Coverage Report

Created: 2026-01-10 06:45

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib-ng/inftrees.c
Line
Count
Source
1
/* inftrees.c -- generate Huffman trees for efficient decoding
2
 * Copyright (C) 1995-2024 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
#include "zbuild.h"
7
#include "zutil.h"
8
#include "inftrees.h"
9
#include "fallback_builtins.h"
10
11
#if defined(__SSE2__)
12
#  include "arch/x86/x86_intrins.h"
13
#elif defined(__ARM_NEON) || defined(__ARM_NEON__)
14
#  include "arch/arm/neon_intrins.h"
15
#endif
16
17
const char PREFIX(inflate_copyright)[] = " inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
18
/*
19
  If you use the zlib library in a product, an acknowledgment is welcome
20
  in the documentation of your product. If for some reason you cannot
21
  include such an acknowledgment, I would appreciate that you keep this
22
  copyright string in the executable of your product.
23
 */
24
25
/* Count number of codes for each code length. */
26
7.05k
static inline void count_lengths(uint16_t *lens, int codes, uint16_t *count) {
27
7.05k
    int sym;
28
7.05k
    static const ALIGNED_(16) uint8_t one[256] = {
29
7.05k
        1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
30
7.05k
        0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31
7.05k
        0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
32
7.05k
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33
7.05k
        0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
34
7.05k
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
35
7.05k
        0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
36
7.05k
        0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
37
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
38
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
39
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
40
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
41
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
42
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
43
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
44
7.05k
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
45
7.05k
    };
46
47
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
48
    uint8x16_t s1 = vdupq_n_u8(0);
49
    uint8x16_t s2 = vdupq_n_u8(0);
50
51
    if (codes & 1) {
52
        s1 = vld1q_u8(&one[16 * lens[0]]);
53
    }
54
    for (sym = codes & 1; sym < codes; sym += 2) {
55
      s1 = vaddq_u8(s1, vld1q_u8(&one[16 * lens[sym]]));
56
      s2 = vaddq_u8(s2, vld1q_u8(&one[16 * lens[sym+1]]));
57
    }
58
59
    vst1q_u16(&count[0], vaddl_u8(vget_low_u8(s1), vget_low_u8(s2)));
60
    vst1q_u16(&count[8], vaddl_u8(vget_high_u8(s1), vget_high_u8(s2)));
61
62
#elif defined(__SSE2__)
63
    __m128i s1 = _mm_setzero_si128();
64
7.05k
    __m128i s2 = _mm_setzero_si128();
65
66
7.05k
    if (codes & 1) {
67
3.38k
        s1 = _mm_load_si128((const __m128i*)&one[16 * lens[0]]);
68
3.38k
    }
69
374k
    for (sym = codes & 1; sym < codes; sym += 2) {
70
367k
        s1 = _mm_add_epi8(s1, _mm_load_si128((const __m128i*)&one[16 * lens[sym]]));  // vaddq_u8
71
367k
        s2 = _mm_add_epi8(s2, _mm_load_si128((const __m128i*)&one[16 * lens[sym+1]]));
72
367k
    }
73
74
#  if defined(__AVX2__)
75
    __m256i w1 = _mm256_cvtepu8_epi16(s1);
76
    __m256i w2 = _mm256_cvtepu8_epi16(s2);
77
    __m256i sum = _mm256_add_epi16(w1, w2);
78
79
    _mm256_storeu_si256((__m256i*)&count[0], sum);
80
#  else
81
7.05k
    __m128i zero = _mm_setzero_si128();
82
83
7.05k
    __m128i s1_lo = _mm_unpacklo_epi8(s1, zero);
84
7.05k
    __m128i s2_lo = _mm_unpacklo_epi8(s2, zero);
85
7.05k
    __m128i sum_lo = _mm_add_epi16(s1_lo, s2_lo);
86
7.05k
    _mm_storeu_si128((__m128i*)&count[0], sum_lo);
87
88
7.05k
    __m128i s1_hi = _mm_unpackhi_epi8(s1, zero);
89
7.05k
    __m128i s2_hi = _mm_unpackhi_epi8(s2, zero);
90
7.05k
    __m128i sum_hi = _mm_add_epi16(s1_hi, s2_hi);
91
7.05k
    _mm_storeu_si128((__m128i*)&count[8], sum_hi);
92
7.05k
#  endif
93
#else
94
    int len;
95
    for (len = 0; len <= MAX_BITS; len++)
96
        count[len] = 0;
97
    for (sym = 0; sym < codes; sym++)
98
        count[lens[sym]]++;
99
    Z_UNUSED(one);
100
#endif
101
7.05k
}
102
103
/*
104
   Build a set of tables to decode the provided canonical Huffman code.
