/src/zstd/lib/common/xxhash.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * xxHash - Extremely Fast Hash algorithm |
3 | | * Header File |
4 | | * Copyright (c) Yann Collet - Meta Platforms, Inc |
5 | | * |
6 | | * This source code is licensed under both the BSD-style license (found in the |
7 | | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
8 | | * in the COPYING file in the root directory of this source tree). |
9 | | * You may select, at your option, one of the above-listed licenses. |
10 | | */ |
11 | | |
12 | | /* Local adaptations for Zstandard */ |
13 | | |
14 | | #ifndef XXH_NO_XXH3 |
15 | | # define XXH_NO_XXH3 |
16 | | #endif |
17 | | |
18 | | #ifndef XXH_NAMESPACE |
19 | | # define XXH_NAMESPACE ZSTD_ |
20 | | #endif |
21 | | |
22 | | /*! |
23 | | * @mainpage xxHash |
24 | | * |
25 | | * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed |
26 | | * limits. |
27 | | * |
28 | | * It is proposed in four flavors, in three families: |
29 | | * 1. @ref XXH32_family |
30 | | * - Classic 32-bit hash function. Simple, compact, and runs on almost all |
31 | | * 32-bit and 64-bit systems. |
32 | | * 2. @ref XXH64_family |
33 | | * - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most |
34 | | * 64-bit systems (but _not_ 32-bit systems). |
35 | | * 3. @ref XXH3_family |
36 | | * - Modern 64-bit and 128-bit hash function family which features improved |
37 | | * strength and performance across the board, especially on smaller data. |
38 | | * It benefits greatly from SIMD and 64-bit without requiring it. |
39 | | * |
40 | | * Benchmarks |
41 | | * --- |
42 | | * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04. |
43 | | * The open source benchmark program is compiled with clang v10.0 using -O3 flag. |
44 | | * |
45 | | * | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity | |
46 | | * | -------------------- | ------- | ----: | ---------------: | ------------------: | |
47 | | * | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 | |
48 | | * | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 | |
49 | | * | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 | |
50 | | * | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 | |
51 | | * | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 | |
52 | | * | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 | |
53 | | * | RAM sequential read | | N/A | 28.0 GB/s | N/A | |
54 | | * | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 | |
55 | | * | City64 | | 64 | 22.0 GB/s | 76.6 | |
56 | | * | T1ha2 | | 64 | 22.0 GB/s | 99.0 | |
57 | | * | City128 | | 128 | 21.7 GB/s | 57.7 | |
58 | | * | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 | |
59 | | * | XXH64() | | 64 | 19.4 GB/s | 71.0 | |
60 | | * | SpookyHash | | 64 | 19.3 GB/s | 53.2 | |
61 | | * | Mum | | 64 | 18.0 GB/s | 67.0 | |
62 | | * | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 | |
63 | | * | XXH32() | | 32 | 9.7 GB/s | 71.9 | |
64 | | * | City32 | | 32 | 9.1 GB/s | 66.0 | |
65 | | * | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 | |
66 | | * | Murmur3 | | 32 | 3.9 GB/s | 56.1 | |
67 | | * | SipHash* | | 64 | 3.0 GB/s | 43.2 | |
68 | | * | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 | |
69 | | * | HighwayHash | | 64 | 1.4 GB/s | 6.0 | |
70 | | * | FNV64 | | 64 | 1.2 GB/s | 62.7 | |
71 | | * | Blake2* | | 256 | 1.1 GB/s | 5.1 | |
72 | | * | SHA1* | | 160 | 0.8 GB/s | 5.6 | |
73 | | * | MD5* | | 128 | 0.6 GB/s | 7.8 | |
74 | | * @note |
75 | | * - Hashes which require a specific ISA extension are noted. SSE2 is also noted, |
76 | | * even though it is mandatory on x64. |
77 | | * - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic |
78 | | * by modern standards. |
79 | | * - Small data velocity is a rough average of algorithm's efficiency for small |
80 | | * data. For more accurate information, see the wiki. |
81 | | * - More benchmarks and strength tests are found on the wiki: |
82 | | * https://github.com/Cyan4973/xxHash/wiki |
83 | | * |
84 | | * Usage |
85 | | * ------ |
86 | | * All xxHash variants use a similar API. Changing the algorithm is a trivial |
87 | | * substitution. |
88 | | * |
89 | | * @pre |
90 | | * For functions which take an input and length parameter, the following |
91 | | * requirements are assumed: |
92 | | * - The range from [`input`, `input + length`) is valid, readable memory. |
93 | | * - The only exception is if the `length` is `0`, `input` may be `NULL`. |
94 | | * - For C++, the objects must have the *TriviallyCopyable* property, as the |
95 | | * functions access bytes directly as if it was an array of `unsigned char`. |
96 | | * |
97 | | * @anchor single_shot_example |
98 | | * **Single Shot** |
99 | | * |
100 | | * These functions are stateless functions which hash a contiguous block of memory, |
101 | | * immediately returning the result. They are the easiest and usually the fastest |
102 | | * option. |
103 | | * |
104 | | * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits() |
105 | | * |
106 | | * @code{.c} |
107 | | * #include <string.h> |
108 | | * #include "xxhash.h" |
109 | | * |
110 | | * // Example for a function which hashes a null terminated string with XXH32(). |
111 | | * XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed) |
112 | | * { |
113 | | * // NULL pointers are only valid if the length is zero |
114 | | * size_t length = (string == NULL) ? 0 : strlen(string); |
115 | | * return XXH32(string, length, seed); |
116 | | * } |
117 | | * @endcode |
118 | | * |
119 | | * |
120 | | * @anchor streaming_example |
121 | | * **Streaming** |
122 | | * |
123 | | * These groups of functions allow incremental hashing of unknown size, even |
124 | | * more than what would fit in a size_t. |
125 | | * |
126 | | * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset() |
127 | | * |
128 | | * @code{.c} |
129 | | * #include <stdio.h> |
130 | | * #include <assert.h> |
131 | | * #include "xxhash.h" |
132 | | * // Example for a function which hashes a FILE incrementally with XXH3_64bits(). |
133 | | * XXH64_hash_t hashFile(FILE* f) |
134 | | * { |
135 | | * // Allocate a state struct. Do not just use malloc() or new. |
136 | | * XXH3_state_t* state = XXH3_createState(); |
137 | | * assert(state != NULL && "Out of memory!"); |
138 | | * // Reset the state to start a new hashing session. |
139 | | * XXH3_64bits_reset(state); |
140 | | * char buffer[4096]; |
141 | | * size_t count; |
142 | | * // Read the file in chunks |
143 | | * while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) { |
144 | | * // Run update() as many times as necessary to process the data |
145 | | * XXH3_64bits_update(state, buffer, count); |
146 | | * } |
147 | | * // Retrieve the finalized hash. This will not change the state. |
148 | | * XXH64_hash_t result = XXH3_64bits_digest(state); |
149 | | * // Free the state. Do not use free(). |
150 | | * XXH3_freeState(state); |
151 | | * return result; |
152 | | * } |
153 | | * @endcode |
154 | | * |
155 | | * Streaming functions generate the xxHash value from an incremental input. |
156 | | * This method is slower than single-call functions, due to state management. |
157 | | * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized. |
158 | | * |
159 | | * An XXH state must first be allocated using `XXH*_createState()`. |
160 | | * |
161 | | * Start a new hash by initializing the state with a seed using `XXH*_reset()`. |
162 | | * |
163 | | * Then, feed the hash state by calling `XXH*_update()` as many times as necessary. |
164 | | * |
165 | | * The function returns an error code, with 0 meaning OK, and any other value |
166 | | * meaning there is an error. |
167 | | * |
168 | | * Finally, a hash value can be produced anytime, by using `XXH*_digest()`. |
169 | | * This function returns the nn-bits hash as an int or long long. |
170 | | * |
171 | | * It's still possible to continue inserting input into the hash state after a |
172 | | * digest, and generate new hash values later on by invoking `XXH*_digest()`. |
173 | | * |
174 | | * When done, release the state using `XXH*_freeState()`. |
175 | | * |
176 | | * |
177 | | * @anchor canonical_representation_example |
178 | | * **Canonical Representation** |
179 | | * |
180 | | * The default return values from XXH functions are unsigned 32, 64 and 128 bit |
181 | | * integers. |
182 | | * This the simplest and fastest format for further post-processing. |
183 | | * |
184 | | * However, this leaves open the question of what is the order on the byte level, |
185 | | * since little and big endian conventions will store the same number differently. |
186 | | * |
187 | | * The canonical representation settles this issue by mandating big-endian |
188 | | * convention, the same convention as human-readable numbers (large digits first). |
189 | | * |
190 | | * When writing hash values to storage, sending them over a network, or printing |
191 | | * them, it's highly recommended to use the canonical representation to ensure |
192 | | * portability across a wider range of systems, present and future. |
193 | | * |
194 | | * The following functions allow transformation of hash values to and from |
195 | | * canonical format. |
196 | | * |
197 | | * XXH32_canonicalFromHash(), XXH32_hashFromCanonical(), |
198 | | * XXH64_canonicalFromHash(), XXH64_hashFromCanonical(), |
199 | | * XXH128_canonicalFromHash(), XXH128_hashFromCanonical(), |
200 | | * |
201 | | * @code{.c} |
202 | | * #include <stdio.h> |
203 | | * #include "xxhash.h" |
204 | | * |
205 | | * // Example for a function which prints XXH32_hash_t in human readable format |
206 | | * void printXxh32(XXH32_hash_t hash) |
207 | | * { |
208 | | * XXH32_canonical_t cano; |
209 | | * XXH32_canonicalFromHash(&cano, hash); |
210 | | * size_t i; |
211 | | * for(i = 0; i < sizeof(cano.digest); ++i) { |
212 | | * printf("%02x", cano.digest[i]); |
213 | | * } |
214 | | * printf("\n"); |
215 | | * } |
216 | | * |
217 | | * // Example for a function which converts XXH32_canonical_t to XXH32_hash_t |
218 | | * XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano) |
219 | | * { |
220 | | * XXH32_hash_t hash = XXH32_hashFromCanonical(&cano); |
221 | | * return hash; |
222 | | * } |
223 | | * @endcode |
224 | | * |
225 | | * |
226 | | * @file xxhash.h |
227 | | * xxHash prototypes and implementation |
228 | | */ |
229 | | |
230 | | #if defined (__cplusplus) |
231 | | extern "C" { |
232 | | #endif |
233 | | |
234 | | /* **************************** |
235 | | * INLINE mode |
236 | | ******************************/ |
237 | | /*! |
238 | | * @defgroup public Public API |
239 | | * Contains details on the public xxHash functions. |
240 | | * @{ |
241 | | */ |
242 | | #ifdef XXH_DOXYGEN |
243 | | /*! |
244 | | * @brief Gives access to internal state declaration, required for static allocation. |
245 | | * |
246 | | * Incompatible with dynamic linking, due to risks of ABI changes. |
247 | | * |
248 | | * Usage: |
249 | | * @code{.c} |
250 | | * #define XXH_STATIC_LINKING_ONLY |
251 | | * #include "xxhash.h" |
252 | | * @endcode |
253 | | */ |
254 | | # define XXH_STATIC_LINKING_ONLY |
255 | | /* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */ |
256 | | |
257 | | /*! |
258 | | * @brief Gives access to internal definitions. |
259 | | * |
260 | | * Usage: |
261 | | * @code{.c} |
262 | | * #define XXH_STATIC_LINKING_ONLY |
263 | | * #define XXH_IMPLEMENTATION |
264 | | * #include "xxhash.h" |
265 | | * @endcode |
266 | | */ |
267 | | # define XXH_IMPLEMENTATION |
268 | | /* Do not undef XXH_IMPLEMENTATION for Doxygen */ |
269 | | |
270 | | /*! |
271 | | * @brief Exposes the implementation and marks all functions as `inline`. |
272 | | * |
273 | | * Use these build macros to inline xxhash into the target unit. |
274 | | * Inlining improves performance on small inputs, especially when the length is |
275 | | * expressed as a compile-time constant: |
276 | | * |
277 | | * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html |
278 | | * |
279 | | * It also keeps xxHash symbols private to the unit, so they are not exported. |
280 | | * |
281 | | * Usage: |
282 | | * @code{.c} |
283 | | * #define XXH_INLINE_ALL |
284 | | * #include "xxhash.h" |
285 | | * @endcode |
286 | | * Do not compile and link xxhash.o as a separate object, as it is not useful. |
287 | | */ |
288 | | # define XXH_INLINE_ALL |
289 | | # undef XXH_INLINE_ALL |
290 | | /*! |
291 | | * @brief Exposes the implementation without marking functions as inline. |
292 | | */ |
293 | | # define XXH_PRIVATE_API |
294 | | # undef XXH_PRIVATE_API |
295 | | /*! |
296 | | * @brief Emulate a namespace by transparently prefixing all symbols. |
297 | | * |
298 | | * If you want to include _and expose_ xxHash functions from within your own |
299 | | * library, but also want to avoid symbol collisions with other libraries which |
300 | | * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix |
301 | | * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE |
302 | | * (therefore, avoid empty or numeric values). |
303 | | * |
304 | | * Note that no change is required within the calling program as long as it |
305 | | * includes `xxhash.h`: Regular symbol names will be automatically translated |
306 | | * by this header. |
307 | | */ |
308 | | # define XXH_NAMESPACE /* YOUR NAME HERE */ |
309 | | # undef XXH_NAMESPACE |
310 | | #endif |
311 | | |
312 | | #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \ |
313 | | && !defined(XXH_INLINE_ALL_31684351384) |
314 | | /* this section should be traversed only once */ |
315 | | # define XXH_INLINE_ALL_31684351384 |
316 | | /* give access to the advanced API, required to compile implementations */ |
317 | | # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */ |
318 | | # define XXH_STATIC_LINKING_ONLY |
319 | | /* make all functions private */ |
320 | | # undef XXH_PUBLIC_API |
321 | | # if defined(__GNUC__) |
322 | | # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
323 | | # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
324 | | # define XXH_PUBLIC_API static inline |
325 | | # elif defined(_MSC_VER) |
326 | | # define XXH_PUBLIC_API static __inline |
327 | | # else |
328 | | /* note: this version may generate warnings for unused static functions */ |
329 | | # define XXH_PUBLIC_API static |
330 | | # endif |
331 | | |
332 | | /* |
333 | | * This part deals with the special case where a unit wants to inline xxHash, |
334 | | * but "xxhash.h" has previously been included without XXH_INLINE_ALL, |
335 | | * such as part of some previously included *.h header file. |
336 | | * Without further action, the new include would just be ignored, |
337 | | * and functions would effectively _not_ be inlined (silent failure). |
338 | | * The following macros solve this situation by prefixing all inlined names, |
339 | | * avoiding naming collision with previous inclusions. |
340 | | */ |
341 | | /* Before that, we unconditionally #undef all symbols, |
342 | | * in case they were already defined with XXH_NAMESPACE. |
343 | | * They will then be redefined for XXH_INLINE_ALL |
344 | | */ |
345 | | # undef XXH_versionNumber |
346 | | /* XXH32 */ |
347 | | # undef XXH32 |
348 | | # undef XXH32_createState |
349 | | # undef XXH32_freeState |
350 | | # undef XXH32_reset |
351 | | # undef XXH32_update |
352 | | # undef XXH32_digest |
353 | | # undef XXH32_copyState |
354 | | # undef XXH32_canonicalFromHash |
355 | | # undef XXH32_hashFromCanonical |
356 | | /* XXH64 */ |
357 | | # undef XXH64 |
358 | | # undef XXH64_createState |
359 | | # undef XXH64_freeState |
360 | | # undef XXH64_reset |
361 | | # undef XXH64_update |
362 | | # undef XXH64_digest |
363 | | # undef XXH64_copyState |
364 | | # undef XXH64_canonicalFromHash |
365 | | # undef XXH64_hashFromCanonical |
366 | | /* XXH3_64bits */ |
367 | | # undef XXH3_64bits |
368 | | # undef XXH3_64bits_withSecret |
369 | | # undef XXH3_64bits_withSeed |
370 | | # undef XXH3_64bits_withSecretandSeed |
371 | | # undef XXH3_createState |
372 | | # undef XXH3_freeState |
373 | | # undef XXH3_copyState |
374 | | # undef XXH3_64bits_reset |
375 | | # undef XXH3_64bits_reset_withSeed |
376 | | # undef XXH3_64bits_reset_withSecret |
377 | | # undef XXH3_64bits_update |
378 | | # undef XXH3_64bits_digest |
379 | | # undef XXH3_generateSecret |
380 | | /* XXH3_128bits */ |
381 | | # undef XXH128 |
382 | | # undef XXH3_128bits |
383 | | # undef XXH3_128bits_withSeed |
384 | | # undef XXH3_128bits_withSecret |
385 | | # undef XXH3_128bits_reset |
386 | | # undef XXH3_128bits_reset_withSeed |
387 | | # undef XXH3_128bits_reset_withSecret |
388 | | # undef XXH3_128bits_reset_withSecretandSeed |
389 | | # undef XXH3_128bits_update |
390 | | # undef XXH3_128bits_digest |
391 | | # undef XXH128_isEqual |
392 | | # undef XXH128_cmp |
393 | | # undef XXH128_canonicalFromHash |
394 | | # undef XXH128_hashFromCanonical |
395 | | /* Finally, free the namespace itself */ |
396 | | # undef XXH_NAMESPACE |
397 | | |
398 | | /* employ the namespace for XXH_INLINE_ALL */ |
399 | | # define XXH_NAMESPACE XXH_INLINE_ |
400 | | /* |
401 | | * Some identifiers (enums, type names) are not symbols, |
402 | | * but they must nonetheless be renamed to avoid redeclaration. |
403 | | * Alternative solution: do not redeclare them. |
404 | | * However, this requires some #ifdefs, and has a more dispersed impact. |
405 | | * Meanwhile, renaming can be achieved in a single place. |
406 | | */ |
407 | | # define XXH_IPREF(Id) XXH_NAMESPACE ## Id |
408 | | # define XXH_OK XXH_IPREF(XXH_OK) |
409 | | # define XXH_ERROR XXH_IPREF(XXH_ERROR) |
410 | | # define XXH_errorcode XXH_IPREF(XXH_errorcode) |
411 | | # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t) |
412 | | # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t) |
413 | | # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t) |
414 | | # define XXH32_state_s XXH_IPREF(XXH32_state_s) |
415 | | # define XXH32_state_t XXH_IPREF(XXH32_state_t) |
416 | | # define XXH64_state_s XXH_IPREF(XXH64_state_s) |
417 | | # define XXH64_state_t XXH_IPREF(XXH64_state_t) |
418 | | # define XXH3_state_s XXH_IPREF(XXH3_state_s) |
419 | | # define XXH3_state_t XXH_IPREF(XXH3_state_t) |
420 | | # define XXH128_hash_t XXH_IPREF(XXH128_hash_t) |
421 | | /* Ensure the header is parsed again, even if it was previously included */ |
422 | | # undef XXHASH_H_5627135585666179 |
423 | | # undef XXHASH_H_STATIC_13879238742 |
424 | | #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */ |
425 | | |
426 | | /* **************************************************************** |
427 | | * Stable API |
428 | | *****************************************************************/ |
429 | | #ifndef XXHASH_H_5627135585666179 |
430 | | #define XXHASH_H_5627135585666179 1 |
431 | | |
432 | | /*! @brief Marks a global symbol. */ |
433 | | #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
434 | | # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
435 | | # ifdef XXH_EXPORT |
436 | | # define XXH_PUBLIC_API __declspec(dllexport) |
437 | | # elif XXH_IMPORT |
438 | | # define XXH_PUBLIC_API __declspec(dllimport) |
439 | | # endif |
440 | | # else |
441 | | # define XXH_PUBLIC_API /* do nothing */ |
442 | | # endif |
443 | | #endif |
444 | | |
445 | | #ifdef XXH_NAMESPACE |
446 | 22.6M | # define XXH_CAT(A,B) A##B |
447 | 22.6M | # define XXH_NAME2(A,B) XXH_CAT(A,B) |
448 | | # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
449 | | /* XXH32 */ |
450 | | # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
451 | | # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
452 | | # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
453 | | # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
454 | | # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
455 | | # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
456 | | # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
457 | | # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
458 | | # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
459 | | /* XXH64 */ |
460 | 22.3M | # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
461 | | # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
462 | | # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
463 | 85.1k | # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
464 | 214k | # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
465 | 39.1k | # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
466 | | # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
467 | | # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
468 | | # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
469 | | /* XXH3_64bits */ |
470 | | # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits) |
471 | | # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret) |
472 | | # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed) |
473 | | # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed) |
474 | | # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState) |
475 | | # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState) |
476 | | # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState) |
477 | | # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset) |
478 | | # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed) |
479 | | # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret) |
480 | | # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed) |
481 | | # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update) |
482 | | # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest) |
483 | | # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret) |
484 | | # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed) |
485 | | /* XXH3_128bits */ |
486 | | # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128) |
487 | | # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits) |
488 | | # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed) |
489 | | # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret) |
490 | | # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed) |
491 | | # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset) |
492 | | # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed) |
493 | | # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret) |
494 | | # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed) |
495 | | # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update) |
496 | | # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest) |
497 | | # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual) |
498 | | # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp) |
499 | | # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash) |
500 | | # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical) |
501 | | #endif |
502 | | |
503 | | |
504 | | /* ************************************* |
505 | | * Compiler specifics |
506 | | ***************************************/ |
507 | | |
508 | | /* specific declaration modes for Windows */ |
509 | | #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API) |
510 | | # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT)) |
511 | | # ifdef XXH_EXPORT |
512 | | # define XXH_PUBLIC_API __declspec(dllexport) |
513 | | # elif XXH_IMPORT |
514 | | # define XXH_PUBLIC_API __declspec(dllimport) |
515 | | # endif |
516 | | # else |
517 | | # define XXH_PUBLIC_API /* do nothing */ |
518 | | # endif |
519 | | #endif |
520 | | |
521 | | #if defined (__GNUC__) |
522 | | # define XXH_CONSTF __attribute__((const)) |
523 | | # define XXH_PUREF __attribute__((pure)) |
524 | | # define XXH_MALLOCF __attribute__((malloc)) |
525 | | #else |
526 | | # define XXH_CONSTF /* disable */ |
527 | | # define XXH_PUREF |
528 | | # define XXH_MALLOCF |
529 | | #endif |
530 | | |
531 | | /* ************************************* |
532 | | * Version |
533 | | ***************************************/ |
534 | 0 | #define XXH_VERSION_MAJOR 0 |
