" |
13 | | #include <immintrin.h> |
14 | | #include "adler32_p.h" |
15 | | #include "adler32_avx2_p.h" |
16 | | #include "x86_intrins.h" |
17 | | |
18 | | extern uint32_t adler32_fold_copy_sse42(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len); |
19 | | extern uint32_t adler32_ssse3(uint32_t adler, const uint8_t *src, size_t len); |
20 | | |
21 | 1.79M | static inline uint32_t adler32_fold_copy_impl(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len, const int COPY) { |
22 | 1.79M | if (src == NULL) return 1L; |
23 | 1.79M | if (len == 0) return adler; |
24 | | |
25 | 1.79M | uint32_t adler0, adler1; |
26 | 1.79M | adler1 = (adler >> 16) & 0xffff; |
27 | 1.79M | adler0 = adler & 0xffff; |
28 | | |
29 | 2.11M | rem_peel: |
30 | 2.11M | if (len < 16) { |
31 | 1.17M | if (COPY) { |
32 | 0 | return adler32_copy_len_16(adler0, src, dst, len, adler1); |
33 | 1.17M | } else { |
34 | 1.17M | return adler32_len_16(adler0, src, len, adler1); |
35 | 1.17M | } |
36 | 1.17M | } else if (len < 32) { |
37 | 592k | if (COPY) { |
38 | 0 | return adler32_fold_copy_sse42(adler, dst, src, len); |
39 | 592k | } else { |
40 | 592k | return adler32_ssse3(adler, src, len); |
41 | 592k | } |
42 | 592k | } |
43 | | |
44 | 353k | __m256i vs1, vs2, vs2_0; |
45 | | |
46 | 353k | const __m256i dot2v = _mm256_setr_epi8(64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, |
47 | 353k | 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33); |
48 | 353k | const __m256i dot2v_0 = _mm256_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, |
49 | 353k | 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1); |
50 | 353k | const __m256i dot3v = _mm256_set1_epi16(1); |
51 | 353k | const __m256i zero = _mm256_setzero_si256(); |
52 | | |
53 | 713k | while (len >= 32) { |
54 | 360k | vs1 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler0)); |
55 | 360k | vs2 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler1)); |
56 | 360k | __m256i vs1_0 = vs1; |
57 | 360k | __m256i vs3 = _mm256_setzero_si256(); |
58 | 360k | vs2_0 = vs3; |
59 | | |
60 | 360k | size_t k = MIN(len, NMAX); |
61 | 360k | k -= k % 32; |
62 | 360k | len -= k; |
63 | | |
64 | 1.24M | while (k >= 64) { |
65 | 881k | __m256i vbuf = _mm256_loadu_si256((__m256i*)src); |
66 | 881k | __m256i vbuf_0 = _mm256_loadu_si256((__m256i*)(src + 32)); |
67 | 881k | src += 64; |
68 | 881k | k -= 64; |
69 | | |
70 | 881k | __m256i vs1_sad = _mm256_sad_epu8(vbuf, zero); |
71 | 881k | __m256i vs1_sad2 = _mm256_sad_epu8(vbuf_0, zero); |
72 | | |
73 | 881k | if (COPY) { |
74 | 0 | _mm256_storeu_si256((__m256i*)dst, vbuf); |
75 | 0 | _mm256_storeu_si256((__m256i*)(dst + 32), vbuf_0); |
76 | 0 | dst += 64; |
77 | 0 | } |
78 | | |
79 | 881k | vs1 = _mm256_add_epi32(vs1, vs1_sad); |
80 | 881k | vs3 = _mm256_add_epi32(vs3, vs1_0); |
81 | 881k | __m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v); // sum 32 uint8s to 16 shorts |
82 | 881k | __m256i v_short_sum2_0 = _mm256_maddubs_epi16(vbuf_0, dot2v_0); // sum 32 uint8s to 16 shorts |
83 | 881k | __m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v); // sum 16 shorts to 8 uint32s |
84 | 881k | __m256i vsum2_0 = _mm256_madd_epi16(v_short_sum2_0, dot3v); // sum 16 shorts to 8 uint32s |
85 | 881k | vs1 = _mm256_add_epi32(vs1_sad2, vs1); |
86 | 881k | vs2 = _mm256_add_epi32(vsum2, vs2); |
87 | 881k | vs2_0 = _mm256_add_epi32(vsum2_0, vs2_0); |
88 | 881k | vs1_0 = vs1; |
89 | 881k | } |
90 | | |
91 | 360k | vs2 = _mm256_add_epi32(vs2_0, vs2); |
92 | 360k | vs3 = _mm256_slli_epi32(vs3, 6); |
93 | 360k | vs2 = _mm256_add_epi32(vs3, vs2); |
94 | 360k | vs3 = _mm256_setzero_si256(); |
95 | | |
96 | 669k | while (k >= 32) { |
97 | | /* |
98 | | vs1 = adler + sum(c[i]) |
99 | | vs2 = sum2 + 32 vs1 + sum( (32-i+1) c[i] ) |
100 | | */ |
101 | 308k | __m256i vbuf = _mm256_loadu_si256((__m256i*)src); |
102 | 308k | src += 32; |