105
   The code lengths are lens[0..codes-1].  The result starts at *table,
106
   whose indices are 0..2^bits-1.  work is a writable array of at least
107
   lens shorts, which is used as a work area.  type is the type of code
108
   to be generated, CODES, LENS, or DISTS.  On return, zero is success,
109
   -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
110
   on return points to the next available entry's address.  bits is the
111
   requested root table index bits, and on return it is the actual root
112
   table index bits.  It will differ if the request is greater than the
113
   longest code or if it is less than the shortest code.
114
 */
115
int Z_INTERNAL zng_inflate_table(codetype type, uint16_t *lens, unsigned codes,
116
7.05k
                                 code * *table, unsigned *bits, uint16_t *work) {
117
7.05k
    unsigned len;               /* a code's length in bits */
118
7.05k
    unsigned sym;               /* index of code symbols */
119
7.05k
    unsigned min, max;          /* minimum and maximum code lengths */
120
7.05k
    unsigned root;              /* number of index bits for root table */
121
7.05k
    unsigned curr;              /* number of index bits for current table */
122
7.05k
    unsigned drop;              /* code bits to drop for sub-table */
123
7.05k
    int left;                   /* number of prefix codes available */
124
7.05k
    unsigned used;              /* code entries in table used */
125
7.05k
    uint16_t rhuff;             /* Reversed huffman code */
126
7.05k
    unsigned huff;              /* Huffman code */
127
7.05k
    unsigned incr;              /* for incrementing code, index */
128
7.05k
    unsigned fill;              /* index for replicating entries */
129
7.05k
    unsigned low;               /* low bits for current root entry */
130
7.05k
    unsigned mask;              /* mask for low root bits */
131
7.05k
    code here;                  /* table entry for duplication */
132
7.05k
    code *next;                 /* next available space in table */
133
7.05k
    const uint16_t *base;       /* base value table to use */
134
7.05k
    const uint16_t *extra;      /* extra bits table to use */
135
7.05k
    unsigned match;             /* use base and extra for symbol >= match */
136
7.05k
    uint16_t count[MAX_BITS+1]; /* number of codes of each length */
137
7.05k
    uint16_t offs[MAX_BITS+1];  /* offsets in table for each length */
138
7.05k
    static const uint16_t lbase[31] = { /* Length codes 257..285 base */
139
7.05k
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
140
7.05k
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
141
7.05k
    static const uint16_t lext[31] = { /* Length codes 257..285 extra */
142
7.05k
        16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
143
7.05k
        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
144
7.05k
    static const uint16_t dbase[32] = { /* Distance codes 0..29 base */
145
7.05k
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
146
7.05k
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
147
7.05k
        8193, 12289, 16385, 24577, 0, 0};
148
7.05k
    static const uint16_t dext[32] = { /* Distance codes 0..29 extra */
149
7.05k
        16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
150
7.05k
        23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
151
7.05k
        28, 28, 29, 29, 64, 64};
152
153
    /*
154
       Process a set of code lengths to create a canonical Huffman code.  The
155
       code lengths are lens[0..codes-1].  Each length corresponds to the
156
       symbols 0..codes-1.  The Huffman code is generated by first sorting the
157
       symbols by length from short to long, and retaining the symbol order
158
       for codes with equal lengths.  Then the code starts with all zero bits
159
       for the first code of the shortest length, and the codes are integer
160
       increments for the same length, and zeros are appended as the length
161
       increases.  For the deflate format, these bits are stored backwards
162
       from their more natural integer increment ordering, and so when the
163
       decoding tables are built in the large loop below, the integer codes
164
       are incremented backwards.
165
166
       This routine assumes, but does not check, that all of the entries in
167
       lens[] are in the range 0..MAXBITS.  The caller must assure this.
168
       1..MAXBITS is interpreted as that code length.  zero means that that
169
       symbol does not occur in this code.