535 | 0 | #define XXH_VERSION_MINOR 8 |
536 | 0 | #define XXH_VERSION_RELEASE 2 |
537 | | /*! @brief Version number, encoded as two digits each */ |
538 | 0 | #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
539 | | |
540 | | /*! |
541 | | * @brief Obtains the xxHash version. |
542 | | * |
543 | | * This is mostly useful when xxHash is compiled as a shared library, |
544 | | * since the returned value comes from the library, as opposed to header file. |
545 | | * |
546 | | * @return @ref XXH_VERSION_NUMBER of the invoked library. |
547 | | */ |
548 | | XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void); |
549 | | |
550 | | |
551 | | /* **************************** |
552 | | * Common basic types |
553 | | ******************************/ |
554 | | #include <stddef.h> /* size_t */ |
555 | | /*! |
556 | | * @brief Exit code for the streaming API. |
557 | | */ |
558 | | typedef enum { |
559 | | XXH_OK = 0, /*!< OK */ |
560 | | XXH_ERROR /*!< Error */ |
561 | | } XXH_errorcode; |
562 | | |
563 | | |
564 | | /*-********************************************************************** |
565 | | * 32-bit hash |
566 | | ************************************************************************/ |
567 | | #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */ |
568 | | /*! |
569 | | * @brief An unsigned 32-bit integer. |
570 | | * |
571 | | * Not necessarily defined to `uint32_t` but functionally equivalent. |
572 | | */ |
573 | | typedef uint32_t XXH32_hash_t; |
574 | | |
575 | | #elif !defined (__VMS) \ |
576 | | && (defined (__cplusplus) \ |
577 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
578 | | # ifdef _AIX |
579 | | # include <inttypes.h> |
580 | | # else |
581 | | # include <stdint.h> |
582 | | # endif |
583 | | typedef uint32_t XXH32_hash_t; |
584 | | |
585 | | #else |
586 | | # include <limits.h> |
587 | | # if UINT_MAX == 0xFFFFFFFFUL |
588 | | typedef unsigned int XXH32_hash_t; |
589 | | # elif ULONG_MAX == 0xFFFFFFFFUL |
590 | | typedef unsigned long XXH32_hash_t; |
591 | | # else |
592 | | # error "unsupported platform: need a 32-bit type" |
593 | | # endif |
594 | | #endif |
595 | | |
596 | | /*! |
597 | | * @} |
598 | | * |
599 | | * @defgroup XXH32_family XXH32 family |
600 | | * @ingroup public |
601 | | * Contains functions used in the classic 32-bit xxHash algorithm. |
602 | | * |
603 | | * @note |
604 | | * XXH32 is useful for older platforms, with no or poor 64-bit performance. |
605 | | * Note that the @ref XXH3_family provides competitive speed for both 32-bit |
606 | | * and 64-bit systems, and offers true 64/128 bit hash results. |
607 | | * |
608 | | * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families |
609 | | * @see @ref XXH32_impl for implementation details |
610 | | * @{ |
611 | | */ |
612 | | |
613 | | /*! |
614 | | * @brief Calculates the 32-bit hash of @p input using xxHash32. |
615 | | * |
616 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
617 | | * @param length The length of @p input, in bytes. |
618 | | * @param seed The 32-bit seed to alter the hash's output predictably. |
619 | | * |
620 | | * @pre |
621 | | * The memory between @p input and @p input + @p length must be valid, |
622 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
623 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
624 | | * |
625 | | * @return The calculated 32-bit xxHash32 value. |
626 | | * |
627 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
628 | | */ |
629 | | XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed); |
630 | | |
631 | | #ifndef XXH_NO_STREAM |
632 | | /*! |
633 | | * @typedef struct XXH32_state_s XXH32_state_t |
634 | | * @brief The opaque state struct for the XXH32 streaming API. |
635 | | * |
636 | | * @see XXH32_state_s for details. |
637 | | */ |
638 | | typedef struct XXH32_state_s XXH32_state_t; |
639 | | |
640 | | /*! |
641 | | * @brief Allocates an @ref XXH32_state_t. |
642 | | * |
643 | | * @return An allocated pointer of @ref XXH32_state_t on success. |
644 | | * @return `NULL` on failure. |
645 | | * |
646 | | * @note Must be freed with XXH32_freeState(). |
647 | | */ |
648 | | XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void); |
649 | | /*! |
650 | | * @brief Frees an @ref XXH32_state_t. |
651 | | * |
652 | | * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState(). |
653 | | * |
654 | | * @return @ref XXH_OK. |
655 | | * |
656 | | * @note @p statePtr must be allocated with XXH32_createState(). |
657 | | * |
658 | | */ |
659 | | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
660 | | /*! |
661 | | * @brief Copies one @ref XXH32_state_t to another. |
662 | | * |
663 | | * @param dst_state The state to copy to. |
664 | | * @param src_state The state to copy from. |
665 | | * @pre |
666 | | * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
667 | | */ |
668 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state); |
669 | | |
670 | | /*! |
671 | | * @brief Resets an @ref XXH32_state_t to begin a new hash. |
672 | | * |
673 | | * @param statePtr The state struct to reset. |
674 | | * @param seed The 32-bit seed to alter the hash result predictably. |
675 | | * |
676 | | * @pre |
677 | | * @p statePtr must not be `NULL`. |
678 | | * |
679 | | * @return @ref XXH_OK on success. |
680 | | * @return @ref XXH_ERROR on failure. |
681 | | * |
682 | | * @note This function resets and seeds a state. Call it before @ref XXH32_update(). |
683 | | */ |
684 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed); |
685 | | |
686 | | /*! |
687 | | * @brief Consumes a block of @p input to an @ref XXH32_state_t. |
688 | | * |
689 | | * @param statePtr The state struct to update. |
690 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
691 | | * @param length The length of @p input, in bytes. |
692 | | * |
693 | | * @pre |
694 | | * @p statePtr must not be `NULL`. |
695 | | * @pre |
696 | | * The memory between @p input and @p input + @p length must be valid, |
697 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
698 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
699 | | * |
700 | | * @return @ref XXH_OK on success. |
701 | | * @return @ref XXH_ERROR on failure. |
702 | | * |
703 | | * @note Call this to incrementally consume blocks of data. |
704 | | */ |
705 | | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
706 | | |
707 | | /*! |
708 | | * @brief Returns the calculated hash value from an @ref XXH32_state_t. |
709 | | * |
710 | | * @param statePtr The state struct to calculate the hash from. |
711 | | * |
712 | | * @pre |
713 | | * @p statePtr must not be `NULL`. |
714 | | * |
715 | | * @return The calculated 32-bit xxHash32 value from that state. |
716 | | * |
717 | | * @note |
718 | | * Calling XXH32_digest() will not affect @p statePtr, so you can update, |
719 | | * digest, and update again. |
720 | | */ |
721 | | XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
722 | | #endif /* !XXH_NO_STREAM */ |
723 | | |
724 | | /******* Canonical representation *******/ |
725 | | |
726 | | /*! |
727 | | * @brief Canonical (big endian) representation of @ref XXH32_hash_t. |
728 | | */ |
729 | | typedef struct { |
730 | | unsigned char digest[4]; /*!< Hash bytes, big endian */ |
731 | | } XXH32_canonical_t; |
732 | | |
733 | | /*! |
734 | | * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t. |
735 | | * |
736 | | * @param dst The @ref XXH32_canonical_t pointer to be stored to. |
737 | | * @param hash The @ref XXH32_hash_t to be converted. |
738 | | * |
739 | | * @pre |
740 | | * @p dst must not be `NULL`. |
741 | | * |
742 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
743 | | */ |
744 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
745 | | |
746 | | /*! |
747 | | * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t. |
748 | | * |
749 | | * @param src The @ref XXH32_canonical_t to convert. |
750 | | * |
751 | | * @pre |
752 | | * @p src must not be `NULL`. |
753 | | * |
754 | | * @return The converted hash. |
755 | | * |
756 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
757 | | */ |
758 | | XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
759 | | |
760 | | |
761 | | /*! @cond Doxygen ignores this part */ |
762 | | #ifdef __has_attribute |
763 | | # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x) |
764 | | #else |
765 | | # define XXH_HAS_ATTRIBUTE(x) 0 |
766 | | #endif |
767 | | /*! @endcond */ |
768 | | |
769 | | /*! @cond Doxygen ignores this part */ |
770 | | /* |
771 | | * C23 __STDC_VERSION__ number hasn't been specified yet. For now |
772 | | * leave as `201711L` (C17 + 1). |
773 | | * TODO: Update to correct value when its been specified. |
774 | | */ |
775 | | #define XXH_C23_VN 201711L |
776 | | /*! @endcond */ |
777 | | |
778 | | /*! @cond Doxygen ignores this part */ |
779 | | /* C-language Attributes are added in C23. */ |
780 | | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute) |
781 | | # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x) |
782 | | #else |
783 | | # define XXH_HAS_C_ATTRIBUTE(x) 0 |
784 | | #endif |
785 | | /*! @endcond */ |
786 | | |
787 | | /*! @cond Doxygen ignores this part */ |
788 | | #if defined(__cplusplus) && defined(__has_cpp_attribute) |
789 | | # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) |
790 | | #else |
791 | | # define XXH_HAS_CPP_ATTRIBUTE(x) 0 |
792 | | #endif |
793 | | /*! @endcond */ |
794 | | |
795 | | /*! @cond Doxygen ignores this part */ |
796 | | /* |
797 | | * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute |
798 | | * introduced in CPP17 and C23. |
799 | | * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough |
800 | | * C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough |
801 | | */ |
802 | | #if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough) |
803 | | # define XXH_FALLTHROUGH [[fallthrough]] |
804 | | #elif XXH_HAS_ATTRIBUTE(__fallthrough__) |
805 | 0 | # define XXH_FALLTHROUGH __attribute__ ((__fallthrough__)) |
806 | | #else |
807 | | # define XXH_FALLTHROUGH /* fallthrough */ |
808 | | #endif |
809 | | /*! @endcond */ |
810 | | |
811 | | /*! @cond Doxygen ignores this part */ |
812 | | /* |
813 | | * Define XXH_NOESCAPE for annotated pointers in public API. |
814 | | * https://clang.llvm.org/docs/AttributeReference.html#noescape |
815 | | * As of writing this, only supported by clang. |
816 | | */ |
817 | | #if XXH_HAS_ATTRIBUTE(noescape) |
818 | | # define XXH_NOESCAPE __attribute__((noescape)) |
819 | | #else |
820 | | # define XXH_NOESCAPE |
821 | | #endif |
822 | | /*! @endcond */ |
823 | | |
824 | | |
825 | | /*! |
826 | | * @} |
827 | | * @ingroup public |
828 | | * @{ |
829 | | */ |
830 | | |
831 | | #ifndef XXH_NO_LONG_LONG |
832 | | /*-********************************************************************** |
833 | | * 64-bit hash |
834 | | ************************************************************************/ |
835 | | #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */ |
836 | | /*! |
837 | | * @brief An unsigned 64-bit integer. |
838 | | * |
839 | | * Not necessarily defined to `uint64_t` but functionally equivalent. |
840 | | */ |
841 | | typedef uint64_t XXH64_hash_t; |
842 | | #elif !defined (__VMS) \ |
843 | | && (defined (__cplusplus) \ |
844 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
845 | | # ifdef _AIX |
846 | | # include <inttypes.h> |
847 | | # else |
848 | | # include <stdint.h> |
849 | | # endif |
850 | | typedef uint64_t XXH64_hash_t; |
851 | | #else |
852 | | # include <limits.h> |
853 | | # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL |
854 | | /* LP64 ABI says uint64_t is unsigned long */ |
855 | | typedef unsigned long XXH64_hash_t; |
856 | | # else |
857 | | /* the following type must have a width of 64-bit */ |
858 | | typedef unsigned long long XXH64_hash_t; |
859 | | # endif |
860 | | #endif |
861 | | |
862 | | /*! |
863 | | * @} |
864 | | * |
865 | | * @defgroup XXH64_family XXH64 family |
866 | | * @ingroup public |
867 | | * @{ |
868 | | * Contains functions used in the classic 64-bit xxHash algorithm. |
869 | | * |
870 | | * @note |
871 | | * XXH3 provides competitive speed for both 32-bit and 64-bit systems, |
872 | | * and offers true 64/128 bit hash results. |
873 | | * It provides better speed for systems with vector processing capabilities. |
874 | | */ |
875 | | |
876 | | /*! |
877 | | * @brief Calculates the 64-bit hash of @p input using xxHash64. |
878 | | * |
879 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
880 | | * @param length The length of @p input, in bytes. |
881 | | * @param seed The 64-bit seed to alter the hash's output predictably. |
882 | | * |
883 | | * @pre |
884 | | * The memory between @p input and @p input + @p length must be valid, |
885 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
886 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
887 | | * |
888 | | * @return The calculated 64-bit xxHash64 value. |
889 | | * |
890 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
891 | | */ |
892 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); |
893 | | |
894 | | /******* Streaming *******/ |
895 | | #ifndef XXH_NO_STREAM |
896 | | /*! |
897 | | * @brief The opaque state struct for the XXH64 streaming API. |
898 | | * |
899 | | * @see XXH64_state_s for details. |
900 | | */ |
901 | | typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
902 | | |
903 | | /*! |
904 | | * @brief Allocates an @ref XXH64_state_t. |
905 | | * |
906 | | * @return An allocated pointer of @ref XXH64_state_t on success. |
907 | | * @return `NULL` on failure. |
908 | | * |
909 | | * @note Must be freed with XXH64_freeState(). |
910 | | */ |
911 | | XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void); |
912 | | |
913 | | /*! |
914 | | * @brief Frees an @ref XXH64_state_t. |
915 | | * |
916 | | * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState(). |
917 | | * |
918 | | * @return @ref XXH_OK. |
919 | | * |
920 | | * @note @p statePtr must be allocated with XXH64_createState(). |
921 | | */ |
922 | | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
923 | | |
924 | | /*! |
925 | | * @brief Copies one @ref XXH64_state_t to another. |
926 | | * |
927 | | * @param dst_state The state to copy to. |
928 | | * @param src_state The state to copy from. |
929 | | * @pre |
930 | | * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
931 | | */ |
932 | | XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state); |
933 | | |
934 | | /*! |
935 | | * @brief Resets an @ref XXH64_state_t to begin a new hash. |
936 | | * |
937 | | * @param statePtr The state struct to reset. |
938 | | * @param seed The 64-bit seed to alter the hash result predictably. |
939 | | * |
940 | | * @pre |
941 | | * @p statePtr must not be `NULL`. |
942 | | * |
943 | | * @return @ref XXH_OK on success. |
944 | | * @return @ref XXH_ERROR on failure. |
945 | | * |
946 | | * @note This function resets and seeds a state. Call it before @ref XXH64_update(). |
947 | | */ |
948 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed); |
949 | | |
950 | | /*! |
951 | | * @brief Consumes a block of @p input to an @ref XXH64_state_t. |
952 | | * |
953 | | * @param statePtr The state struct to update. |
954 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
955 | | * @param length The length of @p input, in bytes. |
956 | | * |
957 | | * @pre |
958 | | * @p statePtr must not be `NULL`. |
959 | | * @pre |
960 | | * The memory between @p input and @p input + @p length must be valid, |
961 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
962 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
963 | | * |
964 | | * @return @ref XXH_OK on success. |
965 | | * @return @ref XXH_ERROR on failure. |
966 | | * |
967 | | * @note Call this to incrementally consume blocks of data. |
968 | | */ |
969 | | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
970 | | |
971 | | /*! |
972 | | * @brief Returns the calculated hash value from an @ref XXH64_state_t. |
973 | | * |
974 | | * @param statePtr The state struct to calculate the hash from. |
975 | | * |
976 | | * @pre |
977 | | * @p statePtr must not be `NULL`. |
978 | | * |
979 | | * @return The calculated 64-bit xxHash64 value from that state. |
980 | | * |
981 | | * @note |
982 | | * Calling XXH64_digest() will not affect @p statePtr, so you can update, |
983 | | * digest, and update again. |
984 | | */ |
985 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr); |
986 | | #endif /* !XXH_NO_STREAM */ |
987 | | /******* Canonical representation *******/ |
988 | | |
989 | | /*! |
990 | | * @brief Canonical (big endian) representation of @ref XXH64_hash_t. |
991 | | */ |
992 | | typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t; |
993 | | |
994 | | /*! |
995 | | * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t. |
996 | | * |
997 | | * @param dst The @ref XXH64_canonical_t pointer to be stored to. |
998 | | * @param hash The @ref XXH64_hash_t to be converted. |
999 | | * |
1000 | | * @pre |
1001 | | * @p dst must not be `NULL`. |
1002 | | * |
1003 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
1004 | | */ |
1005 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash); |
1006 | | |
1007 | | /*! |
1008 | | * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t. |
1009 | | * |
1010 | | * @param src The @ref XXH64_canonical_t to convert. |
1011 | | * |
1012 | | * @pre |
1013 | | * @p src must not be `NULL`. |
1014 | | * |
1015 | | * @return The converted hash. |
1016 | | * |
1017 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
1018 | | */ |
1019 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src); |
1020 | | |
1021 | | #ifndef XXH_NO_XXH3 |
1022 | | |
1023 | | /*! |
1024 | | * @} |
1025 | | * ************************************************************************ |
1026 | | * @defgroup XXH3_family XXH3 family |
1027 | | * @ingroup public |
1028 | | * @{ |
1029 | | * |
1030 | | * XXH3 is a more recent hash algorithm featuring: |
1031 | | * - Improved speed for both small and large inputs |
1032 | | * - True 64-bit and 128-bit outputs |
1033 | | * - SIMD acceleration |
1034 | | * - Improved 32-bit viability |
1035 | | * |
1036 | | * Speed analysis methodology is explained here: |
1037 | | * |
1038 | | * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html |
1039 | | * |
1040 | | * Compared to XXH64, expect XXH3 to run approximately |
1041 | | * ~2x faster on large inputs and >3x faster on small ones, |
1042 | | * exact differences vary depending on platform. |
1043 | | * |
1044 | | * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic, |
1045 | | * but does not require it. |
1046 | | * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3 |
1047 | | * at competitive speeds, even without vector support. Further details are |
1048 | | * explained in the implementation. |
1049 | | * |
1050 | | * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD |
1051 | | * implementations for many common platforms: |
1052 | | * - AVX512 |
1053 | | * - AVX2 |
1054 | | * - SSE2 |
1055 | | * - ARM NEON |
1056 | | * - WebAssembly SIMD128 |
1057 | | * - POWER8 VSX |
1058 | | * - s390x ZVector |
1059 | | * This can be controlled via the @ref XXH_VECTOR macro, but it automatically |
1060 | | * selects the best version according to predefined macros. For the x86 family, an |
1061 | | * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c. |
1062 | | * |
1063 | | * XXH3 implementation is portable: |
1064 | | * it has a generic C90 formulation that can be compiled on any platform, |
1065 | | * all implementations generate exactly the same hash value on all platforms. |
1066 | | * Starting from v0.8.0, it's also labelled "stable", meaning that |
1067 | | * any future version will also generate the same hash value. |
1068 | | * |
1069 | | * XXH3 offers 2 variants, _64bits and _128bits. |
1070 | | * |
1071 | | * When only 64 bits are needed, prefer invoking the _64bits variant, as it |
1072 | | * reduces the amount of mixing, resulting in faster speed on small inputs. |
1073 | | * It's also generally simpler to manipulate a scalar return type than a struct. |
1074 | | * |
1075 | | * The API supports one-shot hashing, streaming mode, and custom secrets. |
1076 | | */ |
1077 | | /*-********************************************************************** |
1078 | | * XXH3 64-bit variant |
1079 | | ************************************************************************/ |
1080 | | |
1081 | | /*! |
1082 | | * @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input. |
1083 | | * |
1084 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
1085 | | * @param length The length of @p input, in bytes. |
1086 | | * |
1087 | | * @pre |
1088 | | * The memory between @p input and @p input + @p length must be valid, |
1089 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
1090 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1091 | | * |
1092 | | * @return The calculated 64-bit XXH3 hash value. |
1093 | | * |
1094 | | * @note |
1095 | | * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however |
1096 | | * it may have slightly better performance due to constant propagation of the |
1097 | | * defaults. |
1098 | | * |
1099 | | * @see |
1100 | | * XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants |
1101 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1102 | | */ |
1103 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length); |
1104 | | |
1105 | | /*! |
1106 | | * @brief Calculates 64-bit seeded variant of XXH3 hash of @p input. |
1107 | | * |
1108 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
1109 | | * @param length The length of @p input, in bytes. |
1110 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1111 | | * |
1112 | | * @pre |
1113 | | * The memory between @p input and @p input + @p length must be valid, |
1114 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
1115 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1116 | | * |
1117 | | * @return The calculated 64-bit XXH3 hash value. |
1118 | | * |
1119 | | * @note |
1120 | | * seed == 0 produces the same results as @ref XXH3_64bits(). |
1121 | | * |
1122 | | * This variant generates a custom secret on the fly based on default secret |
1123 | | * altered using the @p seed value. |
1124 | | * |
1125 | | * While this operation is decently fast, note that it's not completely free. |
1126 | | * |
1127 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1128 | | */ |
1129 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed); |
1130 | | |
1131 | | /*! |
1132 | | * The bare minimum size for a custom secret. |
1133 | | * |
1134 | | * @see |
1135 | | * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(), |
1136 | | * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret(). |
1137 | | */ |
1138 | | #define XXH3_SECRET_SIZE_MIN 136 |
1139 | | |
1140 | | /*! |
1141 | | * @brief Calculates 64-bit variant of XXH3 with a custom "secret". |
1142 | | * |
1143 | | * @param data The block of data to be hashed, at least @p len bytes in size. |
1144 | | * @param len The length of @p data, in bytes. |
1145 | | * @param secret The secret data. |
1146 | | * @param secretSize The length of @p secret, in bytes. |
1147 | | * |
1148 | | * @return The calculated 64-bit XXH3 hash value. |
1149 | | * |
1150 | | * @pre |
1151 | | * The memory between @p data and @p data + @p len must be valid, |
1152 | | * readable, contiguous memory. However, if @p length is `0`, @p data may be |
1153 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1154 | | * |
1155 | | * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
1156 | | * This makes it more difficult for an external actor to prepare an intentional collision. |
1157 | | * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). |
1158 | | * However, the quality of the secret impacts the dispersion of the hash algorithm. |
1159 | | * Therefore, the secret _must_ look like a bunch of random bytes. |