103 | 308k | k -= 32; |
104 | | |
105 | 308k | __m256i vs1_sad = _mm256_sad_epu8(vbuf, zero); // Sum of abs diff, resulting in 2 x int32's |
106 | | |
107 | 308k | if (COPY) { |
108 | 0 | _mm256_storeu_si256((__m256i*)dst, vbuf); |
109 | 0 | dst += 32; |
110 | 0 | } |
111 | | |
112 | 308k | vs1 = _mm256_add_epi32(vs1, vs1_sad); |
113 | 308k | vs3 = _mm256_add_epi32(vs3, vs1_0); |
114 | 308k | __m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v_0); // sum 32 uint8s to 16 shorts |
115 | 308k | __m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v); // sum 16 shorts to 8 uint32s |
116 | 308k | vs2 = _mm256_add_epi32(vsum2, vs2); |
117 | 308k | vs1_0 = vs1; |
118 | 308k | } |
119 | | |
120 | | /* Defer the multiplication with 32 to outside of the loop */ |
121 | 360k | vs3 = _mm256_slli_epi32(vs3, 5); |
122 | 360k | vs2 = _mm256_add_epi32(vs2, vs3); |
123 | | |
124 | | /* The compiler is generating the following sequence for this integer modulus |
125 | | * when done the scalar way, in GPRs: |
126 | | |
127 | | adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) + |
128 | | (s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE); |
129 | | |
130 | | mov $0x80078071,%edi // move magic constant into 32 bit register %edi |
131 | | ... |
132 | | vmovd %xmm1,%esi // move vector lane 0 to 32 bit register %esi |
133 | | mov %rsi,%rax // zero-extend this value to 64 bit precision in %rax |
134 | | imul %rdi,%rsi // do a signed multiplication with magic constant and vector element |
135 | | shr $0x2f,%rsi // shift right by 47 |
136 | | imul $0xfff1,%esi,%esi // do a signed multiplication with value truncated to 32 bits with 0xfff1 |
137 | | sub %esi,%eax // subtract lower 32 bits of original vector value from modified one above |
138 | | ... |
139 | | // repeats for each element with vpextract instructions |
140 | | |
141 | | This is tricky with AVX2 for a number of reasons: |
142 | | 1.) There's no 64 bit multiplication instruction, but there is a sequence to get there |
143 | | 2.) There's ways to extend vectors to 64 bit precision, but no simple way to truncate |
144 | | back down to 32 bit precision later (there is in AVX512) |
145 | | 3.) Full width integer multiplications aren't cheap |
146 | | |
147 | | We can, however, do a relatively cheap sequence for horizontal sums. |
148 | | Then, we simply do the integer modulus on the resulting 64 bit GPR, on a scalar value. It was |
149 | | previously thought that casting to 64 bit precision was needed prior to the horizontal sum, but |
150 | | that is simply not the case, as NMAX is defined as the maximum number of scalar sums that can be |
151 | | performed on the maximum possible inputs before overflow |
152 | | */ |
153 | | |
154 | | |
155 | | /* In AVX2-land, this trip through GPRs will probably be unavoidable, as there's no cheap and easy |
156 | | * conversion from 64 bit integer to 32 bit (needed for the inexpensive modulus with a constant). |
157 | | * This casting to 32 bit is cheap through GPRs (just register aliasing). See above for exactly |
158 | | * what the compiler is doing to avoid integer divisions. */ |
159 | 360k | adler0 = partial_hsum256(vs1) % BASE; |
160 | 360k | adler1 = hsum256(vs2) % BASE; |
161 | 360k | } |
162 | | |
163 | 353k | adler = adler0 | (adler1 << 16); |
164 | | |
165 | 353k | if (len) { |
166 | 324k | goto rem_peel; |
167 | 324k | } |
168 | | |
169 | 28.7k | return adler; |
170 | 353k | } |
171 | | |
172 | 1.79M | Z_INTERNAL uint32_t adler32_avx2(uint32_t adler, const uint8_t *src, size_t len) { |
173 | 1.79M | return adler32_fold_copy_impl(adler, NULL, src, len, 0); |
174 | 1.79M | } |
175 | | |
176 | 0 | Z_INTERNAL uint32_t adler32_fold_copy_avx2(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) { |
177 | 0 | return adler32_fold_copy_impl(adler, dst, src, len, 1); |
178 | 0 | } |
179 | | |
180 | | #endif |