170
171
       The codes are sorted by computing a count of codes for each length,
172
       creating from that a table of starting indices for each length in the
173
       sorted table, and then entering the symbols in order in the sorted
174
       table.  The sorted table is work[], with that space being provided by
175
       the caller.
176
177
       The length counts are used for other purposes as well, i.e. finding
178
       the minimum and maximum length codes, determining if there are any
179
       codes at all, checking for a valid set of lengths, and looking ahead
180
       at length counts to determine sub-table sizes when building the
181
       decoding tables.
182
     */
183
184
    /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
185
7.05k
    count_lengths(lens, codes, count);
186
187
    /* bound code lengths, force root to be within code lengths */
188
7.05k
    root = *bits;
189
98.3k
    for (max = MAX_BITS; max >= 1; max--)
190
98.3k
        if (count[max] != 0) break;
191
7.05k
    root = MIN(root, max);
192
7.05k
    if (UNLIKELY(max == 0)) {           /* no symbols to code at all */
193
0
        here.op = (unsigned char)64;    /* invalid code marker */
194
0
        here.bits = (unsigned char)1;
195
0
        here.val = (uint16_t)0;
196
0
        *(*table)++ = here;             /* make a table to force an error */
197
0
        *(*table)++ = here;
198
0
        *bits = 1;
199
0
        return 0;     /* no symbols, but wait for decoding to report error */
200
0
    }
201
8.08k
    for (min = 1; min < max; min++)
202
5.48k
        if (count[min] != 0) break;
203
7.05k
    root = MAX(root, min);
204
205
    /* check for an over-subscribed or incomplete set of lengths */
206
7.05k
    left = 1;
207
112k
    for (len = 1; len <= MAX_BITS; len++) {
208
105k
        left <<= 1;
209
105k
        left -= count[len];
210
105k
        if (left < 0) return -1;        /* over-subscribed */
211
105k
    }
212
7.05k
    if (left > 0 && (type == CODES || max != 1))
213
0
        return -1;                      /* incomplete set */
214
215
    /* generate offsets into symbol table for each length for sorting */
216
7.05k
    offs[1] = 0;
217
105k
    for (len = 1; len < MAX_BITS; len++)
218
98.7k
        offs[len + 1] = offs[len] + count[len];
219
220
    /* sort symbols by length, by symbol order within each length */
221
745k
    for (sym = 0; sym < codes; sym++)
222
738k
        if (lens[sym] != 0) work[offs[lens[sym]]++] = (uint16_t)sym;
223
224
    /*
225
       Create and fill in decoding tables.  In this loop, the table being
226
       filled is at next and has curr index bits.  The code being used is huff
227
       with length len.  That code is converted to an index by dropping drop
228
       bits off of the bottom.  For codes where len is less than drop + curr,
229
       those top drop + curr - len bits are incremented through all values to
230
       fill the table with replicated entries.
231
232
       root is the number of index bits for the root table.  When len exceeds
233
       root, sub-tables are created pointed to by the root entry with an index
234
       of the low root bits of huff.  This is saved in low to check for when a
235
       new sub-table should be started.  drop is zero when the root table is
236
       being filled, and drop is root when sub-tables are being filled.
237
238
       When a new sub-table is needed, it is necessary to look ahead in the
239
       code lengths to determine what size sub-table is needed.  The length
240
       counts are used for this, and so count[] is decremented as codes are
241
       entered in the tables.
242
243
       used keeps track of how many table entries have been allocated from the
244
       provided *table space.  It is checked for LENS and DIST tables against
245
       the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
246
       the initial root table size constants.  See the comments in inftrees.h
247
       for more information.
248
249
       sym increments through all symbols, and the loop terminates when
250
       all codes of length max, i.e. all codes, have been processed.  This
251
       routine permits incomplete codes, so another loop after this one fills
252
       in the rest of the decoding tables with invalid code markers.