1160 | | * Avoid "trivial" or structured data such as repeated sequences or a text document. |
1161 | | * Whenever in doubt about the "randomness" of the blob of bytes, |
1162 | | * consider employing @ref XXH3_generateSecret() instead (see below). |
1163 | | * It will generate a proper high entropy secret derived from the blob of bytes. |
1164 | | * Another advantage of using XXH3_generateSecret() is that |
1165 | | * it guarantees that all bits within the initial blob of bytes |
1166 | | * will impact every bit of the output. |
1167 | | * This is not necessarily the case when using the blob of bytes directly |
1168 | | * because, when hashing _small_ inputs, only a portion of the secret is employed. |
1169 | | * |
1170 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1171 | | */ |
1172 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); |
1173 | | |
1174 | | |
1175 | | /******* Streaming *******/ |
1176 | | #ifndef XXH_NO_STREAM |
1177 | | /* |
1178 | | * Streaming requires state maintenance. |
1179 | | * This operation costs memory and CPU. |
1180 | | * As a consequence, streaming is slower than one-shot hashing. |
1181 | | * For better performance, prefer one-shot functions whenever applicable. |
1182 | | */ |
1183 | | |
1184 | | /*! |
1185 | | * @brief The opaque state struct for the XXH3 streaming API. |
1186 | | * |
1187 | | * @see XXH3_state_s for details. |
1188 | | */ |
1189 | | typedef struct XXH3_state_s XXH3_state_t; |
1190 | | XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void); |
1191 | | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr); |
1192 | | |
1193 | | /*! |
1194 | | * @brief Copies one @ref XXH3_state_t to another. |
1195 | | * |
1196 | | * @param dst_state The state to copy to. |
1197 | | * @param src_state The state to copy from. |
1198 | | * @pre |
1199 | | * @p dst_state and @p src_state must not be `NULL` and must not overlap. |
1200 | | */ |
1201 | | XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state); |
1202 | | |
1203 | | /*! |
1204 | | * @brief Resets an @ref XXH3_state_t to begin a new hash. |
1205 | | * |
1206 | | * @param statePtr The state struct to reset. |
1207 | | * |
1208 | | * @pre |
1209 | | * @p statePtr must not be `NULL`. |
1210 | | * |
1211 | | * @return @ref XXH_OK on success. |
1212 | | * @return @ref XXH_ERROR on failure. |
1213 | | * |
1214 | | * @note |
1215 | | * - This function resets `statePtr` and generate a secret with default parameters. |
1216 | | * - Call this function before @ref XXH3_64bits_update(). |
1217 | | * - Digest will be equivalent to `XXH3_64bits()`. |
1218 | | * |
1219 | | */ |
1220 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); |
1221 | | |
1222 | | /*! |
1223 | | * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. |
1224 | | * |
1225 | | * @param statePtr The state struct to reset. |
1226 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1227 | | * |
1228 | | * @pre |
1229 | | * @p statePtr must not be `NULL`. |
1230 | | * |
1231 | | * @return @ref XXH_OK on success. |
1232 | | * @return @ref XXH_ERROR on failure. |
1233 | | * |
1234 | | * @note |
1235 | | * - This function resets `statePtr` and generate a secret from `seed`. |
1236 | | * - Call this function before @ref XXH3_64bits_update(). |
1237 | | * - Digest will be equivalent to `XXH3_64bits_withSeed()`. |
1238 | | * |
1239 | | */ |
1240 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); |
1241 | | |
1242 | | /*! |
1243 | | * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. |
1244 | | * |
1245 | | * @param statePtr The state struct to reset. |
1246 | | * @param secret The secret data. |
1247 | | * @param secretSize The length of @p secret, in bytes. |
1248 | | * |
1249 | | * @pre |
1250 | | * @p statePtr must not be `NULL`. |
1251 | | * |
1252 | | * @return @ref XXH_OK on success. |
1253 | | * @return @ref XXH_ERROR on failure. |
1254 | | * |
1255 | | * @note |
1256 | | * `secret` is referenced, it _must outlive_ the hash streaming session. |
1257 | | * |
1258 | | * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, |
1259 | | * and the quality of produced hash values depends on secret's entropy |
1260 | | * (secret's content should look like a bunch of random bytes). |
1261 | | * When in doubt about the randomness of a candidate `secret`, |
1262 | | * consider employing `XXH3_generateSecret()` instead (see below). |
1263 | | */ |
1264 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); |
1265 | | |
1266 | | /*! |
1267 | | * @brief Consumes a block of @p input to an @ref XXH3_state_t. |
1268 | | * |
1269 | | * @param statePtr The state struct to update. |
1270 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
1271 | | * @param length The length of @p input, in bytes. |
1272 | | * |
1273 | | * @pre |
1274 | | * @p statePtr must not be `NULL`. |
1275 | | * @pre |
1276 | | * The memory between @p input and @p input + @p length must be valid, |
1277 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
1278 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1279 | | * |
1280 | | * @return @ref XXH_OK on success. |
1281 | | * @return @ref XXH_ERROR on failure. |
1282 | | * |
1283 | | * @note Call this to incrementally consume blocks of data. |
1284 | | */ |
1285 | | XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
1286 | | |
1287 | | /*! |
1288 | | * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t. |
1289 | | * |
1290 | | * @param statePtr The state struct to calculate the hash from. |
1291 | | * |
1292 | | * @pre |
1293 | | * @p statePtr must not be `NULL`. |
1294 | | * |
1295 | | * @return The calculated XXH3 64-bit hash value from that state. |
1296 | | * |
1297 | | * @note |
1298 | | * Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update, |
1299 | | * digest, and update again. |
1300 | | */ |
1301 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); |
1302 | | #endif /* !XXH_NO_STREAM */ |
1303 | | |
1304 | | /* note : canonical representation of XXH3 is the same as XXH64 |
1305 | | * since they both produce XXH64_hash_t values */ |
1306 | | |
1307 | | |
1308 | | /*-********************************************************************** |
1309 | | * XXH3 128-bit variant |
1310 | | ************************************************************************/ |
1311 | | |
1312 | | /*! |
1313 | | * @brief The return value from 128-bit hashes. |
1314 | | * |
1315 | | * Stored in little endian order, although the fields themselves are in native |
1316 | | * endianness. |
1317 | | */ |
1318 | | typedef struct { |
1319 | | XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */ |
1320 | | XXH64_hash_t high64; /*!< `value >> 64` */ |
1321 | | } XXH128_hash_t; |
1322 | | |
1323 | | /*! |
1324 | | * @brief Calculates 128-bit unseeded variant of XXH3 of @p data. |
1325 | | * |
1326 | | * @param data The block of data to be hashed, at least @p length bytes in size. |
1327 | | * @param len The length of @p data, in bytes. |
1328 | | * |
1329 | | * @return The calculated 128-bit variant of XXH3 value. |
1330 | | * |
1331 | | * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead |
1332 | | * for shorter inputs. |
1333 | | * |
1334 | | * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however |
1335 | | * it may have slightly better performance due to constant propagation of the |
1336 | | * defaults. |
1337 | | * |
1338 | | * @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants |
1339 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1340 | | */ |
1341 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len); |
1342 | | /*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. |
1343 | | * |
1344 | | * @param data The block of data to be hashed, at least @p length bytes in size. |
1345 | | * @param len The length of @p data, in bytes. |
1346 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1347 | | * |
1348 | | * @return The calculated 128-bit variant of XXH3 value. |
1349 | | * |
1350 | | * @note |
1351 | | * seed == 0 produces the same results as @ref XXH3_64bits(). |
1352 | | * |
1353 | | * This variant generates a custom secret on the fly based on default secret |
1354 | | * altered using the @p seed value. |
1355 | | * |
1356 | | * While this operation is decently fast, note that it's not completely free. |
1357 | | * |
1358 | | * @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants |
1359 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1360 | | */ |
1361 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); |
1362 | | /*! |
1363 | | * @brief Calculates 128-bit variant of XXH3 with a custom "secret". |
1364 | | * |
1365 | | * @param data The block of data to be hashed, at least @p len bytes in size. |
1366 | | * @param len The length of @p data, in bytes. |
1367 | | * @param secret The secret data. |
1368 | | * @param secretSize The length of @p secret, in bytes. |
1369 | | * |
1370 | | * @return The calculated 128-bit variant of XXH3 value. |
1371 | | * |
1372 | | * It's possible to provide any blob of bytes as a "secret" to generate the hash. |
1373 | | * This makes it more difficult for an external actor to prepare an intentional collision. |
1374 | | * The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN). |
1375 | | * However, the quality of the secret impacts the dispersion of the hash algorithm. |
1376 | | * Therefore, the secret _must_ look like a bunch of random bytes. |
1377 | | * Avoid "trivial" or structured data such as repeated sequences or a text document. |
1378 | | * Whenever in doubt about the "randomness" of the blob of bytes, |
1379 | | * consider employing @ref XXH3_generateSecret() instead (see below). |
1380 | | * It will generate a proper high entropy secret derived from the blob of bytes. |
1381 | | * Another advantage of using XXH3_generateSecret() is that |
1382 | | * it guarantees that all bits within the initial blob of bytes |
1383 | | * will impact every bit of the output. |
1384 | | * This is not necessarily the case when using the blob of bytes directly |
1385 | | * because, when hashing _small_ inputs, only a portion of the secret is employed. |
1386 | | * |
1387 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1388 | | */ |
1389 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize); |
1390 | | |
1391 | | /******* Streaming *******/ |
1392 | | #ifndef XXH_NO_STREAM |
1393 | | /* |
1394 | | * Streaming requires state maintenance. |
1395 | | * This operation costs memory and CPU. |
1396 | | * As a consequence, streaming is slower than one-shot hashing. |
1397 | | * For better performance, prefer one-shot functions whenever applicable. |
1398 | | * |
1399 | | * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits(). |
1400 | | * Use already declared XXH3_createState() and XXH3_freeState(). |
1401 | | * |
1402 | | * All reset and streaming functions have same meaning as their 64-bit counterpart. |
1403 | | */ |
1404 | | |
1405 | | /*! |
1406 | | * @brief Resets an @ref XXH3_state_t to begin a new hash. |
1407 | | * |
1408 | | * @param statePtr The state struct to reset. |
1409 | | * |
1410 | | * @pre |
1411 | | * @p statePtr must not be `NULL`. |
1412 | | * |
1413 | | * @return @ref XXH_OK on success. |
1414 | | * @return @ref XXH_ERROR on failure. |
1415 | | * |
1416 | | * @note |
1417 | | * - This function resets `statePtr` and generate a secret with default parameters. |
1418 | | * - Call it before @ref XXH3_128bits_update(). |
1419 | | * - Digest will be equivalent to `XXH3_128bits()`. |
1420 | | */ |
1421 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr); |
1422 | | |
1423 | | /*! |
1424 | | * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash. |
1425 | | * |
1426 | | * @param statePtr The state struct to reset. |
1427 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1428 | | * |
1429 | | * @pre |
1430 | | * @p statePtr must not be `NULL`. |
1431 | | * |
1432 | | * @return @ref XXH_OK on success. |
1433 | | * @return @ref XXH_ERROR on failure. |
1434 | | * |
1435 | | * @note |
1436 | | * - This function resets `statePtr` and generate a secret from `seed`. |
1437 | | * - Call it before @ref XXH3_128bits_update(). |
1438 | | * - Digest will be equivalent to `XXH3_128bits_withSeed()`. |
1439 | | */ |
1440 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed); |
1441 | | /*! |
1442 | | * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. |
1443 | | * |
1444 | | * @param statePtr The state struct to reset. |
1445 | | * @param secret The secret data. |
1446 | | * @param secretSize The length of @p secret, in bytes. |
1447 | | * |
1448 | | * @pre |
1449 | | * @p statePtr must not be `NULL`. |
1450 | | * |
1451 | | * @return @ref XXH_OK on success. |
1452 | | * @return @ref XXH_ERROR on failure. |
1453 | | * |
1454 | | * `secret` is referenced, it _must outlive_ the hash streaming session. |
1455 | | * Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN, |
1456 | | * and the quality of produced hash values depends on secret's entropy |
1457 | | * (secret's content should look like a bunch of random bytes). |
1458 | | * When in doubt about the randomness of a candidate `secret`, |
1459 | | * consider employing `XXH3_generateSecret()` instead (see below). |
1460 | | */ |
1461 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize); |
1462 | | |
1463 | | /*! |
1464 | | * @brief Consumes a block of @p input to an @ref XXH3_state_t. |
1465 | | * |
1466 | | * Call this to incrementally consume blocks of data. |
1467 | | * |
1468 | | * @param statePtr The state struct to update. |
1469 | | * @param input The block of data to be hashed, at least @p length bytes in size. |
1470 | | * @param length The length of @p input, in bytes. |
1471 | | * |
1472 | | * @pre |
1473 | | * @p statePtr must not be `NULL`. |
1474 | | * |
1475 | | * @return @ref XXH_OK on success. |
1476 | | * @return @ref XXH_ERROR on failure. |
1477 | | * |
1478 | | * @note |
1479 | | * The memory between @p input and @p input + @p length must be valid, |
1480 | | * readable, contiguous memory. However, if @p length is `0`, @p input may be |
1481 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1482 | | * |
1483 | | */ |
1484 | | XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length); |
1485 | | |
1486 | | /*! |
1487 | | * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t. |
1488 | | * |
1489 | | * @param statePtr The state struct to calculate the hash from. |
1490 | | * |
1491 | | * @pre |
1492 | | * @p statePtr must not be `NULL`. |
1493 | | * |
1494 | | * @return The calculated XXH3 128-bit hash value from that state. |
1495 | | * |
1496 | | * @note |
1497 | | * Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update, |
1498 | | * digest, and update again. |
1499 | | * |
1500 | | */ |
1501 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr); |
1502 | | #endif /* !XXH_NO_STREAM */ |
1503 | | |
1504 | | /* Following helper functions make it possible to compare XXH128_hast_t values. |
1505 | | * Since XXH128_hash_t is a structure, this capability is not offered by the language. |
1506 | | * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */ |
1507 | | |
1508 | | /*! |
1509 | | * @brief Check equality of two XXH128_hash_t values |
1510 | | * |
1511 | | * @param h1 The 128-bit hash value. |
1512 | | * @param h2 Another 128-bit hash value. |
1513 | | * |
1514 | | * @return `1` if `h1` and `h2` are equal. |
1515 | | * @return `0` if they are not. |
1516 | | */ |
1517 | | XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2); |
1518 | | |
1519 | | /*! |
1520 | | * @brief Compares two @ref XXH128_hash_t |
1521 | | * |
1522 | | * This comparator is compatible with stdlib's `qsort()`/`bsearch()`. |
1523 | | * |
1524 | | * @param h128_1 Left-hand side value |
1525 | | * @param h128_2 Right-hand side value |
1526 | | * |
1527 | | * @return >0 if @p h128_1 > @p h128_2 |
1528 | | * @return =0 if @p h128_1 == @p h128_2 |
1529 | | * @return <0 if @p h128_1 < @p h128_2 |
1530 | | */ |
1531 | | XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2); |
1532 | | |
1533 | | |
1534 | | /******* Canonical representation *******/ |
1535 | | typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t; |
1536 | | |
1537 | | |
1538 | | /*! |
1539 | | * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t. |
1540 | | * |
1541 | | * @param dst The @ref XXH128_canonical_t pointer to be stored to. |
1542 | | * @param hash The @ref XXH128_hash_t to be converted. |
1543 | | * |
1544 | | * @pre |
1545 | | * @p dst must not be `NULL`. |
1546 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
1547 | | */ |
1548 | | XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash); |
1549 | | |
1550 | | /*! |
1551 | | * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t. |
1552 | | * |
1553 | | * @param src The @ref XXH128_canonical_t to convert. |
1554 | | * |
1555 | | * @pre |
1556 | | * @p src must not be `NULL`. |
1557 | | * |
1558 | | * @return The converted hash. |
1559 | | * @see @ref canonical_representation_example "Canonical Representation Example" |
1560 | | */ |
1561 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src); |
1562 | | |
1563 | | |
1564 | | #endif /* !XXH_NO_XXH3 */ |
1565 | | #endif /* XXH_NO_LONG_LONG */ |
1566 | | |
1567 | | /*! |
1568 | | * @} |
1569 | | */ |
1570 | | #endif /* XXHASH_H_5627135585666179 */ |
1571 | | |
1572 | | |
1573 | | |
1574 | | #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) |
1575 | | #define XXHASH_H_STATIC_13879238742 |
1576 | | /* **************************************************************************** |
1577 | | * This section contains declarations which are not guaranteed to remain stable. |
1578 | | * They may change in future versions, becoming incompatible with a different |
1579 | | * version of the library. |
1580 | | * These declarations should only be used with static linking. |
1581 | | * Never use them in association with dynamic linking! |
1582 | | ***************************************************************************** */ |
1583 | | |
1584 | | /* |
1585 | | * These definitions are only present to allow static allocation |
1586 | | * of XXH states, on stack or in a struct, for example. |
1587 | | * Never **ever** access their members directly. |
1588 | | */ |
1589 | | |
1590 | | /*! |
1591 | | * @internal |
1592 | | * @brief Structure for XXH32 streaming API. |
1593 | | * |
1594 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
1595 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
1596 | | * an opaque type. This allows fields to safely be changed. |
1597 | | * |
1598 | | * Typedef'd to @ref XXH32_state_t. |
1599 | | * Do not access the members of this struct directly. |
1600 | | * @see XXH64_state_s, XXH3_state_s |
1601 | | */ |
1602 | | struct XXH32_state_s { |
1603 | | XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */ |
1604 | | XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */ |
1605 | | XXH32_hash_t v[4]; /*!< Accumulator lanes */ |
1606 | | XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */ |
1607 | | XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */ |
1608 | | XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */ |
1609 | | }; /* typedef'd to XXH32_state_t */ |
1610 | | |
1611 | | |
1612 | | #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */ |
1613 | | |
1614 | | /*! |
1615 | | * @internal |
1616 | | * @brief Structure for XXH64 streaming API. |
1617 | | * |
1618 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
1619 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is |
1620 | | * an opaque type. This allows fields to safely be changed. |
1621 | | * |
1622 | | * Typedef'd to @ref XXH64_state_t. |
1623 | | * Do not access the members of this struct directly. |
1624 | | * @see XXH32_state_s, XXH3_state_s |
1625 | | */ |
1626 | | struct XXH64_state_s { |
1627 | | XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */ |
1628 | | XXH64_hash_t v[4]; /*!< Accumulator lanes */ |
1629 | | XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */ |
1630 | | XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */ |
1631 | | XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/ |
1632 | | XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */ |
1633 | | }; /* typedef'd to XXH64_state_t */ |
1634 | | |
1635 | | #ifndef XXH_NO_XXH3 |
1636 | | |
1637 | | #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */ |
1638 | | # include <stdalign.h> |
1639 | | # define XXH_ALIGN(n) alignas(n) |
1640 | | #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */ |
1641 | | /* In C++ alignas() is a keyword */ |
1642 | | # define XXH_ALIGN(n) alignas(n) |
1643 | | #elif defined(__GNUC__) |
1644 | | # define XXH_ALIGN(n) __attribute__ ((aligned(n))) |
1645 | | #elif defined(_MSC_VER) |
1646 | | # define XXH_ALIGN(n) __declspec(align(n)) |
1647 | | #else |
1648 | | # define XXH_ALIGN(n) /* disabled */ |
1649 | | #endif |
1650 | | |
1651 | | /* Old GCC versions only accept the attribute after the type in structures. */ |
1652 | | #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \ |
1653 | | && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \ |
1654 | | && defined(__GNUC__) |
1655 | | # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align) |
1656 | | #else |
1657 | | # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type |
1658 | | #endif |
1659 | | |
1660 | | /*! |
1661 | | * @brief The size of the internal XXH3 buffer. |
1662 | | * |
1663 | | * This is the optimal update size for incremental hashing. |
1664 | | * |
1665 | | * @see XXH3_64b_update(), XXH3_128b_update(). |
1666 | | */ |
1667 | | #define XXH3_INTERNALBUFFER_SIZE 256 |
1668 | | |
1669 | | /*! |
1670 | | * @internal |
1671 | | * @brief Default size of the secret buffer (and @ref XXH3_kSecret). |
1672 | | * |
1673 | | * This is the size used in @ref XXH3_kSecret and the seeded functions. |
1674 | | * |
1675 | | * Not to be confused with @ref XXH3_SECRET_SIZE_MIN. |
1676 | | */ |
1677 | | #define XXH3_SECRET_DEFAULT_SIZE 192 |
1678 | | |
1679 | | /*! |
1680 | | * @internal |
1681 | | * @brief Structure for XXH3 streaming API. |
1682 | | * |
1683 | | * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY, |
1684 | | * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. |
1685 | | * Otherwise it is an opaque type. |
1686 | | * Never use this definition in combination with dynamic library. |
1687 | | * This allows fields to safely be changed in the future. |
1688 | | * |
1689 | | * @note ** This structure has a strict alignment requirement of 64 bytes!! ** |
1690 | | * Do not allocate this with `malloc()` or `new`, |
1691 | | * it will not be sufficiently aligned. |
1692 | | * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation. |
1693 | | * |
1694 | | * Typedef'd to @ref XXH3_state_t. |
1695 | | * Do never access the members of this struct directly. |
1696 | | * |
1697 | | * @see XXH3_INITSTATE() for stack initialization. |
1698 | | * @see XXH3_createState(), XXH3_freeState(). |
1699 | | * @see XXH32_state_s, XXH64_state_s |
1700 | | */ |
1701 | | struct XXH3_state_s { |
1702 | | XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]); |
1703 | | /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */ |
1704 | | XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]); |
1705 | | /*!< Used to store a custom secret generated from a seed. */ |
1706 | | XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]); |
1707 | | /*!< The internal buffer. @see XXH32_state_s::mem32 */ |
1708 | | XXH32_hash_t bufferedSize; |
1709 | | /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */ |
1710 | | XXH32_hash_t useSeed; |
1711 | | /*!< Reserved field. Needed for padding on 64-bit. */ |
1712 | | size_t nbStripesSoFar; |
1713 | | /*!< Number or stripes processed. */ |
1714 | | XXH64_hash_t totalLen; |
1715 | | /*!< Total length hashed. 64-bit even on 32-bit targets. */ |
1716 | | size_t nbStripesPerBlock; |
1717 | | /*!< Number of stripes per block. */ |
