Coverage Report

Created: 2025-10-10 06:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib-ng/arch/x86/adler32_ssse3.c
Line
Count
Source
1
/* adler32_ssse3.c -- compute the Adler-32 checksum of a data stream
2
 * Copyright (C) 1995-2011 Mark Adler
3
 * Authors:
4
 *   Adam Stylinski <kungfujesus06@gmail.com>
5
 *   Brian Bockelman <bockelman@gmail.com>
6
 * For conditions of distribution and use, see copyright notice in zlib.h
7
 */
8
9
#include "zbuild.h"
10
#include "adler32_p.h"
11
#include "adler32_ssse3_p.h"
12
13
#ifdef X86_SSSE3
14
15
#include <immintrin.h>
16
17
0
Z_INTERNAL uint32_t adler32_ssse3(uint32_t adler, const uint8_t *buf, size_t len) {
18
0
    uint32_t sum2;
19
20
     /* split Adler-32 into component sums */
21
0
    sum2 = (adler >> 16) & 0xffff;
22
0
    adler &= 0xffff;
23
24
    /* in case user likes doing a byte at a time, keep it fast */
25
0
    if (UNLIKELY(len == 1))
26
0
        return adler32_len_1(adler, buf, sum2);
27
28
    /* initial Adler-32 value (deferred check for len == 1 speed) */
29
0
    if (UNLIKELY(buf == NULL))
30
0
        return 1L;
31
32
    /* in case short lengths are provided, keep it somewhat fast */
33
0
    if (UNLIKELY(len < 16))
34
0
        return adler32_len_16(adler, buf, len, sum2);
35
36
0
    const __m128i dot2v = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
37
0
    const __m128i dot2v_0 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
38
0
    const __m128i dot3v = _mm_set1_epi16(1);
39
0
    const __m128i zero = _mm_setzero_si128();
40
41
0
    __m128i vbuf, vs1_0, vs3, vs1, vs2, vs2_0, v_sad_sum1, v_short_sum2, v_short_sum2_0,
42
0
            vbuf_0, v_sad_sum2, vsum2, vsum2_0;
43
44
    /* If our buffer is unaligned (likely), make the determination whether
45
     * or not there's enough of a buffer to consume to make the scalar, aligning
46
     * additions worthwhile or if it's worth it to just eat the cost of an unaligned
47
     * load. This is a pretty simple test, just test if 16 - the remainder + len is
48
     * < 16 */
49
0
    size_t max_iters = NMAX;
50
0
    size_t rem = (uintptr_t)buf & 15;
51
0
    size_t align_offset = 16 - rem;
52
0
    size_t k = 0;
53
0
    if (rem) {
54
0
        if (len < 16 + align_offset) {
55
            /* Let's eat the cost of this one unaligned load so that
56
             * we don't completely skip over the vectorization. Doing
57
             * 16 bytes at a time unaligned is better than 16 + <= 15
58
             * sums */
59
0
            vbuf = _mm_loadu_si128((__m128i*)buf);
60
0
            len -= 16;
61
0
            buf += 16;
62
0
            vs1 = _mm_cvtsi32_si128(adler);
63
0
            vs2 = _mm_cvtsi32_si128(sum2);
64
0
            vs3 = _mm_setzero_si128();
65
0
            vs1_0 = vs1;
66
0
            goto unaligned_jmp;
67
0
        }
68
69
0
        for (size_t i = 0; i < align_offset; ++i) {
70
0
            adler += *(buf++);
71
0
            sum2 += adler;
72
0
        }
73
74
        /* lop off the max number of sums based on the scalar sums done
75
         * above */
76
0
        len -= align_offset;
77
0
        max_iters -= align_offset;
78
0
    }
79
80
81
0
    while (len >= 16) {
82
0
        vs1 = _mm_cvtsi32_si128(adler);
83
0
        vs2 = _mm_cvtsi32_si128(sum2);
84
0
        vs3 = _mm_setzero_si128();
85
0
        vs2_0 = _mm_setzero_si128();
86
0
        vs1_0 = vs1;
87
88
0
        k = (len < max_iters ? len : max_iters);
89
0
        k -= k % 16;
90
0
        len -= k;
91
92
0
        while (k >= 32) {
93
            /*
94
               vs1 = adler + sum(c[i])
95
               vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
96
            */
97
0
            vbuf = _mm_load_si128((__m128i*)buf);
98
0
            vbuf_0 = _mm_load_si128((__m128i*)(buf + 16));
99
0
            buf += 32;
100
0
            k -= 32;
101
102
0
            v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
103
0
            v_sad_sum2 = _mm_sad_epu8(vbuf_0, zero);
104
0
            vs1 = _mm_add_epi32(v_sad_sum1, vs1);
105
0
            vs3 = _mm_add_epi32(vs1_0, vs3);
106
107
0
            vs1 = _mm_add_epi32(v_sad_sum2, vs1);
108
0
            v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
109
0
            vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
110
0
            v_short_sum2_0 = _mm_maddubs_epi16(vbuf_0, dot2v_0);
111
0
            vs2 = _mm_add_epi32(vsum2, vs2);
112
0
            vsum2_0 = _mm_madd_epi16(v_short_sum2_0, dot3v);
113
0
            vs2_0 = _mm_add_epi32(vsum2_0, vs2_0);
114
0
            vs1_0 = vs1;
115
0
        }
116
117
0
        vs2 = _mm_add_epi32(vs2_0, vs2);
118
0
        vs3 = _mm_slli_epi32(vs3, 5);
119
0
        vs2 = _mm_add_epi32(vs3, vs2);
120
0
        vs3 = _mm_setzero_si128();
121
122
0
        while (k >= 16) {
123
            /*
124
               vs1 = adler + sum(c[i])
125
               vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
126
            */
127
0
            vbuf = _mm_load_si128((__m128i*)buf);
128
0
            buf += 16;
129
0
            k -= 16;
130
131
0
unaligned_jmp:
132
0
            v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
133
0
            vs1 = _mm_add_epi32(v_sad_sum1, vs1);
134
0
            vs3 = _mm_add_epi32(vs1_0, vs3);
135
0
            v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v_0);
136
0
            vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
137
0
            vs2 = _mm_add_epi32(vsum2, vs2);
138
0
            vs1_0 = vs1;
139
0
        }
140
141
0
        vs3 = _mm_slli_epi32(vs3, 4);
142
0
        vs2 = _mm_add_epi32(vs2, vs3);
143
144
        /* We don't actually need to do a full horizontal sum, since psadbw is actually doing
145
         * a partial reduction sum implicitly and only summing to integers in vector positions
146
         * 0 and 2. This saves us some contention on the shuffle port(s) */
147
0
        adler = partial_hsum(vs1) % BASE;
148
0
        sum2 = hsum(vs2) % BASE;
149
0
        max_iters = NMAX;
150
0
    }
151
152
    /* Process tail (len < 16).  */
153
0
    return adler32_len_16(adler, buf, len, sum2);
154
0
}
155
156
#endif