253
     */
254
255
    /* set up for code type */
256
7.05k
    switch (type) {
257
2.35k
    case CODES:
258
2.35k
        base = extra = work;    /* dummy value--not used */
259
2.35k
        match = 20;
260
2.35k
        break;
261
2.35k
    case LENS:
262
2.35k
        base = lbase;
263
2.35k
        extra = lext;
264
2.35k
        match = 257;
265
2.35k
        break;
266
2.35k
    default:    /* DISTS */
267
2.35k
        base = dbase;
268
2.35k
        extra = dext;
269
2.35k
        match = 0;
270
7.05k
    }
271
272
    /* initialize state for loop */
273
7.05k
    rhuff = 0;                  /* starting code, reversed */
274
7.05k
    huff = 0;                   /* starting code */
275
7.05k
    sym = 0;                    /* starting code symbol */
276
7.05k
    len = min;                  /* starting code length */
277
7.05k
    next = *table;              /* current table to fill in */
278
7.05k
    curr = root;                /* current table index bits */
279
7.05k
    drop = 0;                   /* current bits to drop from code for index */
280
7.05k
    low = (unsigned)(-1);       /* trigger new sub-table when len > root */
281
7.05k
    used = 1U << root;          /* use root table entries */
282
7.05k
    mask = used - 1;            /* mask for comparing low */
283
284
    /* check available table space */
285
7.05k
    if ((type == LENS && used > ENOUGH_LENS) ||
286
7.05k
        (type == DISTS && used > ENOUGH_DISTS))
287
0
        return 1;
288
289
    /* process all codes and make table entries */
290
22.5k
    for (;;) {
291
        /* create table entry */
292
22.5k
        here.bits = (unsigned char)(len - drop);
293
22.5k
        if (LIKELY(work[sym] >= match)) {
294
9.17k
            here.op = (unsigned char)(extra[work[sym] - match]);
295
9.17k
            here.val = base[work[sym] - match];
296
13.3k
        } else if (work[sym] + 1U < match) {
297
11.0k
            here.op = (unsigned char)0;
298
11.0k
            here.val = work[sym];
299
11.0k
        } else {
300
2.35k
            here.op = (unsigned char)(32 + 64);         /* end of block */
301
2.35k
            here.val = 0;
302
2.35k
        }
303
304
        /* replicate for those indices with low len bits equal to huff */
305
22.5k
        incr = 1U << (len - drop);
306
22.5k
        fill = 1U << curr;
307
22.5k
        min = fill;                 /* save offset to next table */
308
34.3k
        do {
309
34.3k
            fill -= incr;
310
34.3k
            next[(huff >> drop) + fill] = here;
311
34.3k
        } while (fill != 0);
312
313
        /* backwards increment the len-bit code huff */
314
22.5k
        rhuff += (0x8000u >> (len - 1));
315
22.5k
        huff = __builtin_bitreverse16(rhuff);
316
317
        /* go to next symbol, update count, len */
318
22.5k
        sym++;
319
22.5k
        if (--(count[len]) == 0) {
320
13.4k
            if (len == max)
321
7.05k
                break;
322
6.38k
            len = lens[work[sym]];
323
6.38k
        }
324
325
        /* create new sub-table if needed */
326
15.5k
        if (len > root && (huff & mask) != low) {
327
            /* if first time, transition to sub-tables */
328
0
            if (drop == 0)
329
0
                drop = root;
330
331
            /* increment past last table */
332
0
            next += min;            /* here min is 1 << curr */
333
334
            /* determine length of next table */
335
0
            curr = len - drop;
336
0
            left = (int)(1 << curr);
337
0
            while (curr + drop < max) {
338
0
                left -= count[curr + drop];
339
0
                if (left <= 0)
340
0
                    break;
341
0
                curr++;
342
0
                left <<= 1;
343
0
            }
344
345
            /* check for enough space */
346
0
            used += 1U << curr;
347
0
            if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS))
348
0
                return 1;
349
350
            /* point entry in root table to sub-table */
351
0
            low = huff & mask;
352
0
            (*table)[low].op = (unsigned char)curr;
353
0
            (*table)[low].bits = (unsigned char)root;
354
0
            (*table)[low].val = (uint16_t)(next - *table);
355
0
        }
356
15.5k
    }
357
358
    /* fill in remaining table entry if code is incomplete (guaranteed to have
359
       at most one remaining entry, since if the code is incomplete, the
360
       maximum code length that was allowed to get this far is one bit) */
361
7.05k
    if (UNLIKELY(huff != 0)) {
362
0
        here.op = (unsigned char)64;            /* invalid code marker */
363
0
        here.bits = (unsigned char)(len - drop);
364
0
        here.val = (uint16_t)0;
365
0
        next[huff] = here;
366
0
    }
367
368
    /* set return parameters */
369
7.05k
    *table += used;
370
7.05k
    *bits = root;
371
7.05k
    return 0;
372
7.05k
}