1718 | | size_t secretLimit; |
1719 | | /*!< Size of @ref customSecret or @ref extSecret */ |
1720 | | XXH64_hash_t seed; |
1721 | | /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */ |
1722 | | XXH64_hash_t reserved64; |
1723 | | /*!< Reserved field. */ |
1724 | | const unsigned char* extSecret; |
1725 | | /*!< Reference to an external secret for the _withSecret variants, NULL |
1726 | | * for other variants. */ |
1727 | | /* note: there may be some padding at the end due to alignment on 64 bytes */ |
1728 | | }; /* typedef'd to XXH3_state_t */ |
1729 | | |
1730 | | #undef XXH_ALIGN_MEMBER |
1731 | | |
1732 | | /*! |
1733 | | * @brief Initializes a stack-allocated `XXH3_state_s`. |
1734 | | * |
1735 | | * When the @ref XXH3_state_t structure is merely emplaced on stack, |
1736 | | * it should be initialized with XXH3_INITSTATE() or a memset() |
1737 | | * in case its first reset uses XXH3_NNbits_reset_withSeed(). |
1738 | | * This init can be omitted if the first reset uses default or _withSecret mode. |
1739 | | * This operation isn't necessary when the state is created with XXH3_createState(). |
1740 | | * Note that this doesn't prepare the state for a streaming operation, |
1741 | | * it's still necessary to use XXH3_NNbits_reset*() afterwards. |
1742 | | */ |
1743 | | #define XXH3_INITSTATE(XXH3_state_ptr) \ |
1744 | | do { \ |
1745 | | XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \ |
1746 | | tmp_xxh3_state_ptr->seed = 0; \ |
1747 | | tmp_xxh3_state_ptr->extSecret = NULL; \ |
1748 | | } while(0) |
1749 | | |
1750 | | |
1751 | | /*! |
1752 | | * @brief Calculates the 128-bit hash of @p data using XXH3. |
1753 | | * |
1754 | | * @param data The block of data to be hashed, at least @p len bytes in size. |
1755 | | * @param len The length of @p data, in bytes. |
1756 | | * @param seed The 64-bit seed to alter the hash's output predictably. |
1757 | | * |
1758 | | * @pre |
1759 | | * The memory between @p data and @p data + @p len must be valid, |
1760 | | * readable, contiguous memory. However, if @p len is `0`, @p data may be |
1761 | | * `NULL`. In C++, this also must be *TriviallyCopyable*. |
1762 | | * |
1763 | | * @return The calculated 128-bit XXH3 value. |
1764 | | * |
1765 | | * @see @ref single_shot_example "Single Shot Example" for an example. |
1766 | | */ |
1767 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed); |
1768 | | |
1769 | | |
1770 | | /* === Experimental API === */ |
1771 | | /* Symbols defined below must be considered tied to a specific library version. */ |
1772 | | |
1773 | | /*! |
1774 | | * @brief Derive a high-entropy secret from any user-defined content, named customSeed. |
1775 | | * |
1776 | | * @param secretBuffer A writable buffer for derived high-entropy secret data. |
1777 | | * @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_DEFAULT_SIZE. |
1778 | | * @param customSeed A user-defined content. |
1779 | | * @param customSeedSize Size of customSeed, in bytes. |
1780 | | * |
1781 | | * @return @ref XXH_OK on success. |
1782 | | * @return @ref XXH_ERROR on failure. |
1783 | | * |
1784 | | * The generated secret can be used in combination with `*_withSecret()` functions. |
1785 | | * The `_withSecret()` variants are useful to provide a higher level of protection |
1786 | | * than 64-bit seed, as it becomes much more difficult for an external actor to |
1787 | | * guess how to impact the calculation logic. |
1788 | | * |
1789 | | * The function accepts as input a custom seed of any length and any content, |
1790 | | * and derives from it a high-entropy secret of length @p secretSize into an |
1791 | | * already allocated buffer @p secretBuffer. |
1792 | | * |
1793 | | * The generated secret can then be used with any `*_withSecret()` variant. |
1794 | | * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(), |
1795 | | * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret() |
1796 | | * are part of this list. They all accept a `secret` parameter |
1797 | | * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN) |
1798 | | * _and_ feature very high entropy (consist of random-looking bytes). |
1799 | | * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can |
1800 | | * be employed to ensure proper quality. |
1801 | | * |
1802 | | * @p customSeed can be anything. It can have any size, even small ones, |
1803 | | * and its content can be anything, even "poor entropy" sources such as a bunch |
1804 | | * of zeroes. The resulting `secret` will nonetheless provide all required qualities. |
1805 | | * |
1806 | | * @pre |
1807 | | * - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN |
1808 | | * - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior. |
1809 | | * |
1810 | | * Example code: |
1811 | | * @code{.c} |
1812 | | * #include <stdio.h> |
1813 | | * #include <stdlib.h> |
1814 | | * #include <string.h> |
1815 | | * #define XXH_STATIC_LINKING_ONLY // expose unstable API |
1816 | | * #include "xxhash.h" |
1817 | | * // Hashes argv[2] using the entropy from argv[1]. |
1818 | | * int main(int argc, char* argv[]) |
1819 | | * { |
1820 | | * char secret[XXH3_SECRET_SIZE_MIN]; |
1821 | | * if (argv != 3) { return 1; } |
1822 | | * XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1])); |
1823 | | * XXH64_hash_t h = XXH3_64bits_withSecret( |
1824 | | * argv[2], strlen(argv[2]), |
1825 | | * secret, sizeof(secret) |
1826 | | * ); |
1827 | | * printf("%016llx\n", (unsigned long long) h); |
1828 | | * } |
1829 | | * @endcode |
1830 | | */ |
1831 | | XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize); |
1832 | | |
1833 | | /*! |
1834 | | * @brief Generate the same secret as the _withSeed() variants. |
1835 | | * |
1836 | | * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes |
1837 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1838 | | * |
1839 | | * The generated secret can be used in combination with |
1840 | | *`*_withSecret()` and `_withSecretandSeed()` variants. |
1841 | | * |
1842 | | * Example C++ `std::string` hash class: |
1843 | | * @code{.cpp} |
1844 | | * #include <string> |
1845 | | * #define XXH_STATIC_LINKING_ONLY // expose unstable API |
1846 | | * #include "xxhash.h" |
1847 | | * // Slow, seeds each time |
1848 | | * class HashSlow { |
1849 | | * XXH64_hash_t seed; |
1850 | | * public: |
1851 | | * HashSlow(XXH64_hash_t s) : seed{s} {} |
1852 | | * size_t operator()(const std::string& x) const { |
1853 | | * return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)}; |
1854 | | * } |
1855 | | * }; |
1856 | | * // Fast, caches the seeded secret for future uses. |
1857 | | * class HashFast { |
1858 | | * unsigned char secret[XXH3_SECRET_SIZE_MIN]; |
1859 | | * public: |
1860 | | * HashFast(XXH64_hash_t s) { |
1861 | | * XXH3_generateSecret_fromSeed(secret, seed); |
1862 | | * } |
1863 | | * size_t operator()(const std::string& x) const { |
1864 | | * return size_t{ |
1865 | | * XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret)) |
1866 | | * }; |
1867 | | * } |
1868 | | * }; |
1869 | | * @endcode |
1870 | | */ |
1871 | | XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed); |
1872 | | |
1873 | | /*! |
1874 | | * @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data. |
1875 | | * |
1876 | | * @param data The block of data to be hashed, at least @p len bytes in size. |
1877 | | * @param len The length of @p data, in bytes. |
1878 | | * @param secret The secret data. |
1879 | | * @param secretSize The length of @p secret, in bytes. |
1880 | | * @param seed The 64-bit seed to alter the hash result predictably. |
1881 | | * |
1882 | | * These variants generate hash values using either |
1883 | | * @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes) |
1884 | | * or @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX). |
1885 | | * |
1886 | | * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`. |
1887 | | * `_withSeed()` has to generate the secret on the fly for "large" keys. |
1888 | | * It's fast, but can be perceptible for "not so large" keys (< 1 KB). |
1889 | | * `_withSecret()` has to generate the masks on the fly for "small" keys, |
1890 | | * which requires more instructions than _withSeed() variants. |
1891 | | * Therefore, _withSecretandSeed variant combines the best of both worlds. |
1892 | | * |
1893 | | * When @p secret has been generated by XXH3_generateSecret_fromSeed(), |
1894 | | * this variant produces *exactly* the same results as `_withSeed()` variant, |
1895 | | * hence offering only a pure speed benefit on "large" input, |
1896 | | * by skipping the need to regenerate the secret for every large input. |
1897 | | * |
1898 | | * Another usage scenario is to hash the secret to a 64-bit hash value, |
1899 | | * for example with XXH3_64bits(), which then becomes the seed, |
1900 | | * and then employ both the seed and the secret in _withSecretandSeed(). |
1901 | | * On top of speed, an added benefit is that each bit in the secret |
1902 | | * has a 50% chance to swap each bit in the output, via its impact to the seed. |
1903 | | * |
1904 | | * This is not guaranteed when using the secret directly in "small data" scenarios, |
1905 | | * because only portions of the secret are employed for small data. |
1906 | | */ |
1907 | | XXH_PUBLIC_API XXH_PUREF XXH64_hash_t |
1908 | | XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len, |
1909 | | XXH_NOESCAPE const void* secret, size_t secretSize, |
1910 | | XXH64_hash_t seed); |
1911 | | /*! |
1912 | | * @brief Calculates 128-bit seeded variant of XXH3 hash of @p data. |
1913 | | * |
1914 | | * @param input The block of data to be hashed, at least @p len bytes in size. |
1915 | | * @param length The length of @p data, in bytes. |
1916 | | * @param secret The secret data. |
1917 | | * @param secretSize The length of @p secret, in bytes. |
1918 | | * @param seed64 The 64-bit seed to alter the hash result predictably. |
1919 | | * |
1920 | | * @return @ref XXH_OK on success. |
1921 | | * @return @ref XXH_ERROR on failure. |
1922 | | * |
1923 | | * @see XXH3_64bits_withSecretandSeed() |
1924 | | */ |
1925 | | XXH_PUBLIC_API XXH_PUREF XXH128_hash_t |
1926 | | XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, |
1927 | | XXH_NOESCAPE const void* secret, size_t secretSize, |
1928 | | XXH64_hash_t seed64); |
1929 | | #ifndef XXH_NO_STREAM |
1930 | | /*! |
1931 | | * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. |
1932 | | * |
1933 | | * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). |
1934 | | * @param secret The secret data. |
1935 | | * @param secretSize The length of @p secret, in bytes. |
1936 | | * @param seed64 The 64-bit seed to alter the hash result predictably. |
1937 | | * |
1938 | | * @return @ref XXH_OK on success. |
1939 | | * @return @ref XXH_ERROR on failure. |
1940 | | * |
1941 | | * @see XXH3_64bits_withSecretandSeed() |
1942 | | */ |
1943 | | XXH_PUBLIC_API XXH_errorcode |
1944 | | XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, |
1945 | | XXH_NOESCAPE const void* secret, size_t secretSize, |
1946 | | XXH64_hash_t seed64); |
1947 | | /*! |
1948 | | * @brief Resets an @ref XXH3_state_t with secret data to begin a new hash. |
1949 | | * |
1950 | | * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). |
1951 | | * @param secret The secret data. |
1952 | | * @param secretSize The length of @p secret, in bytes. |
1953 | | * @param seed64 The 64-bit seed to alter the hash result predictably. |
1954 | | * |
1955 | | * @return @ref XXH_OK on success. |
1956 | | * @return @ref XXH_ERROR on failure. |
1957 | | * |
1958 | | * @see XXH3_64bits_withSecretandSeed() |
1959 | | */ |
1960 | | XXH_PUBLIC_API XXH_errorcode |
1961 | | XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, |
1962 | | XXH_NOESCAPE const void* secret, size_t secretSize, |
1963 | | XXH64_hash_t seed64); |
1964 | | #endif /* !XXH_NO_STREAM */ |
1965 | | |
1966 | | #endif /* !XXH_NO_XXH3 */ |
1967 | | #endif /* XXH_NO_LONG_LONG */ |
1968 | | #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) |
1969 | | # define XXH_IMPLEMENTATION |
1970 | | #endif |
1971 | | |
1972 | | #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */ |
1973 | | |
1974 | | |
1975 | | /* ======================================================================== */ |
1976 | | /* ======================================================================== */ |
1977 | | /* ======================================================================== */ |
1978 | | |
1979 | | |
1980 | | /*-********************************************************************** |
1981 | | * xxHash implementation |
1982 | | *-********************************************************************** |
1983 | | * xxHash's implementation used to be hosted inside xxhash.c. |
1984 | | * |
1985 | | * However, inlining requires implementation to be visible to the compiler, |
1986 | | * hence be included alongside the header. |
1987 | | * Previously, implementation was hosted inside xxhash.c, |
1988 | | * which was then #included when inlining was activated. |
1989 | | * This construction created issues with a few build and install systems, |
1990 | | * as it required xxhash.c to be stored in /include directory. |
1991 | | * |
1992 | | * xxHash implementation is now directly integrated within xxhash.h. |
1993 | | * As a consequence, xxhash.c is no longer needed in /include. |
1994 | | * |
1995 | | * xxhash.c is still available and is still useful. |
1996 | | * In a "normal" setup, when xxhash is not inlined, |
1997 | | * xxhash.h only exposes the prototypes and public symbols, |
1998 | | * while xxhash.c can be built into an object file xxhash.o |
1999 | | * which can then be linked into the final binary. |
2000 | | ************************************************************************/ |
2001 | | |
2002 | | #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \ |
2003 | | || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387) |
2004 | | # define XXH_IMPLEM_13a8737387 |
2005 | | |
2006 | | /* ************************************* |
2007 | | * Tuning parameters |
2008 | | ***************************************/ |
2009 | | |
2010 | | /*! |
2011 | | * @defgroup tuning Tuning parameters |
2012 | | * @{ |
2013 | | * |
2014 | | * Various macros to control xxHash's behavior. |
2015 | | */ |
2016 | | #ifdef XXH_DOXYGEN |
2017 | | /*! |
2018 | | * @brief Define this to disable 64-bit code. |
2019 | | * |
2020 | | * Useful if only using the @ref XXH32_family and you have a strict C90 compiler. |
2021 | | */ |
2022 | | # define XXH_NO_LONG_LONG |
2023 | | # undef XXH_NO_LONG_LONG /* don't actually */ |
2024 | | /*! |
2025 | | * @brief Controls how unaligned memory is accessed. |
2026 | | * |
2027 | | * By default, access to unaligned memory is controlled by `memcpy()`, which is |
2028 | | * safe and portable. |
2029 | | * |
2030 | | * Unfortunately, on some target/compiler combinations, the generated assembly |
2031 | | * is sub-optimal. |
2032 | | * |
2033 | | * The below switch allow selection of a different access method |
2034 | | * in the search for improved performance. |
2035 | | * |
2036 | | * @par Possible options: |
2037 | | * |
2038 | | * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy` |
2039 | | * @par |
2040 | | * Use `memcpy()`. Safe and portable. Note that most modern compilers will |
2041 | | * eliminate the function call and treat it as an unaligned access. |
2042 | | * |
2043 | | * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))` |
2044 | | * @par |
2045 | | * Depends on compiler extensions and is therefore not portable. |
2046 | | * This method is safe _if_ your compiler supports it, |
2047 | | * and *generally* as fast or faster than `memcpy`. |
2048 | | * |
2049 | | * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast |
2050 | | * @par |
2051 | | * Casts directly and dereferences. This method doesn't depend on the |
2052 | | * compiler, but it violates the C standard as it directly dereferences an |
2053 | | * unaligned pointer. It can generate buggy code on targets which do not |
2054 | | * support unaligned memory accesses, but in some circumstances, it's the |
2055 | | * only known way to get the most performance. |
2056 | | * |
2057 | | * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift |
2058 | | * @par |
2059 | | * Also portable. This can generate the best code on old compilers which don't |
2060 | | * inline small `memcpy()` calls, and it might also be faster on big-endian |
2061 | | * systems which lack a native byteswap instruction. However, some compilers |
2062 | | * will emit literal byteshifts even if the target supports unaligned access. |
2063 | | * |
2064 | | * |
2065 | | * @warning |
2066 | | * Methods 1 and 2 rely on implementation-defined behavior. Use these with |
2067 | | * care, as what works on one compiler/platform/optimization level may cause |
2068 | | * another to read garbage data or even crash. |
2069 | | * |
2070 | | * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details. |
2071 | | * |
2072 | | * Prefer these methods in priority order (0 > 3 > 1 > 2) |
2073 | | */ |
2074 | | # define XXH_FORCE_MEMORY_ACCESS 0 |
2075 | | |
2076 | | /*! |
2077 | | * @def XXH_SIZE_OPT |
2078 | | * @brief Controls how much xxHash optimizes for size. |
2079 | | * |
2080 | | * xxHash, when compiled, tends to result in a rather large binary size. This |
2081 | | * is mostly due to heavy usage to forced inlining and constant folding of the |
2082 | | * @ref XXH3_family to increase performance. |
2083 | | * |
2084 | | * However, some developers prefer size over speed. This option can |
2085 | | * significantly reduce the size of the generated code. When using the `-Os` |
2086 | | * or `-Oz` options on GCC or Clang, this is defined to 1 by default, |
2087 | | * otherwise it is defined to 0. |
2088 | | * |
2089 | | * Most of these size optimizations can be controlled manually. |
2090 | | * |
2091 | | * This is a number from 0-2. |
2092 | | * - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed |
2093 | | * comes first. |
2094 | | * - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more |
2095 | | * conservative and disables hacks that increase code size. It implies the |
2096 | | * options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0, |
2097 | | * and @ref XXH3_NEON_LANES == 8 if they are not already defined. |
2098 | | * - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible. |
2099 | | * Performance may cry. For example, the single shot functions just use the |
2100 | | * streaming API. |
2101 | | */ |
2102 | | # define XXH_SIZE_OPT 0 |
2103 | | |
2104 | | /*! |
2105 | | * @def XXH_FORCE_ALIGN_CHECK |
2106 | | * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32() |
2107 | | * and XXH64() only). |
2108 | | * |
2109 | | * This is an important performance trick for architectures without decent |
2110 | | * unaligned memory access performance. |
2111 | | * |
2112 | | * It checks for input alignment, and when conditions are met, uses a "fast |
2113 | | * path" employing direct 32-bit/64-bit reads, resulting in _dramatically |
2114 | | * faster_ read speed. |
2115 | | * |
2116 | | * The check costs one initial branch per hash, which is generally negligible, |
2117 | | * but not zero. |
2118 | | * |
2119 | | * Moreover, it's not useful to generate an additional code path if memory |
2120 | | * access uses the same instruction for both aligned and unaligned |
2121 | | * addresses (e.g. x86 and aarch64). |
2122 | | * |
2123 | | * In these cases, the alignment check can be removed by setting this macro to 0. |
2124 | | * Then the code will always use unaligned memory access. |
2125 | | * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips |
2126 | | * which are platforms known to offer good unaligned memory accesses performance. |
2127 | | * |
2128 | | * It is also disabled by default when @ref XXH_SIZE_OPT >= 1. |
2129 | | * |
2130 | | * This option does not affect XXH3 (only XXH32 and XXH64). |
2131 | | */ |
2132 | | # define XXH_FORCE_ALIGN_CHECK 0 |
2133 | | |
2134 | | /*! |
2135 | | * @def XXH_NO_INLINE_HINTS |
2136 | | * @brief When non-zero, sets all functions to `static`. |
2137 | | * |
2138 | | * By default, xxHash tries to force the compiler to inline almost all internal |
2139 | | * functions. |
2140 | | * |
2141 | | * This can usually improve performance due to reduced jumping and improved |
2142 | | * constant folding, but significantly increases the size of the binary which |
2143 | | * might not be favorable. |
2144 | | * |
2145 | | * Additionally, sometimes the forced inlining can be detrimental to performance, |
2146 | | * depending on the architecture. |
2147 | | * |
2148 | | * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the |
2149 | | * compiler full control on whether to inline or not. |
2150 | | * |
2151 | | * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if |
2152 | | * @ref XXH_SIZE_OPT >= 1, this will automatically be defined. |
2153 | | */ |
2154 | | # define XXH_NO_INLINE_HINTS 0 |
2155 | | |
2156 | | /*! |
2157 | | * @def XXH3_INLINE_SECRET |
2158 | | * @brief Determines whether to inline the XXH3 withSecret code. |
2159 | | * |
2160 | | * When the secret size is known, the compiler can improve the performance |
2161 | | * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret(). |
2162 | | * |
2163 | | * However, if the secret size is not known, it doesn't have any benefit. This |
2164 | | * happens when xxHash is compiled into a global symbol. Therefore, if |
2165 | | * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0. |
2166 | | * |
2167 | | * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers |
2168 | | * that are *sometimes* force inline on -Og, and it is impossible to automatically |
2169 | | * detect this optimization level. |
2170 | | */ |
2171 | | # define XXH3_INLINE_SECRET 0 |
2172 | | |
2173 | | /*! |
2174 | | * @def XXH32_ENDJMP |
2175 | | * @brief Whether to use a jump for `XXH32_finalize`. |
2176 | | * |
2177 | | * For performance, `XXH32_finalize` uses multiple branches in the finalizer. |
2178 | | * This is generally preferable for performance, |
2179 | | * but depending on exact architecture, a jmp may be preferable. |
2180 | | * |
2181 | | * This setting is only possibly making a difference for very small inputs. |
2182 | | */ |
2183 | | # define XXH32_ENDJMP 0 |
2184 | | |
2185 | | /*! |
2186 | | * @internal |
2187 | | * @brief Redefines old internal names. |
2188 | | * |
2189 | | * For compatibility with code that uses xxHash's internals before the names |
2190 | | * were changed to improve namespacing. There is no other reason to use this. |
2191 | | */ |
2192 | | # define XXH_OLD_NAMES |
2193 | | # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */ |
2194 | | |
2195 | | /*! |
2196 | | * @def XXH_NO_STREAM |
2197 | | * @brief Disables the streaming API. |
2198 | | * |
2199 | | * When xxHash is not inlined and the streaming functions are not used, disabling |
2200 | | * the streaming functions can improve code size significantly, especially with |
2201 | | * the @ref XXH3_family which tends to make constant folded copies of itself. |
2202 | | */ |
2203 | | # define XXH_NO_STREAM |
2204 | | # undef XXH_NO_STREAM /* don't actually */ |
2205 | | #endif /* XXH_DOXYGEN */ |
2206 | | /*! |
2207 | | * @} |
2208 | | */ |
2209 | | |
2210 | | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
2211 | | /* prefer __packed__ structures (method 1) for GCC |
2212 | | * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy |
2213 | | * which for some reason does unaligned loads. */ |
2214 | | # if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED)) |
2215 | | # define XXH_FORCE_MEMORY_ACCESS 1 |
2216 | | # endif |
2217 | | #endif |
2218 | | |
2219 | | #ifndef XXH_SIZE_OPT |
2220 | | /* default to 1 for -Os or -Oz */ |
2221 | | # if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__) |
2222 | | # define XXH_SIZE_OPT 1 |
2223 | | # else |
2224 | | # define XXH_SIZE_OPT 0 |
2225 | | # endif |
2226 | | #endif |
2227 | | |
2228 | | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
2229 | | /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */ |
2230 | | # if XXH_SIZE_OPT >= 1 || \ |
2231 | | defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \ |
2232 | | || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */ |
2233 | 22.3M | # define XXH_FORCE_ALIGN_CHECK 0 |
2234 | | # else |
2235 | | # define XXH_FORCE_ALIGN_CHECK 1 |
2236 | | # endif |
2237 | | #endif |
2238 | | |
2239 | | #ifndef XXH_NO_INLINE_HINTS |
2240 | | # if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */ |
2241 | | # define XXH_NO_INLINE_HINTS 1 |
2242 | | # else |
2243 | | # define XXH_NO_INLINE_HINTS 0 |
2244 | | # endif |
2245 | | #endif |
2246 | | |
2247 | | #ifndef XXH3_INLINE_SECRET |
2248 | | # if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \ |
2249 | | || !defined(XXH_INLINE_ALL) |
2250 | | # define XXH3_INLINE_SECRET 0 |
2251 | | # else |
2252 | | # define XXH3_INLINE_SECRET 1 |
2253 | | # endif |
2254 | | #endif |
2255 | | |
2256 | | #ifndef XXH32_ENDJMP |
2257 | | /* generally preferable for performance */ |
2258 | 0 | # define XXH32_ENDJMP 0 |
2259 | | #endif |
2260 | | |
2261 | | /*! |
2262 | | * @defgroup impl Implementation |
2263 | | * @{ |
2264 | | */ |
2265 | | |
2266 | | |
2267 | | /* ************************************* |
2268 | | * Includes & Memory related functions |
2269 | | ***************************************/ |
2270 | | #if defined(XXH_NO_STREAM) |
2271 | | /* nothing */ |
2272 | | #elif defined(XXH_NO_STDLIB) |
2273 | | |
2274 | | /* When requesting to disable any mention of stdlib, |
2275 | | * the library loses the ability to invoked malloc / free. |
2276 | | * In practice, it means that functions like `XXH*_createState()` |
2277 | | * will always fail, and return NULL. |
2278 | | * This flag is useful in situations where |
2279 | | * xxhash.h is integrated into some kernel, embedded or limited environment |
2280 | | * without access to dynamic allocation. |
2281 | | */ |
2282 | | |
2283 | | static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; } |
2284 | | static void XXH_free(void* p) { (void)p; } |
2285 | | |
2286 | | #else |
2287 | | |
2288 | | /* |
2289 | | * Modify the local functions below should you wish to use |
2290 | | * different memory routines for malloc() and free() |
2291 | | */ |
2292 | | #include <stdlib.h> |
2293 | | |
2294 | | /*! |
2295 | | * @internal |
2296 | | * @brief Modify this function to use a different routine than malloc(). |
2297 | | */ |
2298 | 0 | static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); } |
2299 | | |
2300 | | /*! |
2301 | | * @internal |
2302 | | * @brief Modify this function to use a different routine than free(). |
2303 | | */ |
2304 | 0 | static void XXH_free(void* p) { free(p); } |
2305 | | |
2306 | | #endif /* XXH_NO_STDLIB */ |
2307 | | |
2308 | | #include <string.h> |
2309 | | |
2310 | | /*! |
2311 | | * @internal |
2312 | | * @brief Modify this function to use a different routine than memcpy(). |
2313 | | */ |
2314 | | static void* XXH_memcpy(void* dest, const void* src, size_t size) |
2315 | 58.7k | { |
2316 | 58.7k | return memcpy(dest,src,size); |
2317 | 58.7k | } |
2318 | | |
2319 | | #include <limits.h> /* ULLONG_MAX */ |
2320 | | |
2321 | | |
2322 | | /* ************************************* |
2323 | | * Compiler Specific Options |
2324 | | ***************************************/ |
2325 | | #ifdef _MSC_VER /* Visual Studio warning fix */ |
2326 | | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
2327 | | #endif |
2328 | | |
2329 | | #if XXH_NO_INLINE_HINTS /* disable inlining hints */ |
2330 | | # if defined(__GNUC__) || defined(__clang__) |
2331 | | # define XXH_FORCE_INLINE static __attribute__((unused)) |
2332 | | # else |
2333 | | # define XXH_FORCE_INLINE static |
2334 | | # endif |
2335 | | # define XXH_NO_INLINE static |
2336 | | /* enable inlining hints */ |
2337 | | #elif defined(__GNUC__) || defined(__clang__) |
2338 | | # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused)) |
2339 | | # define XXH_NO_INLINE static __attribute__((noinline)) |
2340 | | #elif defined(_MSC_VER) /* Visual Studio */ |
2341 | | # define XXH_FORCE_INLINE static __forceinline |
2342 | | # define XXH_NO_INLINE static __declspec(noinline) |
2343 | | #elif defined (__cplusplus) \ |
2344 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */ |
2345 | | # define XXH_FORCE_INLINE static inline |
2346 | | # define XXH_NO_INLINE static |
2347 | | #else |
2348 | | # define XXH_FORCE_INLINE static |
2349 | | # define XXH_NO_INLINE static |
2350 | | #endif |
2351 | | |
2352 | | #if XXH3_INLINE_SECRET |
2353 | | # define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE |
2354 | | #else |
2355 | | # define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE |
2356 | | #endif |
2357 | | |
2358 | | |
2359 | | /* ************************************* |
2360 | | * Debug |
2361 | | ***************************************/ |
2362 | | /*! |
2363 | | * @ingroup tuning |
2364 | | * @def XXH_DEBUGLEVEL |
2365 | | * @brief Sets the debugging level. |
2366 | | * |
2367 | | * XXH_DEBUGLEVEL is expected to be defined externally, typically via the |
2368 | | * compiler's command line options. The value must be a number. |
2369 | | */ |
2370 | | #ifndef XXH_DEBUGLEVEL |
2371 | | # ifdef DEBUGLEVEL /* backwards compat */ |
2372 | | # define XXH_DEBUGLEVEL DEBUGLEVEL |
2373 | | # else |
2374 | | # define XXH_DEBUGLEVEL 0 |
2375 | | # endif |
2376 | | #endif |
2377 | | |
2378 | | #if (XXH_DEBUGLEVEL>=1) |
2379 | | # include <assert.h> /* note: can still be disabled with NDEBUG */ |
2380 | 44.7M | # define XXH_ASSERT(c) assert(c) |
2381 | | #else |
2382 | | # if defined(__INTEL_COMPILER) |
2383 | | # define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c)) |
2384 | | # else |
2385 | | # define XXH_ASSERT(c) XXH_ASSUME(c) |
2386 | | # endif |
2387 | | #endif |
2388 | | |
2389 | | /* note: use after variable declarations */ |
2390 | | #ifndef XXH_STATIC_ASSERT |
2391 | | # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */ |
2392 | 0 | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0) |
2393 | | # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */ |
2394 | | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0) |
2395 | | # else |
2396 | | # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0) |
2397 | | # endif |
2398 | 0 | # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c) |
2399 | | #endif |
2400 | | |
2401 | | /*! |
2402 | | * @internal |
2403 | | * @def XXH_COMPILER_GUARD(var) |
2404 | | * @brief Used to prevent unwanted optimizations for @p var. |
2405 | | * |
2406 | | * It uses an empty GCC inline assembly statement with a register constraint |
2407 | | * which forces @p var into a general purpose register (eg eax, ebx, ecx |
2408 | | * on x86) and marks it as modified. |
2409 | | * |
2410 | | * This is used in a few places to avoid unwanted autovectorization (e.g. |
2411 | | * XXH32_round()). All vectorization we want is explicit via intrinsics, |
2412 | | * and _usually_ isn't wanted elsewhere. |
2413 | | * |
2414 | | * We also use it to prevent unwanted constant folding for AArch64 in |
2415 | | * XXH3_initCustomSecret_scalar(). |
2416 | | */ |
2417 | | #if defined(__GNUC__) || defined(__clang__) |
2418 | | # define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var)) |
2419 | | #else |
2420 | | # define XXH_COMPILER_GUARD(var) ((void)0) |
2421 | | #endif |
2422 | | |
2423 | | /* Specifically for NEON vectors which use the "w" constraint, on |
2424 | | * Clang. */ |
2425 | | #if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__) |
2426 | | # define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var)) |
2427 | | #else |
2428 | | # define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0) |
2429 | | #endif |
2430 | | |
2431 | | /* ************************************* |
2432 | | * Basic Types |
2433 | | ***************************************/ |
2434 | | #if !defined (__VMS) \ |
2435 | | && (defined (__cplusplus) \ |
2436 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
2437 | | # ifdef _AIX |
2438 | | # include <inttypes.h> |
2439 | | # else |
2440 | | # include <stdint.h> |
2441 | | # endif |
2442 | | typedef uint8_t xxh_u8; |
2443 | | #else |
2444 | | typedef unsigned char xxh_u8; |
2445 | | #endif |
2446 | | typedef XXH32_hash_t xxh_u32; |
2447 | | |
2448 | | #ifdef XXH_OLD_NAMES |
2449 | | # warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly" |
2450 | | # define BYTE xxh_u8 |
2451 | | # define U8 xxh_u8 |
2452 | | # define U32 xxh_u32 |
2453 | | #endif |
2454 | | |
2455 | | /* *** Memory access *** */ |
2456 | | |
2457 | | /*! |
2458 | | * @internal |
2459 | | * @fn xxh_u32 XXH_read32(const void* ptr) |
2460 | | * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness. |
2461 | | * |
2462 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
2463 | | * |
2464 | | * @param ptr The pointer to read from. |
2465 | | * @return The 32-bit native endian integer from the bytes at @p ptr. |
2466 | | */ |
2467 | | |
2468 | | /*! |
2469 | | * @internal |
2470 | | * @fn xxh_u32 XXH_readLE32(const void* ptr) |
2471 | | * @brief Reads an unaligned 32-bit little endian integer from @p ptr. |
2472 | | * |
2473 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
2474 | | * |
2475 | | * @param ptr The pointer to read from. |
2476 | | * @return The 32-bit little endian integer from the bytes at @p ptr. |
2477 | | */ |
2478 | | |
2479 | | /*! |
2480 | | * @internal |
2481 | | * @fn xxh_u32 XXH_readBE32(const void* ptr) |
2482 | | * @brief Reads an unaligned 32-bit big endian integer from @p ptr. |
2483 | | * |
2484 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
2485 | | * |
2486 | | * @param ptr The pointer to read from. |
2487 | | * @return The 32-bit big endian integer from the bytes at @p ptr. |
2488 | | */ |
2489 | | |
2490 | | /*! |
2491 | | * @internal |
2492 | | * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align) |
2493 | | * @brief Like @ref XXH_readLE32(), but has an option for aligned reads. |
2494 | | * |
2495 | | * Affected by @ref XXH_FORCE_MEMORY_ACCESS. |
2496 | | * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is |
2497 | | * always @ref XXH_alignment::XXH_unaligned. |
2498 | | * |
2499 | | * @param ptr The pointer to read from. |
2500 | | * @param align Whether @p ptr is aligned. |
2501 | | * @pre |
2502 | | * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte |
2503 | | * aligned. |
2504 | | * @return The 32-bit little endian integer from the bytes at @p ptr. |
2505 | | */ |
2506 | | |
2507 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2508 | | /* |
2509 | | * Manual byteshift. Best for old compilers which don't inline memcpy. |
2510 | | * We actually directly use XXH_readLE32 and XXH_readBE32. |
2511 | | */ |
2512 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
2513 | | |
2514 | | /* |
2515 | | * Force direct memory access. Only works on CPU which support unaligned memory |
2516 | | * access in hardware. |
2517 | | */ |
2518 | | static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; } |
2519 | | |
2520 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
2521 | | |
2522 | | /* |
2523 | | * __attribute__((aligned(1))) is supported by gcc and clang. Originally the |
2524 | | * documentation claimed that it only increased the alignment, but actually it |
2525 | | * can decrease it on gcc, clang, and icc: |
2526 | | * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, |
2527 | | * https://gcc.godbolt.org/z/xYez1j67Y. |
2528 | | */ |
2529 | | #ifdef XXH_OLD_NAMES |
2530 | | typedef union { xxh_u32 u32; } __attribute__((packed)) unalign; |
2531 | | #endif |
2532 | | static xxh_u32 XXH_read32(const void* ptr) |
2533 | 17.7M | { |
2534 | 17.7M | typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32; |
2535 | 17.7M | return *((const xxh_unalign32*)ptr); |
2536 | 17.7M | } |
2537 | | |
2538 | | #else |
2539 | | |
2540 | | /* |
2541 | | * Portable and safe solution. Generally efficient. |
2542 | | * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
2543 | | */ |
2544 | | static xxh_u32 XXH_read32(const void* memPtr) |
2545 | | { |
2546 | | xxh_u32 val; |
2547 | | XXH_memcpy(&val, memPtr, sizeof(val)); |
2548 | | return val; |
2549 | | } |
2550 | | |
2551 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
2552 | | |
2553 | | |
2554 | | /* *** Endianness *** */ |
2555 | | |
2556 | | /*! |
2557 | | * @ingroup tuning |
2558 | | * @def XXH_CPU_LITTLE_ENDIAN |
2559 | | * @brief Whether the target is little endian. |
2560 | | * |
2561 | | * Defined to 1 if the target is little endian, or 0 if it is big endian. |
2562 | | * It can be defined externally, for example on the compiler command line. |
2563 | | * |
2564 | | * If it is not defined, |
2565 | | * a runtime check (which is usually constant folded) is used instead. |
2566 | | * |
2567 | | * @note |
2568 | | * This is not necessarily defined to an integer constant. |
2569 | | * |
2570 | | * @see XXH_isLittleEndian() for the runtime check. |
2571 | | */ |
2572 | | #ifndef XXH_CPU_LITTLE_ENDIAN |
2573 | | /* |
2574 | | * Try to detect endianness automatically, to avoid the nonstandard behavior |
2575 | | * in `XXH_isLittleEndian()` |
2576 | | */ |
2577 | | # if defined(_WIN32) /* Windows is always little endian */ \ |
2578 | | || defined(__LITTLE_ENDIAN__) \ |
2579 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
2580 | 1.11G | # define XXH_CPU_LITTLE_ENDIAN 1 |
2581 | | # elif defined(__BIG_ENDIAN__) \ |
2582 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
2583 | | # define XXH_CPU_LITTLE_ENDIAN 0 |
2584 | | # else |
2585 | | /*! |
2586 | | * @internal |
2587 | | * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN. |
2588 | | * |
2589 | | * Most compilers will constant fold this. |
2590 | | */ |
2591 | | static int XXH_isLittleEndian(void) |
2592 | | { |
2593 | | /* |
2594 | | * Portable and well-defined behavior. |
2595 | | * Don't use static: it is detrimental to performance. |
2596 | | */ |
2597 | | const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; |
2598 | | return one.c[0]; |
2599 | | } |
2600 | | # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
2601 | | # endif |
2602 | | #endif |
2603 | | |
2604 | | |
2605 | | |
2606 | | |
2607 | | /* **************************************** |
2608 | | * Compiler-specific Functions and Macros |
2609 | | ******************************************/ |
2610 | | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
2611 | | |
2612 | | #ifdef __has_builtin |
2613 | | # define XXH_HAS_BUILTIN(x) __has_builtin(x) |
2614 | | #else |
2615 | | # define XXH_HAS_BUILTIN(x) 0 |
2616 | | #endif |
2617 | | |
2618 | | |
2619 | | |
2620 | | /* |
2621 | | * C23 and future versions have standard "unreachable()". |
2622 | | * Once it has been implemented reliably we can add it as an |
2623 | | * additional case: |
2624 | | * |
2625 | | * ``` |
2626 | | * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) |
2627 | | * # include <stddef.h> |
2628 | | * # ifdef unreachable |
2629 | | * # define XXH_UNREACHABLE() unreachable() |
2630 | | * # endif |
2631 | | * #endif |
2632 | | * ``` |
2633 | | * |
2634 | | * Note C++23 also has std::unreachable() which can be detected |
2635 | | * as follows: |
2636 | | * ``` |
2637 | | * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) |
2638 | | * # include <utility> |
2639 | | * # define XXH_UNREACHABLE() std::unreachable() |
2640 | | * #endif |
2641 | | * ``` |
2642 | | * NB: `__cpp_lib_unreachable` is defined in the `<version>` header. |
2643 | | * We don't use that as including `<utility>` in `extern "C"` blocks |
2644 | | * doesn't work on GCC12 |
2645 | | */ |
2646 | | |
2647 | | #if XXH_HAS_BUILTIN(__builtin_unreachable) |
2648 | | # define XXH_UNREACHABLE() __builtin_unreachable() |
2649 | | |
2650 | | #elif defined(_MSC_VER) |
2651 | | # define XXH_UNREACHABLE() __assume(0) |
2652 | | |
2653 | | #else |
2654 | | # define XXH_UNREACHABLE() |
2655 | | #endif |
2656 | | |
2657 | | #if XXH_HAS_BUILTIN(__builtin_assume) |
2658 | | # define XXH_ASSUME(c) __builtin_assume(c) |
2659 | | #else |
2660 | | # define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); } |
2661 | | #endif |
2662 | | |
2663 | | /*! |
2664 | | * @internal |
2665 | | * @def XXH_rotl32(x,r) |
2666 | | * @brief 32-bit rotate left. |
2667 | | * |
2668 | | * @param x The 32-bit integer to be rotated. |
2669 | | * @param r The number of bits to rotate. |
2670 | | * @pre |
2671 | | * @p r > 0 && @p r < 32 |
2672 | | * @note |
2673 | | * @p x and @p r may be evaluated multiple times. |
2674 | | * @return The rotated result. |
2675 | | */ |
2676 | | #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \ |
2677 | | && XXH_HAS_BUILTIN(__builtin_rotateleft64) |
2678 | 0 | # define XXH_rotl32 __builtin_rotateleft32 |
2679 | 1.18G | # define XXH_rotl64 __builtin_rotateleft64 |
2680 | | /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */ |
2681 | | #elif defined(_MSC_VER) |
2682 | | # define XXH_rotl32(x,r) _rotl(x,r) |
2683 | | # define XXH_rotl64(x,r) _rotl64(x,r) |
2684 | | #else |
2685 | | # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
2686 | | # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r)))) |
2687 | | #endif |
2688 | | |
2689 | | /*! |
2690 | | * @internal |
2691 | | * @fn xxh_u32 XXH_swap32(xxh_u32 x) |
2692 | | * @brief A 32-bit byteswap. |
2693 | | * |
2694 | | * @param x The 32-bit integer to byteswap. |
2695 | | * @return @p x, byteswapped. |
2696 | | */ |
2697 | | #if defined(_MSC_VER) /* Visual Studio */ |
2698 | | # define XXH_swap32 _byteswap_ulong |
2699 | | #elif XXH_GCC_VERSION >= 403 |
2700 | | # define XXH_swap32 __builtin_bswap32 |
2701 | | #else |
2702 | | static xxh_u32 XXH_swap32 (xxh_u32 x) |
2703 | 0 | { |
2704 | 0 | return ((x << 24) & 0xff000000 ) | |
2705 | 0 | ((x << 8) & 0x00ff0000 ) | |
2706 | 0 | ((x >> 8) & 0x0000ff00 ) | |
2707 | 0 | ((x >> 24) & 0x000000ff ); |
2708 | 0 | } |
2709 | | #endif |
2710 | | |
2711 | | |
2712 | | /* *************************** |
2713 | | * Memory reads |
2714 | | *****************************/ |
2715 | | |
2716 | | /*! |
2717 | | * @internal |
2718 | | * @brief Enum to indicate whether a pointer is aligned. |
2719 | | */ |
2720 | | typedef enum { |
2721 | | XXH_aligned, /*!< Aligned */ |
2722 | | XXH_unaligned /*!< Possibly unaligned */ |
2723 | | } XXH_alignment; |
2724 | | |
2725 | | /* |
2726 | | * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. |
2727 | | * |
2728 | | * This is ideal for older compilers which don't inline memcpy. |
2729 | | */ |
2730 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
2731 | | |
2732 | | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr) |
2733 | | { |
2734 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2735 | | return bytePtr[0] |
2736 | | | ((xxh_u32)bytePtr[1] << 8) |
2737 | | | ((xxh_u32)bytePtr[2] << 16) |
2738 | | | ((xxh_u32)bytePtr[3] << 24); |
2739 | | } |
2740 | | |
2741 | | XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr) |
2742 | | { |
2743 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
2744 | | return bytePtr[3] |
2745 | | | ((xxh_u32)bytePtr[2] << 8) |
2746 | | | ((xxh_u32)bytePtr[1] << 16) |
2747 | | | ((xxh_u32)bytePtr[0] << 24); |
2748 | | } |
2749 | | |
2750 | | #else |
2751 | | XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) |
2752 | 17.7M | { |
2753 | 17.7M | return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
2754 | 17.7M | } |
2755 | | |
2756 | | static xxh_u32 XXH_readBE32(const void* ptr) |
2757 | 0 | { |
2758 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
2759 | 0 | } |
2760 | | #endif |
2761 | | |
2762 | | XXH_FORCE_INLINE xxh_u32 |
2763 | | XXH_readLE32_align(const void* ptr, XXH_alignment align) |
2764 | 17.7M | { |
2765 | 17.7M | if (align==XXH_unaligned) { |
2766 | 17.7M | return XXH_readLE32(ptr); |
2767 | 17.7M | } else { |
2768 | 18.9k | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr); |
2769 | 18.9k | } |
2770 | 17.7M | } |
2771 | | |
2772 | | |
2773 | | /* ************************************* |
2774 | | * Misc |
2775 | | ***************************************/ |
2776 | | /*! @ingroup public */ |
2777 | 0 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
2778 | | |
2779 | | |
2780 | | /* ******************************************************************* |
2781 | | * 32-bit hash functions |
2782 | | *********************************************************************/ |
2783 | | /*! |
2784 | | * @} |
2785 | | * @defgroup XXH32_impl XXH32 implementation |
2786 | | * @ingroup impl |
2787 | | * |
2788 | | * Details on the XXH32 implementation. |
2789 | | * @{ |
2790 | | */ |
2791 | | /* #define instead of static const, to be used as initializers */ |
2792 | 0 | #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */ |
2793 | 0 | #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */ |
2794 | 0 | #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */ |
2795 | 0 | #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */ |
2796 | 0 | #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */ |
2797 | | |
2798 | | #ifdef XXH_OLD_NAMES |
2799 | | # define PRIME32_1 XXH_PRIME32_1 |
2800 | | # define PRIME32_2 XXH_PRIME32_2 |
2801 | | # define PRIME32_3 XXH_PRIME32_3 |
2802 | | # define PRIME32_4 XXH_PRIME32_4 |
2803 | | # define PRIME32_5 XXH_PRIME32_5 |
2804 | | #endif |
2805 | | |
2806 | | /*! |
2807 | | * @internal |
2808 | | * @brief Normal stripe processing routine. |
2809 | | * |
2810 | | * This shuffles the bits so that any bit from @p input impacts several bits in |
2811 | | * @p acc. |
2812 | | * |
2813 | | * @param acc The accumulator lane. |
2814 | | * @param input The stripe of input to mix. |
2815 | | * @return The mixed accumulator lane. |
2816 | | */ |
2817 | | static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input) |
2818 | 0 | { |
2819 | 0 | acc += input * XXH_PRIME32_2; |
2820 | 0 | acc = XXH_rotl32(acc, 13); |
2821 | 0 | acc *= XXH_PRIME32_1; |
2822 | | #if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
2823 | | /* |
2824 | | * UGLY HACK: |
2825 | | * A compiler fence is the only thing that prevents GCC and Clang from |
2826 | | * autovectorizing the XXH32 loop (pragmas and attributes don't work for some |
2827 | | * reason) without globally disabling SSE4.1. |
2828 | | * |
2829 | | * The reason we want to avoid vectorization is because despite working on |
2830 | | * 4 integers at a time, there are multiple factors slowing XXH32 down on |
2831 | | * SSE4: |
2832 | | * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on |
2833 | | * newer chips!) making it slightly slower to multiply four integers at |
2834 | | * once compared to four integers independently. Even when pmulld was |
2835 | | * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE |
2836 | | * just to multiply unless doing a long operation. |
2837 | | * |
2838 | | * - Four instructions are required to rotate, |
2839 | | * movqda tmp, v // not required with VEX encoding |
2840 | | * pslld tmp, 13 // tmp <<= 13 |
2841 | | * psrld v, 19 // x >>= 19 |
2842 | | * por v, tmp // x |= tmp |
2843 | | * compared to one for scalar: |
2844 | | * roll v, 13 // reliably fast across the board |
2845 | | * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason |
2846 | | * |
2847 | | * - Instruction level parallelism is actually more beneficial here because |
2848 | | * the SIMD actually serializes this operation: While v1 is rotating, v2 |
2849 | | * can load data, while v3 can multiply. SSE forces them to operate |
2850 | | * together. |
2851 | | * |
2852 | | * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing |
2853 | | * the loop. NEON is only faster on the A53, and with the newer cores, it is less |
2854 | | * than half the speed. |
2855 | | * |
2856 | | * Additionally, this is used on WASM SIMD128 because it JITs to the same |
2857 | | * SIMD instructions and has the same issue. |
2858 | | */ |
2859 | | XXH_COMPILER_GUARD(acc); |
2860 | | #endif |
2861 | 0 | return acc; |
2862 | 0 | } |
2863 | | |
2864 | | /*! |
2865 | | * @internal |
2866 | | * @brief Mixes all bits to finalize the hash. |
2867 | | * |
2868 | | * The final mix ensures that all input bits have a chance to impact any bit in |
2869 | | * the output digest, resulting in an unbiased distribution. |
2870 | | * |
2871 | | * @param hash The hash to avalanche. |
2872 | | * @return The avalanched hash. |
2873 | | */ |
2874 | | static xxh_u32 XXH32_avalanche(xxh_u32 hash) |
2875 | 0 | { |
2876 | 0 | hash ^= hash >> 15; |
2877 | 0 | hash *= XXH_PRIME32_2; |
2878 | 0 | hash ^= hash >> 13; |
2879 | 0 | hash *= XXH_PRIME32_3; |
2880 | 0 | hash ^= hash >> 16; |
2881 | 0 | return hash; |
2882 | 0 | } |
2883 | | |
2884 | 17.7M | #define XXH_get32bits(p) XXH_readLE32_align(p, align) |
2885 | | |
2886 | | /*! |
2887 | | * @internal |
2888 | | * @brief Processes the last 0-15 bytes of @p ptr. |
2889 | | * |
2890 | | * There may be up to 15 bytes remaining to consume from the input. |
2891 | | * This final stage will digest them to ensure that all input bytes are present |
2892 | | * in the final mix. |
2893 | | * |
2894 | | * @param hash The hash to finalize. |
2895 | | * @param ptr The pointer to the remaining input. |
2896 | | * @param len The remaining length, modulo 16. |
2897 | | * @param align Whether @p ptr is aligned. |
2898 | | * @return The finalized hash. |
2899 | | * @see XXH64_finalize(). |
2900 | | */ |
2901 | | static XXH_PUREF xxh_u32 |
2902 | | XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) |
2903 | 0 | { |
2904 | 0 | #define XXH_PROCESS1 do { \ |
2905 | 0 | hash += (*ptr++) * XXH_PRIME32_5; \ |
2906 | 0 | hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \ |
2907 | 0 | } while (0) |
2908 | |
|
2909 | 0 | #define XXH_PROCESS4 do { \ |
2910 | 0 | hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \ |
2911 | 0 | ptr += 4; \ |
2912 | 0 | hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \ |
2913 | 0 | } while (0) |
2914 | |
|
2915 | 0 | if (ptr==NULL) XXH_ASSERT(len == 0); |
2916 | | |
2917 | | /* Compact rerolled version; generally faster */ |
2918 | 0 | if (!XXH32_ENDJMP) { |
2919 | 0 | len &= 15; |
2920 | 0 | while (len >= 4) { |
2921 | 0 | XXH_PROCESS4; |
2922 | 0 | len -= 4; |
2923 | 0 | } |
2924 | 0 | while (len > 0) { |
2925 | 0 | XXH_PROCESS1; |
2926 | 0 | --len; |
2927 | 0 | } |
2928 | 0 | return XXH32_avalanche(hash); |
2929 | 0 | } else { |
2930 | 0 | switch(len&15) /* or switch(bEnd - p) */ { |
2931 | 0 | case 12: XXH_PROCESS4; |
2932 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2933 | 0 | case 8: XXH_PROCESS4; |
2934 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2935 | 0 | case 4: XXH_PROCESS4; |
2936 | 0 | return XXH32_avalanche(hash); |
2937 | | |
2938 | 0 | case 13: XXH_PROCESS4; |
2939 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2940 | 0 | case 9: XXH_PROCESS4; |
2941 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2942 | 0 | case 5: XXH_PROCESS4; |
2943 | 0 | XXH_PROCESS1; |
2944 | 0 | return XXH32_avalanche(hash); |
2945 | | |
2946 | 0 | case 14: XXH_PROCESS4; |
2947 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2948 | 0 | case 10: XXH_PROCESS4; |
2949 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2950 | 0 | case 6: XXH_PROCESS4; |
2951 | 0 | XXH_PROCESS1; |
2952 | 0 | XXH_PROCESS1; |
2953 | 0 | return XXH32_avalanche(hash); |
2954 | | |
2955 | 0 | case 15: XXH_PROCESS4; |
2956 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2957 | 0 | case 11: XXH_PROCESS4; |
2958 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2959 | 0 | case 7: XXH_PROCESS4; |
2960 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2961 | 0 | case 3: XXH_PROCESS1; |
2962 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2963 | 0 | case 2: XXH_PROCESS1; |
2964 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2965 | 0 | case 1: XXH_PROCESS1; |
2966 | 0 | XXH_FALLTHROUGH; /* fallthrough */ |
2967 | 0 | case 0: return XXH32_avalanche(hash); |
2968 | 0 | } |
2969 | 0 | XXH_ASSERT(0); |
2970 | 0 | return hash; /* reaching this point is deemed impossible */ |
2971 | 0 | } |
2972 | 0 | } |
2973 | | |
2974 | | #ifdef XXH_OLD_NAMES |
2975 | | # define PROCESS1 XXH_PROCESS1 |
2976 | | # define PROCESS4 XXH_PROCESS4 |
2977 | | #else |
2978 | | # undef XXH_PROCESS1 |
2979 | | # undef XXH_PROCESS4 |
2980 | | #endif |
2981 | | |
2982 | | /*! |
2983 | | * @internal |
2984 | | * @brief The implementation for @ref XXH32(). |
2985 | | * |
2986 | | * @param input , len , seed Directly passed from @ref XXH32(). |
2987 | | * @param align Whether @p input is aligned. |
2988 | | * @return The calculated hash. |
2989 | | */ |
2990 | | XXH_FORCE_INLINE XXH_PUREF xxh_u32 |
2991 | | XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align) |
2992 | 0 | { |
2993 | 0 | xxh_u32 h32; |
2994 | |
|
2995 | 0 | if (input==NULL) XXH_ASSERT(len == 0); |
2996 | | |
2997 | 0 | if (len>=16) { |
2998 | 0 | const xxh_u8* const bEnd = input + len; |
2999 | 0 | const xxh_u8* const limit = bEnd - 15; |
3000 | 0 | xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
3001 | 0 | xxh_u32 v2 = seed + XXH_PRIME32_2; |
3002 | 0 | xxh_u32 v3 = seed + 0; |
3003 | 0 | xxh_u32 v4 = seed - XXH_PRIME32_1; |
3004 | |
|
3005 | 0 | do { |
3006 | 0 | v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4; |
3007 | 0 | v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4; |
3008 | 0 | v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4; |
3009 | 0 | v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4; |
3010 | 0 | } while (input < limit); |
3011 | |
|
3012 | 0 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) |
3013 | 0 | + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
3014 | 0 | } else { |
3015 | 0 | h32 = seed + XXH_PRIME32_5; |
3016 | 0 | } |
3017 | |
|
3018 | 0 | h32 += (xxh_u32)len; |
3019 | |
|
3020 | 0 | return XXH32_finalize(h32, input, len&15, align); |
3021 | 0 | } |
3022 | | |
3023 | | /*! @ingroup XXH32_family */ |
3024 | | XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed) |
3025 | 0 | { |
3026 | | #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 |
3027 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
3028 | | XXH32_state_t state; |
3029 | | XXH32_reset(&state, seed); |
3030 | | XXH32_update(&state, (const xxh_u8*)input, len); |
3031 | | return XXH32_digest(&state); |
3032 | | #else |
3033 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
3034 | 0 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
3035 | 0 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
3036 | 0 | } } |
3037 | | |
3038 | 0 | return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
3039 | 0 | #endif |
3040 | 0 | } |
3041 | | |
3042 | | |
3043 | | |
3044 | | /******* Hash streaming *******/ |
3045 | | #ifndef XXH_NO_STREAM |
3046 | | /*! @ingroup XXH32_family */ |
3047 | | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
3048 | 0 | { |
3049 | 0 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
3050 | 0 | } |
3051 | | /*! @ingroup XXH32_family */ |
3052 | | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
3053 | 0 | { |
3054 | 0 | XXH_free(statePtr); |
3055 | 0 | return XXH_OK; |
3056 | 0 | } |
3057 | | |
3058 | | /*! @ingroup XXH32_family */ |
3059 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
3060 | 0 | { |
3061 | 0 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
3062 | 0 | } |
3063 | | |
3064 | | /*! @ingroup XXH32_family */ |
3065 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed) |
3066 | 0 | { |
3067 | 0 | XXH_ASSERT(statePtr != NULL); |
3068 | 0 | memset(statePtr, 0, sizeof(*statePtr)); |
3069 | 0 | statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2; |
3070 | 0 | statePtr->v[1] = seed + XXH_PRIME32_2; |
3071 | 0 | statePtr->v[2] = seed + 0; |
3072 | 0 | statePtr->v[3] = seed - XXH_PRIME32_1; |
3073 | 0 | return XXH_OK; |
3074 | 0 | } |
3075 | | |
3076 | | |
3077 | | /*! @ingroup XXH32_family */ |
3078 | | XXH_PUBLIC_API XXH_errorcode |
3079 | | XXH32_update(XXH32_state_t* state, const void* input, size_t len) |
3080 | 0 | { |
3081 | 0 | if (input==NULL) { |
3082 | 0 | XXH_ASSERT(len == 0); |
3083 | 0 | return XXH_OK; |
3084 | 0 | } |
3085 | | |
3086 | 0 | { const xxh_u8* p = (const xxh_u8*)input; |
3087 | 0 | const xxh_u8* const bEnd = p + len; |
3088 | |
|
3089 | 0 | state->total_len_32 += (XXH32_hash_t)len; |
3090 | 0 | state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16)); |
3091 | |
|
3092 | 0 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
3093 | 0 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len); |
3094 | 0 | state->memsize += (XXH32_hash_t)len; |
3095 | 0 | return XXH_OK; |
3096 | 0 | } |
3097 | | |
3098 | 0 | if (state->memsize) { /* some data left from previous update */ |
3099 | 0 | XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize); |
3100 | 0 | { const xxh_u32* p32 = state->mem32; |
3101 | 0 | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++; |
3102 | 0 | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++; |
3103 | 0 | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++; |
3104 | 0 | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32)); |
3105 | 0 | } |
3106 | 0 | p += 16-state->memsize; |
3107 | 0 | state->memsize = 0; |
3108 | 0 | } |
3109 | |
|
3110 | 0 | if (p <= bEnd-16) { |
3111 | 0 | const xxh_u8* const limit = bEnd - 16; |
3112 | |
|
3113 | 0 | do { |
3114 | 0 | state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4; |
3115 | 0 | state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4; |
3116 | 0 | state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4; |
3117 | 0 | state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4; |
3118 | 0 | } while (p<=limit); |
3119 | |
|
3120 | 0 | } |
3121 | |
|
3122 | 0 | if (p < bEnd) { |
3123 | 0 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
3124 | 0 | state->memsize = (unsigned)(bEnd-p); |
3125 | 0 | } |
3126 | 0 | } |
3127 | | |
3128 | 0 | return XXH_OK; |
3129 | 0 | } |
3130 | | |
3131 | | |
3132 | | /*! @ingroup XXH32_family */ |
3133 | | XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state) |
3134 | 0 | { |
3135 | 0 | xxh_u32 h32; |
3136 | |
|
3137 | 0 | if (state->large_len) { |
3138 | 0 | h32 = XXH_rotl32(state->v[0], 1) |
3139 | 0 | + XXH_rotl32(state->v[1], 7) |
3140 | 0 | + XXH_rotl32(state->v[2], 12) |
3141 | 0 | + XXH_rotl32(state->v[3], 18); |
3142 | 0 | } else { |
3143 | 0 | h32 = state->v[2] /* == seed */ + XXH_PRIME32_5; |
3144 | 0 | } |
3145 | |
|
3146 | 0 | h32 += state->total_len_32; |
3147 | |
|
3148 | 0 | return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned); |
3149 | 0 | } |
3150 | | #endif /* !XXH_NO_STREAM */ |
3151 | | |
3152 | | /******* Canonical representation *******/ |
3153 | | |
3154 | | /*! @ingroup XXH32_family */ |
3155 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
3156 | 0 | { |
3157 | 0 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
3158 | 0 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
3159 | 0 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
3160 | 0 | } |
3161 | | /*! @ingroup XXH32_family */ |
3162 | | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
3163 | 0 | { |
3164 | 0 | return XXH_readBE32(src); |
3165 | 0 | } |
3166 | | |
3167 | | |
3168 | | #ifndef XXH_NO_LONG_LONG |
3169 | | |
3170 | | /* ******************************************************************* |
3171 | | * 64-bit hash functions |
3172 | | *********************************************************************/ |
3173 | | /*! |
3174 | | * @} |
3175 | | * @ingroup impl |
3176 | | * @{ |
3177 | | */ |
3178 | | /******* Memory access *******/ |
3179 | | |
3180 | | typedef XXH64_hash_t xxh_u64; |
3181 | | |
3182 | | #ifdef XXH_OLD_NAMES |
3183 | | # define U64 xxh_u64 |
3184 | | #endif |
3185 | | |
3186 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
3187 | | /* |
3188 | | * Manual byteshift. Best for old compilers which don't inline memcpy. |
3189 | | * We actually directly use XXH_readLE64 and XXH_readBE64. |
3190 | | */ |
3191 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
3192 | | |
3193 | | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
3194 | | static xxh_u64 XXH_read64(const void* memPtr) |
3195 | | { |
3196 | | return *(const xxh_u64*) memPtr; |
3197 | | } |
3198 | | |
3199 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
3200 | | |
3201 | | /* |
3202 | | * __attribute__((aligned(1))) is supported by gcc and clang. Originally the |
3203 | | * documentation claimed that it only increased the alignment, but actually it |
3204 | | * can decrease it on gcc, clang, and icc: |
3205 | | * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502, |
3206 | | * https://gcc.godbolt.org/z/xYez1j67Y. |
3207 | | */ |
3208 | | #ifdef XXH_OLD_NAMES |
3209 | | typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64; |
3210 | | #endif |
3211 | | static xxh_u64 XXH_read64(const void* ptr) |
3212 | 1.10G | { |
3213 | 1.10G | typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64; |
3214 | 1.10G | return *((const xxh_unalign64*)ptr); |
3215 | 1.10G | } |
3216 | | |
3217 | | #else |
3218 | | |
3219 | | /* |
3220 | | * Portable and safe solution. Generally efficient. |
3221 | | * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html |
3222 | | */ |
3223 | | static xxh_u64 XXH_read64(const void* memPtr) |
3224 | | { |
3225 | | xxh_u64 val; |
3226 | | XXH_memcpy(&val, memPtr, sizeof(val)); |
3227 | | return val; |
3228 | | } |
3229 | | |
3230 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
3231 | | |
3232 | | #if defined(_MSC_VER) /* Visual Studio */ |
3233 | | # define XXH_swap64 _byteswap_uint64 |
3234 | | #elif XXH_GCC_VERSION >= 403 |
3235 | | # define XXH_swap64 __builtin_bswap64 |
3236 | | #else |
3237 | | static xxh_u64 XXH_swap64(xxh_u64 x) |
3238 | 0 | { |
3239 | 0 | return ((x << 56) & 0xff00000000000000ULL) | |
3240 | 0 | ((x << 40) & 0x00ff000000000000ULL) | |
3241 | 0 | ((x << 24) & 0x0000ff0000000000ULL) | |
3242 | 0 | ((x << 8) & 0x000000ff00000000ULL) | |
3243 | 0 | ((x >> 8) & 0x00000000ff000000ULL) | |
3244 | 0 | ((x >> 24) & 0x0000000000ff0000ULL) | |
3245 | 0 | ((x >> 40) & 0x000000000000ff00ULL) | |
3246 | 0 | ((x >> 56) & 0x00000000000000ffULL); |
3247 | 0 | } |
3248 | | #endif |
3249 | | |
3250 | | |
3251 | | /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */ |
3252 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3)) |
3253 | | |
3254 | | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr) |
3255 | | { |
3256 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
3257 | | return bytePtr[0] |
3258 | | | ((xxh_u64)bytePtr[1] << 8) |
3259 | | | ((xxh_u64)bytePtr[2] << 16) |
3260 | | | ((xxh_u64)bytePtr[3] << 24) |
3261 | | | ((xxh_u64)bytePtr[4] << 32) |
3262 | | | ((xxh_u64)bytePtr[5] << 40) |
3263 | | | ((xxh_u64)bytePtr[6] << 48) |
3264 | | | ((xxh_u64)bytePtr[7] << 56); |
3265 | | } |
3266 | | |
3267 | | XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr) |
3268 | | { |
3269 | | const xxh_u8* bytePtr = (const xxh_u8 *)memPtr; |
3270 | | return bytePtr[7] |
3271 | | | ((xxh_u64)bytePtr[6] << 8) |
3272 | | | ((xxh_u64)bytePtr[5] << 16) |
3273 | | | ((xxh_u64)bytePtr[4] << 24) |
3274 | | | ((xxh_u64)bytePtr[3] << 32) |
3275 | | | ((xxh_u64)bytePtr[2] << 40) |
3276 | | | ((xxh_u64)bytePtr[1] << 48) |
3277 | | | ((xxh_u64)bytePtr[0] << 56); |
3278 | | } |
3279 | | |
3280 | | #else |
3281 | | XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) |
3282 | 1.10G | { |
3283 | 1.10G | return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
3284 | 1.10G | } |
3285 | | |
3286 | | static xxh_u64 XXH_readBE64(const void* ptr) |
3287 | 0 | { |
3288 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
3289 | 0 | } |
3290 | | #endif |
3291 | | |
3292 | | XXH_FORCE_INLINE xxh_u64 |
3293 | | XXH_readLE64_align(const void* ptr, XXH_alignment align) |
3294 | 1.01G | { |
3295 | 1.01G | if (align==XXH_unaligned) |
3296 | 1.01G | return XXH_readLE64(ptr); |
3297 | 59.7k | else |
3298 | 59.7k | return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr); |
3299 | 1.01G | } |
3300 | | |
3301 | | |
3302 | | /******* xxh64 *******/ |
3303 | | /*! |
3304 | | * @} |
3305 | | * @defgroup XXH64_impl XXH64 implementation |
3306 | | * @ingroup impl |
3307 | | * |
3308 | | * Details on the XXH64 implementation. |
3309 | | * @{ |
3310 | | */ |
3311 | | /* #define rather that static const, to be used as initializers */ |
3312 | 1.20G | #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */ |
3313 | 1.17G | #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */ |
3314 | 40.0M | #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */ |
3315 | 37.2M | #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */ |
3316 | 27.3M | #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */ |
3317 | | |
3318 | | #ifdef XXH_OLD_NAMES |
3319 | | # define PRIME64_1 XXH_PRIME64_1 |
3320 | | # define PRIME64_2 XXH_PRIME64_2 |
3321 | | # define PRIME64_3 XXH_PRIME64_3 |
3322 | | # define PRIME64_4 XXH_PRIME64_4 |
3323 | | # define PRIME64_5 XXH_PRIME64_5 |
3324 | | #endif |
3325 | | |
3326 | | /*! @copydoc XXH32_round */ |
3327 | | static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input) |
3328 | 1.12G | { |
3329 | 1.12G | acc += input * XXH_PRIME64_2; |
3330 | 1.12G | acc = XXH_rotl64(acc, 31); |
3331 | 1.12G | acc *= XXH_PRIME64_1; |
3332 | | #if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE) |
3333 | | /* |
3334 | | * DISABLE AUTOVECTORIZATION: |
3335 | | * A compiler fence is used to prevent GCC and Clang from |
3336 | | * autovectorizing the XXH64 loop (pragmas and attributes don't work for some |
3337 | | * reason) without globally disabling AVX512. |
3338 | | * |
3339 | | * Autovectorization of XXH64 tends to be detrimental, |
3340 | | * though the exact outcome may change depending on exact cpu and compiler version. |
3341 | | * For information, it has been reported as detrimental for Skylake-X, |
3342 | | * but possibly beneficial for Zen4. |
3343 | | * |
3344 | | * The default is to disable auto-vectorization, |
3345 | | * but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable. |
3346 | | */ |
3347 | | XXH_COMPILER_GUARD(acc); |
3348 | | #endif |
3349 | 1.12G | return acc; |
3350 | 1.12G | } |
3351 | | |
3352 | | static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val) |
3353 | 22.5M | { |
3354 | 22.5M | val = XXH64_round(0, val); |
3355 | 22.5M | acc ^= val; |
3356 | 22.5M | acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4; |
3357 | 22.5M | return acc; |
3358 | 22.5M | } |
3359 | | |
3360 | | /*! @copydoc XXH32_avalanche */ |
3361 | | static xxh_u64 XXH64_avalanche(xxh_u64 hash) |
3362 | 22.3M | { |
3363 | 22.3M | hash ^= hash >> 33; |
3364 | 22.3M | hash *= XXH_PRIME64_2; |
3365 | 22.3M | hash ^= hash >> 29; |
3366 | 22.3M | hash *= XXH_PRIME64_3; |
3367 | 22.3M | hash ^= hash >> 32; |
3368 | 22.3M | return hash; |
3369 | 22.3M | } |
3370 | | |
3371 | | |
3372 | 1.01G | #define XXH_get64bits(p) XXH_readLE64_align(p, align) |
3373 | | |
3374 | | /*! |
3375 | | * @internal |
3376 | | * @brief Processes the last 0-31 bytes of @p ptr. |
3377 | | * |
3378 | | * There may be up to 31 bytes remaining to consume from the input. |
3379 | | * This final stage will digest them to ensure that all input bytes are present |
3380 | | * in the final mix. |
3381 | | * |
3382 | | * @param hash The hash to finalize. |
3383 | | * @param ptr The pointer to the remaining input. |
3384 | | * @param len The remaining length, modulo 32. |
3385 | | * @param align Whether @p ptr is aligned. |
3386 | | * @return The finalized hash |
3387 | | * @see XXH32_finalize(). |
3388 | | */ |
3389 | | static XXH_PUREF xxh_u64 |
3390 | | XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align) |
3391 | 22.3M | { |
3392 | 22.3M | if (ptr==NULL) XXH_ASSERT(len == 0); |
3393 | 22.3M | len &= 31; |
3394 | 37.1M | while (len >= 8) { |
3395 | 14.7M | xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); |
3396 | 14.7M | ptr += 8; |
3397 | 14.7M | hash ^= k1; |
3398 | 14.7M | hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4; |
3399 | 14.7M | len -= 8; |
3400 | 14.7M | } |
3401 | 22.3M | if (len >= 4) { |
3402 | 17.7M | hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; |
3403 | 17.7M | ptr += 4; |
3404 | 17.7M | hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; |
3405 | 17.7M | len -= 4; |
3406 | 17.7M | } |
3407 | 33.0M | while (len > 0) { |
3408 | 10.6M | hash ^= (*ptr++) * XXH_PRIME64_5; |
3409 | 10.6M | hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1; |
3410 | 10.6M | --len; |
3411 | 10.6M | } |
3412 | 22.3M | return XXH64_avalanche(hash); |
3413 | 22.3M | } |
3414 | | |
3415 | | #ifdef XXH_OLD_NAMES |
3416 | | # define PROCESS1_64 XXH_PROCESS1_64 |
3417 | | # define PROCESS4_64 XXH_PROCESS4_64 |
3418 | | # define PROCESS8_64 XXH_PROCESS8_64 |
3419 | | #else |
3420 | | # undef XXH_PROCESS1_64 |
3421 | | # undef XXH_PROCESS4_64 |
3422 | | # undef XXH_PROCESS8_64 |
3423 | | #endif |
3424 | | |
3425 | | /*! |
3426 | | * @internal |
3427 | | * @brief The implementation for @ref XXH64(). |
3428 | | * |
3429 | | * @param input , len , seed Directly passed from @ref XXH64(). |
3430 | | * @param align Whether @p input is aligned. |
3431 | | * @return The calculated hash. |
3432 | | */ |
3433 | | XXH_FORCE_INLINE XXH_PUREF xxh_u64 |
3434 | | XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align) |
3435 | 22.3M | { |
3436 | 22.3M | xxh_u64 h64; |
3437 | 22.3M | if (input==NULL) XXH_ASSERT(len == 0); |
3438 | | |
3439 | 22.3M | if (len>=32) { |
3440 | 5.59M | const xxh_u8* const bEnd = input + len; |
3441 | 5.59M | const xxh_u8* const limit = bEnd - 31; |
3442 | 5.59M | xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
3443 | 5.59M | xxh_u64 v2 = seed + XXH_PRIME64_2; |
3444 | 5.59M | xxh_u64 v3 = seed + 0; |
3445 | 5.59M | xxh_u64 v4 = seed - XXH_PRIME64_1; |
3446 | | |
3447 | 249M | do { |
3448 | 249M | v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8; |
3449 | 249M | v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8; |
3450 | 249M | v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8; |
3451 | 249M | v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8; |
3452 | 249M | } while (input<limit); |
3453 | | |
3454 | 5.59M | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
3455 | 5.59M | h64 = XXH64_mergeRound(h64, v1); |
3456 | 5.59M | h64 = XXH64_mergeRound(h64, v2); |
3457 | 5.59M | h64 = XXH64_mergeRound(h64, v3); |
3458 | 5.59M | h64 = XXH64_mergeRound(h64, v4); |
3459 | | |
3460 | 16.7M | } else { |
3461 | 16.7M | h64 = seed + XXH_PRIME64_5; |
3462 | 16.7M | } |
3463 | | |
3464 | 22.3M | h64 += (xxh_u64) len; |
3465 | | |
3466 | 22.3M | return XXH64_finalize(h64, input, len, align); |
3467 | 22.3M | } |
3468 | | |
3469 | | |
3470 | | /*! @ingroup XXH64_family */ |
3471 | | XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
3472 | 22.3M | { |
3473 | | #if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2 |
3474 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
3475 | | XXH64_state_t state; |
3476 | | XXH64_reset(&state, seed); |
3477 | | XXH64_update(&state, (const xxh_u8*)input, len); |
3478 | | return XXH64_digest(&state); |
3479 | | #else |
3480 | 22.3M | if (XXH_FORCE_ALIGN_CHECK) { |
3481 | 0 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
3482 | 0 | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned); |
3483 | 0 | } } |
3484 | | |
3485 | 22.3M | return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned); |
3486 | | |
3487 | 22.3M | #endif |
3488 | 22.3M | } |
3489 | | |
3490 | | /******* Hash Streaming *******/ |
3491 | | #ifndef XXH_NO_STREAM |
3492 | | /*! @ingroup XXH64_family*/ |
3493 | | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
3494 | 0 | { |
3495 | 0 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
3496 | 0 | } |
3497 | | /*! @ingroup XXH64_family */ |
3498 | | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
3499 | 0 | { |
3500 | 0 | XXH_free(statePtr); |
3501 | 0 | return XXH_OK; |
3502 | 0 | } |
3503 | | |
3504 | | /*! @ingroup XXH64_family */ |
3505 | | XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState) |
3506 | 0 | { |
3507 | 0 | XXH_memcpy(dstState, srcState, sizeof(*dstState)); |
3508 | 0 | } |
3509 | | |
3510 | | /*! @ingroup XXH64_family */ |
3511 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed) |
3512 | 85.1k | { |
3513 | 85.1k | XXH_ASSERT(statePtr != NULL); |
3514 | 85.1k | memset(statePtr, 0, sizeof(*statePtr)); |
3515 | 85.1k | statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2; |
3516 | 85.1k | statePtr->v[1] = seed + XXH_PRIME64_2; |
3517 | 85.1k | statePtr->v[2] = seed + 0; |
3518 | 85.1k | statePtr->v[3] = seed - XXH_PRIME64_1; |
3519 | 85.1k | return XXH_OK; |
3520 | 85.1k | } |
3521 | | |
3522 | | /*! @ingroup XXH64_family */ |
3523 | | XXH_PUBLIC_API XXH_errorcode |
3524 | | XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
3525 | 214k | { |
3526 | 214k | if (input==NULL) { |
3527 | 34 | XXH_ASSERT(len == 0); |
3528 | 34 | return XXH_OK; |
3529 | 34 | } |
3530 | | |
3531 | 214k | { const xxh_u8* p = (const xxh_u8*)input; |
3532 | 214k | const xxh_u8* const bEnd = p + len; |
3533 | | |
3534 | 214k | state->total_len += len; |
3535 | | |
3536 | 214k | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
3537 | 3.37k | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len); |
3538 | 3.37k | state->memsize += (xxh_u32)len; |
3539 | 3.37k | return XXH_OK; |
3540 | 3.37k | } |
3541 | | |
3542 | 211k | if (state->memsize) { /* tmp buffer is full */ |
3543 | 9.82k | XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize); |
3544 | 9.82k | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0)); |
3545 | 9.82k | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1)); |
3546 | 9.82k | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2)); |
3547 | 9.82k | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3)); |
3548 | 9.82k | p += 32 - state->memsize; |
3549 | 9.82k | state->memsize = 0; |
3550 | 9.82k | } |
3551 | | |
3552 | 211k | if (p+32 <= bEnd) { |
3553 | 211k | const xxh_u8* const limit = bEnd - 32; |
3554 | | |
3555 | 21.7M | do { |
3556 | 21.7M | state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8; |
3557 | 21.7M | state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8; |
3558 | 21.7M | state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8; |
3559 | 21.7M | state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8; |
3560 | 21.7M | } while (p<=limit); |
3561 | | |
3562 | 211k | } |
3563 | | |
3564 | 211k | if (p < bEnd) { |
3565 | 45.5k | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
3566 | 45.5k | state->memsize = (unsigned)(bEnd-p); |
3567 | 45.5k | } |
3568 | 211k | } |
3569 | | |
3570 | 0 | return XXH_OK; |
3571 | 214k | } |
3572 | | |
3573 | | |
3574 | | /*! @ingroup XXH64_family */ |
3575 | | XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state) |
3576 | 39.1k | { |
3577 | 39.1k | xxh_u64 h64; |
3578 | | |
3579 | 39.1k | if (state->total_len >= 32) { |
3580 | 36.6k | h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18); |
3581 | 36.6k | h64 = XXH64_mergeRound(h64, state->v[0]); |
3582 | 36.6k | h64 = XXH64_mergeRound(h64, state->v[1]); |
3583 | 36.6k | h64 = XXH64_mergeRound(h64, state->v[2]); |
3584 | 36.6k | h64 = XXH64_mergeRound(h64, state->v[3]); |
3585 | 36.6k | } else { |
3586 | 2.54k | h64 = state->v[2] /*seed*/ + XXH_PRIME64_5; |
3587 | 2.54k | } |
3588 | | |
3589 | 39.1k | h64 += (xxh_u64) state->total_len; |
3590 | | |
3591 | 39.1k | return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned); |
3592 | 39.1k | } |
3593 | | #endif /* !XXH_NO_STREAM */ |
3594 | | |
3595 | | /******* Canonical representation *******/ |
3596 | | |
3597 | | /*! @ingroup XXH64_family */ |
3598 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash) |
3599 | 0 | { |
3600 | 0 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
3601 | 0 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
3602 | 0 | XXH_memcpy(dst, &hash, sizeof(*dst)); |
3603 | 0 | } |
3604 | | |
3605 | | /*! @ingroup XXH64_family */ |
3606 | | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src) |
3607 | 0 | { |
3608 | 0 | return XXH_readBE64(src); |
3609 | 0 | } |
3610 | | |
3611 | | #ifndef XXH_NO_XXH3 |
3612 | | |
3613 | | /* ********************************************************************* |
3614 | | * XXH3 |
3615 | | * New generation hash designed for speed on small keys and vectorization |
3616 | | ************************************************************************ */ |
3617 | | /*! |
3618 | | * @} |
3619 | | * @defgroup XXH3_impl XXH3 implementation |
3620 | | * @ingroup impl |
3621 | | * @{ |
3622 | | */ |
3623 | | |
3624 | | /* === Compiler specifics === */ |
3625 | | |
3626 | | #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */ |
3627 | | # define XXH_RESTRICT /* disable */ |
3628 | | #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
3629 | | # define XXH_RESTRICT restrict |
3630 | | #elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \ |
3631 | | || (defined (__clang__)) \ |
3632 | | || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \ |
3633 | | || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300)) |
3634 | | /* |
3635 | | * There are a LOT more compilers that recognize __restrict but this |
3636 | | * covers the major ones. |
3637 | | */ |
3638 | | # define XXH_RESTRICT __restrict |
3639 | | #else |
3640 | | # define XXH_RESTRICT /* disable */ |
3641 | | #endif |
3642 | | |
3643 | | #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
3644 | | || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
3645 | | || defined(__clang__) |
3646 | | # define XXH_likely(x) __builtin_expect(x, 1) |
3647 | | # define XXH_unlikely(x) __builtin_expect(x, 0) |
3648 | | #else |
3649 | | # define XXH_likely(x) (x) |
3650 | | # define XXH_unlikely(x) (x) |
3651 | | #endif |
3652 | | |
3653 | | #ifndef XXH_HAS_INCLUDE |
3654 | | # ifdef __has_include |
3655 | | /* |
3656 | | * Not defined as XXH_HAS_INCLUDE(x) (function-like) because |
3657 | | * this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion) |
3658 | | */ |
3659 | | # define XXH_HAS_INCLUDE __has_include |
3660 | | # else |
3661 | | # define XXH_HAS_INCLUDE(x) 0 |
3662 | | # endif |
3663 | | #endif |
3664 | | |
3665 | | #if defined(__GNUC__) || defined(__clang__) |
3666 | | # if defined(__ARM_FEATURE_SVE) |
3667 | | # include <arm_sve.h> |
3668 | | # endif |
3669 | | # if defined(__ARM_NEON__) || defined(__ARM_NEON) \ |
3670 | | || (defined(_M_ARM) && _M_ARM >= 7) \ |
3671 | | || defined(_M_ARM64) || defined(_M_ARM64EC) \ |
3672 | | || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */ |
3673 | | # define inline __inline__ /* circumvent a clang bug */ |
3674 | | # include <arm_neon.h> |
3675 | | # undef inline |
3676 | | # elif defined(__AVX2__) |
3677 | | # include <immintrin.h> |
3678 | | # elif defined(__SSE2__) |
3679 | | # include <emmintrin.h> |
3680 | | # endif |
3681 | | #endif |
3682 | | |
3683 | | #if defined(_MSC_VER) |
3684 | | # include <intrin.h> |
3685 | | #endif |
3686 | | |
3687 | | /* |
3688 | | * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
3689 | | * remaining a true 64-bit/128-bit hash function. |
3690 | | * |
3691 | | * This is done by prioritizing a subset of 64-bit operations that can be |
3692 | | * emulated without too many steps on the average 32-bit machine. |
3693 | | * |
3694 | | * For example, these two lines seem similar, and run equally fast on 64-bit: |
3695 | | * |
3696 | | * xxh_u64 x; |
3697 | | * x ^= (x >> 47); // good |
3698 | | * x ^= (x >> 13); // bad |
3699 | | * |
3700 | | * However, to a 32-bit machine, there is a major difference. |
3701 | | * |
3702 | | * x ^= (x >> 47) looks like this: |
3703 | | * |
3704 | | * x.lo ^= (x.hi >> (47 - 32)); |
3705 | | * |
3706 | | * while x ^= (x >> 13) looks like this: |
3707 | | * |
3708 | | * // note: funnel shifts are not usually cheap. |
3709 | | * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
3710 | | * x.hi ^= (x.hi >> 13); |
3711 | | * |
3712 | | * The first one is significantly faster than the second, simply because the |
3713 | | * shift is larger than 32. This means: |
3714 | | * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
3715 | | * 32 bits in the shift. |
3716 | | * - The shift result will always fit in the lower 32 bits, and therefore, |
3717 | | * we can ignore the upper 32 bits in the xor. |
3718 | | * |
3719 | | * Thanks to this optimization, XXH3 only requires these features to be efficient: |
3720 | | * |
3721 | | * - Usable unaligned access |
3722 | | * - A 32-bit or 64-bit ALU |
3723 | | * - If 32-bit, a decent ADC instruction |
3724 | | * - A 32 or 64-bit multiply with a 64-bit result |
3725 | | * - For the 128-bit variant, a decent byteswap helps short inputs. |
3726 | | * |
3727 | | * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
3728 | | * platforms which can run XXH32 can run XXH3 efficiently. |
3729 | | * |
3730 | | * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
3731 | | * notable exception. |
3732 | | * |
3733 | | * First of all, Thumb-1 lacks support for the UMULL instruction which |
3734 | | * performs the important long multiply. This means numerous __aeabi_lmul |
3735 | | * calls. |
3736 | | * |
3737 | | * Second of all, the 8 functional registers are just not enough. |
3738 | | * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
3739 | | * Lo registers, and this shuffling results in thousands more MOVs than A32. |
3740 | | * |
3741 | | * A32 and T32 don't have this limitation. They can access all 14 registers, |
3742 | | * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
3743 | | * shifts is helpful, too. |
3744 | | * |
3745 | | * Therefore, we do a quick sanity check. |
3746 | | * |
3747 | | * If compiling Thumb-1 for a target which supports ARM instructions, we will |
3748 | | * emit a warning, as it is not a "sane" platform to compile for. |
3749 | | * |
3750 | | * Usually, if this happens, it is because of an accident and you probably need |
3751 | | * to specify -march, as you likely meant to compile for a newer architecture. |
3752 | | * |
3753 | | * Credit: large sections of the vectorial and asm source code paths |
3754 | | * have been contributed by @easyaspi314 |
3755 | | */ |
3756 | | #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
3757 | | # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
3758 | | #endif |
3759 | | |
3760 | | /* ========================================== |
3761 | | * Vectorization detection |
3762 | | * ========================================== */ |
3763 | | |
3764 | | #ifdef XXH_DOXYGEN |
3765 | | /*! |
3766 | | * @ingroup tuning |
3767 | | * @brief Overrides the vectorization implementation chosen for XXH3. |
3768 | | * |
3769 | | * Can be defined to 0 to disable SIMD or any of the values mentioned in |
3770 | | * @ref XXH_VECTOR_TYPE. |
3771 | | * |
3772 | | * If this is not defined, it uses predefined macros to determine the best |
3773 | | * implementation. |
3774 | | */ |
3775 | | # define XXH_VECTOR XXH_SCALAR |
3776 | | /*! |
3777 | | * @ingroup tuning |
3778 | | * @brief Possible values for @ref XXH_VECTOR. |
3779 | | * |
3780 | | * Note that these are actually implemented as macros. |
3781 | | * |
3782 | | * If this is not defined, it is detected automatically. |
3783 | | * internal macro XXH_X86DISPATCH overrides this. |
3784 | | */ |
3785 | | enum XXH_VECTOR_TYPE /* fake enum */ { |
3786 | | XXH_SCALAR = 0, /*!< Portable scalar version */ |
3787 | | XXH_SSE2 = 1, /*!< |
3788 | | * SSE2 for Pentium 4, Opteron, all x86_64. |
3789 | | * |
3790 | | * @note SSE2 is also guaranteed on Windows 10, macOS, and |
3791 | | * Android x86. |
3792 | | */ |
3793 | | XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */ |
3794 | | XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */ |
3795 | | XXH_NEON = 4, /*!< |
3796 | | * NEON for most ARMv7-A, all AArch64, and WASM SIMD128 |
3797 | | * via the SIMDeverywhere polyfill provided with the |
3798 | | * Emscripten SDK. |
3799 | | */ |
3800 | | XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */ |
3801 | | XXH_SVE = 6, /*!< SVE for some ARMv8-A and ARMv9-A */ |
3802 | | }; |
3803 | | /*! |
3804 | | * @ingroup tuning |
3805 | | * @brief Selects the minimum alignment for XXH3's accumulators. |
3806 | | * |
3807 | | * When using SIMD, this should match the alignment required for said vector |
3808 | | * type, so, for example, 32 for AVX2. |
3809 | | * |
3810 | | * Default: Auto detected. |
3811 | | */ |
3812 | | # define XXH_ACC_ALIGN 8 |
3813 | | #endif |
3814 | | |
3815 | | /* Actual definition */ |
3816 | | #ifndef XXH_DOXYGEN |
3817 | | # define XXH_SCALAR 0 |
3818 | | # define XXH_SSE2 1 |
3819 | | # define XXH_AVX2 2 |
3820 | | # define XXH_AVX512 3 |
3821 | | # define XXH_NEON 4 |
3822 | | # define XXH_VSX 5 |
3823 | | # define XXH_SVE 6 |
3824 | | #endif |
3825 | | |
3826 | | #ifndef XXH_VECTOR /* can be defined on command line */ |
3827 | | # if defined(__ARM_FEATURE_SVE) |
3828 | | # define XXH_VECTOR XXH_SVE |
3829 | | # elif ( \ |
3830 | | defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \ |
3831 | | || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \ |
3832 | | || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \ |
3833 | | ) && ( \ |
3834 | | defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \ |
3835 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
3836 | | ) |
3837 | | # define XXH_VECTOR XXH_NEON |
3838 | | # elif defined(__AVX512F__) |
3839 | | # define XXH_VECTOR XXH_AVX512 |
3840 | | # elif defined(__AVX2__) |
3841 | | # define XXH_VECTOR XXH_AVX2 |
3842 | | # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
3843 | | # define XXH_VECTOR XXH_SSE2 |
3844 | | # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
3845 | | || (defined(__s390x__) && defined(__VEC__)) \ |
3846 | | && defined(__GNUC__) /* TODO: IBM XL */ |
3847 | | # define XXH_VECTOR XXH_VSX |
3848 | | # else |
3849 | | # define XXH_VECTOR XXH_SCALAR |
3850 | | # endif |
3851 | | #endif |
3852 | | |
3853 | | /* __ARM_FEATURE_SVE is only supported by GCC & Clang. */ |
3854 | | #if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE) |
3855 | | # ifdef _MSC_VER |
3856 | | # pragma warning(once : 4606) |
3857 | | # else |
3858 | | # warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead." |
3859 | | # endif |
3860 | | # undef XXH_VECTOR |
3861 | | # define XXH_VECTOR XXH_SCALAR |
3862 | | #endif |
3863 | | |
3864 | | /* |
3865 | | * Controls the alignment of the accumulator, |
3866 | | * for compatibility with aligned vector loads, which are usually faster. |
3867 | | */ |
3868 | | #ifndef XXH_ACC_ALIGN |
3869 | | # if defined(XXH_X86DISPATCH) |
3870 | | # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
3871 | | # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
3872 | | # define XXH_ACC_ALIGN 8 |
3873 | | # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
3874 | | # define XXH_ACC_ALIGN 16 |
3875 | | # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
3876 | | # define XXH_ACC_ALIGN 32 |
3877 | | # elif XXH_VECTOR == XXH_NEON /* neon */ |
3878 | | # define XXH_ACC_ALIGN 16 |
3879 | | # elif XXH_VECTOR == XXH_VSX /* vsx */ |
3880 | | # define XXH_ACC_ALIGN 16 |
3881 | | # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
3882 | | # define XXH_ACC_ALIGN 64 |
3883 | | # elif XXH_VECTOR == XXH_SVE /* sve */ |
3884 | | # define XXH_ACC_ALIGN 64 |
3885 | | # endif |
3886 | | #endif |
3887 | | |
3888 | | #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
3889 | | || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
3890 | | # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
3891 | | #elif XXH_VECTOR == XXH_SVE |
3892 | | # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
3893 | | #else |
3894 | | # define XXH_SEC_ALIGN 8 |
3895 | | #endif |
3896 | | |
3897 | | #if defined(__GNUC__) || defined(__clang__) |
3898 | | # define XXH_ALIASING __attribute__((may_alias)) |
3899 | | #else |
3900 | | # define XXH_ALIASING /* nothing */ |
3901 | | #endif |
3902 | | |
3903 | | /* |
3904 | | * UGLY HACK: |
3905 | | * GCC usually generates the best code with -O3 for xxHash. |
3906 | | * |
3907 | | * However, when targeting AVX2, it is overzealous in its unrolling resulting |
3908 | | * in code roughly 3/4 the speed of Clang. |
3909 | | * |
3910 | | * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
3911 | | * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
3912 | | * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
3913 | | * |
3914 | | * That is why when compiling the AVX2 version, it is recommended to use either |
3915 | | * -O2 -mavx2 -march=haswell |
3916 | | * or |
3917 | | * -O2 -mavx2 -mno-avx256-split-unaligned-load |
3918 | | * for decent performance, or to use Clang instead. |
3919 | | * |
3920 | | * Fortunately, we can control the first one with a pragma that forces GCC into |
3921 | | * -O2, but the other one we can't control without "failed to inline always |
3922 | | * inline function due to target mismatch" warnings. |
3923 | | */ |
3924 | | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
3925 | | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
3926 | | && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ |
3927 | | # pragma GCC push_options |
3928 | | # pragma GCC optimize("-O2") |
3929 | | #endif |
3930 | | |
3931 | | #if XXH_VECTOR == XXH_NEON |
3932 | | |
3933 | | /* |
3934 | | * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3 |
3935 | | * optimizes out the entire hashLong loop because of the aliasing violation. |
3936 | | * |
3937 | | * However, GCC is also inefficient at load-store optimization with vld1q/vst1q, |
3938 | | * so the only option is to mark it as aliasing. |
3939 | | */ |
3940 | | typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING; |
3941 | | |
3942 | | /*! |
3943 | | * @internal |
3944 | | * @brief `vld1q_u64` but faster and alignment-safe. |
3945 | | * |
3946 | | * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only |
3947 | | * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86). |
3948 | | * |
3949 | | * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it |
3950 | | * prohibits load-store optimizations. Therefore, a direct dereference is used. |
3951 | | * |
3952 | | * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe |
3953 | | * unaligned load. |
3954 | | */ |
3955 | | #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) |
3956 | | XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */ |
3957 | | { |
3958 | | return *(xxh_aliasing_uint64x2_t const *)ptr; |
3959 | | } |
3960 | | #else |
3961 | | XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) |
3962 | | { |
3963 | | return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr)); |
3964 | | } |
3965 | | #endif |
3966 | | |
3967 | | /*! |
3968 | | * @internal |
3969 | | * @brief `vmlal_u32` on low and high halves of a vector. |
3970 | | * |
3971 | | * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with |
3972 | | * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32` |
3973 | | * with `vmlal_u32`. |
3974 | | */ |
3975 | | #if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11 |
3976 | | XXH_FORCE_INLINE uint64x2_t |
3977 | | XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
3978 | | { |
3979 | | /* Inline assembly is the only way */ |
3980 | | __asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs)); |
3981 | | return acc; |
3982 | | } |
3983 | | XXH_FORCE_INLINE uint64x2_t |
3984 | | XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
3985 | | { |
3986 | | /* This intrinsic works as expected */ |
3987 | | return vmlal_high_u32(acc, lhs, rhs); |
3988 | | } |
3989 | | #else |
3990 | | /* Portable intrinsic versions */ |
3991 | | XXH_FORCE_INLINE uint64x2_t |
3992 | | XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
3993 | | { |
3994 | | return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs)); |
3995 | | } |
3996 | | /*! @copydoc XXH_vmlal_low_u32 |
3997 | | * Assume the compiler converts this to vmlal_high_u32 on aarch64 */ |
3998 | | XXH_FORCE_INLINE uint64x2_t |
3999 | | XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs) |
4000 | | { |
4001 | | return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs)); |
4002 | | } |
4003 | | #endif |
4004 | | |
4005 | | /*! |
4006 | | * @ingroup tuning |
4007 | | * @brief Controls the NEON to scalar ratio for XXH3 |
4008 | | * |
4009 | | * This can be set to 2, 4, 6, or 8. |
4010 | | * |
4011 | | * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used. |
4012 | | * |
4013 | | * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those |
4014 | | * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU |
4015 | | * bandwidth. |
4016 | | * |
4017 | | * This is even more noticeable on the more advanced cores like the Cortex-A76 which |
4018 | | * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once. |
4019 | | * |
4020 | | * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes |
4021 | | * and 2 scalar lanes, which is chosen by default. |
4022 | | * |
4023 | | * This does not apply to Apple processors or 32-bit processors, which run better with |
4024 | | * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes. |
4025 | | * |
4026 | | * This change benefits CPUs with large micro-op buffers without negatively affecting |
4027 | | * most other CPUs: |
4028 | | * |
4029 | | * | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. | |
4030 | | * |:----------------------|:--------------------|----------:|-----------:|------:| |
4031 | | * | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% | |
4032 | | * | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% | |
4033 | | * | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% | |
4034 | | * | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% | |
4035 | | * |
4036 | | * It also seems to fix some bad codegen on GCC, making it almost as fast as clang. |
4037 | | * |
4038 | | * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning |
4039 | | * it effectively becomes worse 4. |
4040 | | * |
4041 | | * @see XXH3_accumulate_512_neon() |
4042 | | */ |
4043 | | # ifndef XXH3_NEON_LANES |
4044 | | # if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \ |
4045 | | && !defined(__APPLE__) && XXH_SIZE_OPT <= 0 |
4046 | | # define XXH3_NEON_LANES 6 |
4047 | | # else |
4048 | | # define XXH3_NEON_LANES XXH_ACC_NB |
4049 | | # endif |
4050 | | # endif |
4051 | | #endif /* XXH_VECTOR == XXH_NEON */ |
4052 | | |
4053 | | /* |
4054 | | * VSX and Z Vector helpers. |
4055 | | * |
4056 | | * This is very messy, and any pull requests to clean this up are welcome. |
4057 | | * |
4058 | | * There are a lot of problems with supporting VSX and s390x, due to |
4059 | | * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
4060 | | */ |
4061 | | #if XXH_VECTOR == XXH_VSX |
4062 | | /* Annoyingly, these headers _may_ define three macros: `bool`, `vector`, |
4063 | | * and `pixel`. This is a problem for obvious reasons. |
4064 | | * |
4065 | | * These keywords are unnecessary; the spec literally says they are |
4066 | | * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd |
4067 | | * after including the header. |
4068 | | * |
4069 | | * We use pragma push_macro/pop_macro to keep the namespace clean. */ |
4070 | | # pragma push_macro("bool") |
4071 | | # pragma push_macro("vector") |
4072 | | # pragma push_macro("pixel") |
4073 | | /* silence potential macro redefined warnings */ |
4074 | | # undef bool |
4075 | | # undef vector |
4076 | | # undef pixel |
4077 | | |
4078 | | # if defined(__s390x__) |
4079 | | # include <s390intrin.h> |
4080 | | # else |
4081 | | # include <altivec.h> |
4082 | | # endif |
4083 | | |
4084 | | /* Restore the original macro values, if applicable. */ |
4085 | | # pragma pop_macro("pixel") |
4086 | | # pragma pop_macro("vector") |
4087 | | # pragma pop_macro("bool") |
4088 | | |
4089 | | typedef __vector unsigned long long xxh_u64x2; |
4090 | | typedef __vector unsigned char xxh_u8x16; |
4091 | | typedef __vector unsigned xxh_u32x4; |
4092 | | |
4093 | | /* |
4094 | | * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue. |
4095 | | */ |
4096 | | typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING; |
4097 | | |
4098 | | # ifndef XXH_VSX_BE |
4099 | | # if defined(__BIG_ENDIAN__) \ |
4100 | | || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
4101 | | # define XXH_VSX_BE 1 |
4102 | | # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
4103 | | # warning "-maltivec=be is not recommended. Please use native endianness." |
4104 | | # define XXH_VSX_BE 1 |
4105 | | # else |
4106 | | # define XXH_VSX_BE 0 |
4107 | | # endif |
4108 | | # endif /* !defined(XXH_VSX_BE) */ |
4109 | | |
4110 | | # if XXH_VSX_BE |
4111 | | # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
4112 | | # define XXH_vec_revb vec_revb |
4113 | | # else |
4114 | | /*! |
4115 | | * A polyfill for POWER9's vec_revb(). |
4116 | | */ |
4117 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
4118 | | { |
4119 | | xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
4120 | | 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
4121 | | return vec_perm(val, val, vByteSwap); |
4122 | | } |
4123 | | # endif |
4124 | | # endif /* XXH_VSX_BE */ |
4125 | | |
4126 | | /*! |
4127 | | * Performs an unaligned vector load and byte swaps it on big endian. |
4128 | | */ |
4129 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
4130 | | { |
4131 | | xxh_u64x2 ret; |
4132 | | XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
4133 | | # if XXH_VSX_BE |
4134 | | ret = XXH_vec_revb(ret); |
4135 | | # endif |
4136 | | return ret; |
4137 | | } |
4138 | | |
4139 | | /* |
4140 | | * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
4141 | | * |
4142 | | * These intrinsics weren't added until GCC 8, despite existing for a while, |
4143 | | * and they are endian dependent. Also, their meaning swap depending on version. |
4144 | | * */ |
4145 | | # if defined(__s390x__) |
4146 | | /* s390x is always big endian, no issue on this platform */ |
4147 | | # define XXH_vec_mulo vec_mulo |
4148 | | # define XXH_vec_mule vec_mule |
4149 | | # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__) |
4150 | | /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
4151 | | /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */ |
4152 | | # define XXH_vec_mulo __builtin_altivec_vmulouw |
4153 | | # define XXH_vec_mule __builtin_altivec_vmuleuw |
4154 | | # else |
4155 | | /* gcc needs inline assembly */ |
4156 | | /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
4157 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
4158 | | { |
4159 | | xxh_u64x2 result; |
4160 | | __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
4161 | | return result; |
4162 | | } |
4163 | | XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
4164 | | { |
4165 | | xxh_u64x2 result; |
4166 | | __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
4167 | | return result; |
4168 | | } |
4169 | | # endif /* XXH_vec_mulo, XXH_vec_mule */ |
4170 | | #endif /* XXH_VECTOR == XXH_VSX */ |
4171 | | |
4172 | | #if XXH_VECTOR == XXH_SVE |
4173 | | #define ACCRND(acc, offset) \ |
4174 | | do { \ |
4175 | | svuint64_t input_vec = svld1_u64(mask, xinput + offset); \ |
4176 | | svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \ |
4177 | | svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \ |
4178 | | svuint64_t swapped = svtbl_u64(input_vec, kSwap); \ |
4179 | | svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \ |
4180 | | svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \ |
4181 | | svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \ |
4182 | | acc = svadd_u64_x(mask, acc, mul); \ |
4183 | | } while (0) |
4184 | | #endif /* XXH_VECTOR == XXH_SVE */ |
4185 | | |
4186 | | /* prefetch |
4187 | | * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
4188 | | #if defined(XXH_NO_PREFETCH) |
4189 | | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
4190 | | #else |
4191 | | # if XXH_SIZE_OPT >= 1 |
4192 | | # define XXH_PREFETCH(ptr) (void)(ptr) |
4193 | | # elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */ |
4194 | | # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
4195 | | # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
4196 | | # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
4197 | | # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
4198 | | # else |
4199 | | # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
4200 | | # endif |
4201 | | #endif /* XXH_NO_PREFETCH */ |
4202 | | |
4203 | | |
4204 | | /* ========================================== |
4205 | | * XXH3 default settings |
4206 | | * ========================================== */ |
4207 | | |
4208 | | #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
4209 | | |
4210 | | #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
4211 | | # error "default keyset is not large enough" |
4212 | | #endif |
4213 | | |
4214 | | /*! Pseudorandom secret taken directly from FARSH. */ |
4215 | | XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
4216 | | 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
4217 | | 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
4218 | | 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
4219 | | 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
4220 | | 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
4221 | | 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
4222 | | 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
4223 | | 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
4224 | | 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
4225 | | 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
4226 | | 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
4227 | | 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
4228 | | }; |
4229 | | |
4230 | | static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */ |
4231 | | static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */ |
4232 | | |
4233 | | #ifdef XXH_OLD_NAMES |
4234 | | # define kSecret XXH3_kSecret |
4235 | | #endif |
4236 | | |
4237 | | #ifdef XXH_DOXYGEN |
4238 | | /*! |
4239 | | * @brief Calculates a 32-bit to 64-bit long multiply. |
4240 | | * |
4241 | | * Implemented as a macro. |
4242 | | * |
4243 | | * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't |
4244 | | * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
4245 | | * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we |
4246 | | * use that instead of the normal method. |
4247 | | * |
4248 | | * If you are compiling for platforms like Thumb-1 and don't have a better option, |
4249 | | * you may also want to write your own long multiply routine here. |
4250 | | * |
4251 | | * @param x, y Numbers to be multiplied |
4252 | | * @return 64-bit product of the low 32 bits of @p x and @p y. |
4253 | | */ |
4254 | | XXH_FORCE_INLINE xxh_u64 |
4255 | | XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
4256 | | { |
4257 | | return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
4258 | | } |
4259 | | #elif defined(_MSC_VER) && defined(_M_IX86) |
4260 | | # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
4261 | | #else |
4262 | | /* |
4263 | | * Downcast + upcast is usually better than masking on older compilers like |
4264 | | * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
4265 | | * |
4266 | | * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
4267 | | * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
4268 | | */ |
4269 | | # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
4270 | | #endif |
4271 | | |
4272 | | /*! |
4273 | | * @brief Calculates a 64->128-bit long multiply. |
4274 | | * |
4275 | | * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar |
4276 | | * version. |
4277 | | * |
4278 | | * @param lhs , rhs The 64-bit integers to be multiplied |
4279 | | * @return The 128-bit result represented in an @ref XXH128_hash_t. |
4280 | | */ |
4281 | | static XXH128_hash_t |
4282 | | XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
4283 | | { |
4284 | | /* |
4285 | | * GCC/Clang __uint128_t method. |
4286 | | * |
4287 | | * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
4288 | | * This is usually the best way as it usually uses a native long 64-bit |
4289 | | * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
4290 | | * |
4291 | | * Usually. |
4292 | | * |
4293 | | * Despite being a 32-bit platform, Clang (and emscripten) define this type |
4294 | | * despite not having the arithmetic for it. This results in a laggy |
4295 | | * compiler builtin call which calculates a full 128-bit multiply. |
4296 | | * In that case it is best to use the portable one. |
4297 | | * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
4298 | | */ |
4299 | | #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \ |
4300 | | && defined(__SIZEOF_INT128__) \ |
4301 | | || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
4302 | | |
4303 | | __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
4304 | | XXH128_hash_t r128; |
4305 | | r128.low64 = (xxh_u64)(product); |
4306 | | r128.high64 = (xxh_u64)(product >> 64); |
4307 | | return r128; |
4308 | | |
4309 | | /* |
4310 | | * MSVC for x64's _umul128 method. |
4311 | | * |
4312 | | * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
4313 | | * |
4314 | | * This compiles to single operand MUL on x64. |
4315 | | */ |
4316 | | #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC) |
4317 | | |
4318 | | #ifndef _MSC_VER |
4319 | | # pragma intrinsic(_umul128) |
4320 | | #endif |
4321 | | xxh_u64 product_high; |
4322 | | xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
4323 | | XXH128_hash_t r128; |
4324 | | r128.low64 = product_low; |
4325 | | r128.high64 = product_high; |
4326 | | return r128; |
4327 | | |
4328 | | /* |
4329 | | * MSVC for ARM64's __umulh method. |
4330 | | * |
4331 | | * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method. |
4332 | | */ |
4333 | | #elif defined(_M_ARM64) || defined(_M_ARM64EC) |
4334 | | |
4335 | | #ifndef _MSC_VER |
4336 | | # pragma intrinsic(__umulh) |
4337 | | #endif |
4338 | | XXH128_hash_t r128; |
4339 | | r128.low64 = lhs * rhs; |
4340 | | r128.high64 = __umulh(lhs, rhs); |
4341 | | return r128; |
4342 | | |
4343 | | #else |
4344 | | /* |
4345 | | * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
4346 | | * |
4347 | | * This is a fast and simple grade school multiply, which is shown below |
4348 | | * with base 10 arithmetic instead of base 0x100000000. |
4349 | | * |
4350 | | * 9 3 // D2 lhs = 93 |
4351 | | * x 7 5 // D2 rhs = 75 |
4352 | | * ---------- |
4353 | | * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
4354 | | * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
4355 | | * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
4356 | | * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
4357 | | * --------- |
4358 | | * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
4359 | | * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
4360 | | * --------- |
4361 | | * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
4362 | | * |
4363 | | * The reasons for adding the products like this are: |
4364 | | * 1. It avoids manual carry tracking. Just like how |
4365 | | * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
4366 | | * This avoids a lot of complexity. |
4367 | | * |
4368 | | * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
4369 | | * instruction available in ARM's Digital Signal Processing extension |
4370 | | * in 32-bit ARMv6 and later, which is shown below: |
4371 | | * |
4372 | | * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
4373 | | * { |
4374 | | * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
4375 | | * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
4376 | | * *RdHi = (xxh_u32)(product >> 32); |
4377 | | * } |
4378 | | * |
4379 | | * This instruction was designed for efficient long multiplication, and |
4380 | | * allows this to be calculated in only 4 instructions at speeds |
4381 | | * comparable to some 64-bit ALUs. |
4382 | | * |
4383 | | * 3. It isn't terrible on other platforms. Usually this will be a couple |
4384 | | * of 32-bit ADD/ADCs. |
4385 | | */ |
4386 | | |
4387 | | /* First calculate all of the cross products. */ |
4388 | | xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
4389 | | xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
4390 | | xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
4391 | | xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
4392 | | |
4393 | | /* Now add the products together. These will never overflow. */ |
4394 | | xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
4395 | | xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
4396 | | xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
4397 | | |
4398 | | XXH128_hash_t r128; |
4399 | | r128.low64 = lower; |
4400 | | r128.high64 = upper; |
4401 | | return r128; |
4402 | | #endif |
4403 | | } |
4404 | | |
4405 | | /*! |
4406 | | * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it. |
4407 | | * |
4408 | | * The reason for the separate function is to prevent passing too many structs |
4409 | | * around by value. This will hopefully inline the multiply, but we don't force it. |
4410 | | * |
4411 | | * @param lhs , rhs The 64-bit integers to multiply |
4412 | | * @return The low 64 bits of the product XOR'd by the high 64 bits. |
4413 | | * @see XXH_mult64to128() |
4414 | | */ |
4415 | | static xxh_u64 |
4416 | | XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
4417 | | { |
4418 | | XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
4419 | | return product.low64 ^ product.high64; |
4420 | | } |
4421 | | |
4422 | | /*! Seems to produce slightly better code on GCC for some reason. */ |
4423 | | XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
4424 | | { |
4425 | | XXH_ASSERT(0 <= shift && shift < 64); |
4426 | | return v64 ^ (v64 >> shift); |
4427 | | } |
4428 | | |
4429 | | /* |
4430 | | * This is a fast avalanche stage, |
4431 | | * suitable when input bits are already partially mixed |
4432 | | */ |
4433 | | static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
4434 | | { |
4435 | | h64 = XXH_xorshift64(h64, 37); |
4436 | | h64 *= PRIME_MX1; |
4437 | | h64 = XXH_xorshift64(h64, 32); |
4438 | | return h64; |
4439 | | } |
4440 | | |
4441 | | /* |
4442 | | * This is a stronger avalanche, |
4443 | | * inspired by Pelle Evensen's rrmxmx |
4444 | | * preferable when input has not been previously mixed |
4445 | | */ |
4446 | | static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
4447 | | { |
4448 | | /* this mix is inspired by Pelle Evensen's rrmxmx */ |
4449 | | h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
4450 | | h64 *= PRIME_MX2; |
4451 | | h64 ^= (h64 >> 35) + len ; |
4452 | | h64 *= PRIME_MX2; |
4453 | | return XXH_xorshift64(h64, 28); |
4454 | | } |
4455 | | |
4456 | | |
4457 | | /* ========================================== |
4458 | | * Short keys |
4459 | | * ========================================== |
4460 | | * One of the shortcomings of XXH32 and XXH64 was that their performance was |
4461 | | * sub-optimal on short lengths. It used an iterative algorithm which strongly |
4462 | | * favored lengths that were a multiple of 4 or 8. |
4463 | | * |
4464 | | * Instead of iterating over individual inputs, we use a set of single shot |
4465 | | * functions which piece together a range of lengths and operate in constant time. |
4466 | | * |
4467 | | * Additionally, the number of multiplies has been significantly reduced. This |
4468 | | * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
4469 | | * |
4470 | | * Depending on the platform, this may or may not be faster than XXH32, but it |
4471 | | * is almost guaranteed to be faster than XXH64. |
4472 | | */ |
4473 | | |
4474 | | /* |
4475 | | * At very short lengths, there isn't enough input to fully hide secrets, or use |
4476 | | * the entire secret. |
4477 | | * |
4478 | | * There is also only a limited amount of mixing we can do before significantly |
4479 | | * impacting performance. |
4480 | | * |
4481 | | * Therefore, we use different sections of the secret and always mix two secret |
4482 | | * samples with an XOR. This should have no effect on performance on the |
4483 | | * seedless or withSeed variants because everything _should_ be constant folded |
4484 | | * by modern compilers. |
4485 | | * |
4486 | | * The XOR mixing hides individual parts of the secret and increases entropy. |
4487 | | * |
4488 | | * This adds an extra layer of strength for custom secrets. |
4489 | | */ |
4490 | | XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
4491 | | XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
4492 | | { |
4493 | | XXH_ASSERT(input != NULL); |
4494 | | XXH_ASSERT(1 <= len && len <= 3); |
4495 | | XXH_ASSERT(secret != NULL); |
4496 | | /* |
4497 | | * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
4498 | | * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
4499 | | * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
4500 | | */ |
4501 | | { xxh_u8 const c1 = input[0]; |
4502 | | xxh_u8 const c2 = input[len >> 1]; |
4503 | | xxh_u8 const c3 = input[len - 1]; |
4504 | | xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
4505 | | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
4506 | | xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
4507 | | xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
4508 | | return XXH64_avalanche(keyed); |
4509 | | } |
4510 | | } |
4511 | | |
4512 | | XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
4513 | | XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
4514 | | { |
4515 | | XXH_ASSERT(input != NULL); |
4516 | | XXH_ASSERT(secret != NULL); |
4517 | | XXH_ASSERT(4 <= len && len <= 8); |
4518 | | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
4519 | | { xxh_u32 const input1 = XXH_readLE32(input); |
4520 | | xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
4521 | | xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
4522 | | xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
4523 | | xxh_u64 const keyed = input64 ^ bitflip; |
4524 | | return XXH3_rrmxmx(keyed, len); |
4525 | | } |
4526 | | } |
4527 | | |
4528 | | XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
4529 | | XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
4530 | | { |
4531 | | XXH_ASSERT(input != NULL); |
4532 | | XXH_ASSERT(secret != NULL); |
4533 | | XXH_ASSERT(9 <= len && len <= 16); |
4534 | | { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
4535 | | xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
4536 | | xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
4537 | | xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
4538 | | xxh_u64 const acc = len |
4539 | | + XXH_swap64(input_lo) + input_hi |
4540 | | + XXH3_mul128_fold64(input_lo, input_hi); |
4541 | | return XXH3_avalanche(acc); |
4542 | | } |
4543 | | } |
4544 | | |
4545 | | XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
4546 | | XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
4547 | | { |
4548 | | XXH_ASSERT(len <= 16); |
4549 | | { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
4550 | | if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
4551 | | if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
4552 | | return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
4553 | | } |
4554 | | } |
4555 | | |
4556 | | /* |
4557 | | * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
4558 | | * multiplication by zero, affecting hashes of lengths 17 to 240. |
4559 | | * |
4560 | | * However, they are very unlikely. |
4561 | | * |
4562 | | * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
4563 | | * unseeded non-cryptographic hashes, it does not attempt to defend itself |
4564 | | * against specially crafted inputs, only random inputs. |
4565 | | * |
4566 | | * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
4567 | | * cancelling out the secret is taken an arbitrary number of times (addressed |
4568 | | * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
4569 | | * and/or proper seeding: |
4570 | | * |
4571 | | * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
4572 | | * function that is only called up to 16 times per hash with up to 240 bytes of |
4573 | | * input. |
4574 | | * |
4575 | | * This is not too bad for a non-cryptographic hash function, especially with |
4576 | | * only 64 bit outputs. |
4577 | | * |
4578 | | * The 128-bit variant (which trades some speed for strength) is NOT affected |
4579 | | * by this, although it is always a good idea to use a proper seed if you care |
4580 | | * about strength. |
4581 | | */ |
4582 | | XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
4583 | | const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
4584 | | { |
4585 | | #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
4586 | | && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
4587 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
4588 | | /* |
4589 | | * UGLY HACK: |
4590 | | * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
4591 | | * slower code. |
4592 | | * |
4593 | | * By forcing seed64 into a register, we disrupt the cost model and |
4594 | | * cause it to scalarize. See `XXH32_round()` |
4595 | | * |
4596 | | * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
4597 | | * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
4598 | | * GCC 9.2, despite both emitting scalar code. |
4599 | | * |
4600 | | * GCC generates much better scalar code than Clang for the rest of XXH3, |
4601 | | * which is why finding a more optimal codepath is an interest. |
4602 | | */ |
4603 | | XXH_COMPILER_GUARD(seed64); |
4604 | | #endif |
4605 | | { xxh_u64 const input_lo = XXH_readLE64(input); |
4606 | | xxh_u64 const input_hi = XXH_readLE64(input+8); |
4607 | | return XXH3_mul128_fold64( |
4608 | | input_lo ^ (XXH_readLE64(secret) + seed64), |
4609 | | input_hi ^ (XXH_readLE64(secret+8) - seed64) |
4610 | | ); |
4611 | | } |
4612 | | } |
4613 | | |
4614 | | /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
4615 | | XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t |
4616 | | XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
4617 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
4618 | | XXH64_hash_t seed) |
4619 | | { |
4620 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
4621 | | XXH_ASSERT(16 < len && len <= 128); |
4622 | | |
4623 | | { xxh_u64 acc = len * XXH_PRIME64_1; |
4624 | | #if XXH_SIZE_OPT >= 1 |
4625 | | /* Smaller and cleaner, but slightly slower. */ |
4626 | | unsigned int i = (unsigned int)(len - 1) / 32; |
4627 | | do { |
4628 | | acc += XXH3_mix16B(input+16 * i, secret+32*i, seed); |
4629 | | acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed); |
4630 | | } while (i-- != 0); |
4631 | | #else |
4632 | | if (len > 32) { |
4633 | | if (len > 64) { |
4634 | | if (len > 96) { |
4635 | | acc += XXH3_mix16B(input+48, secret+96, seed); |
4636 | | acc += XXH3_mix16B(input+len-64, secret+112, seed); |
4637 | | } |
4638 | | acc += XXH3_mix16B(input+32, secret+64, seed); |
4639 | | acc += XXH3_mix16B(input+len-48, secret+80, seed); |
4640 | | } |
4641 | | acc += XXH3_mix16B(input+16, secret+32, seed); |
4642 | | acc += XXH3_mix16B(input+len-32, secret+48, seed); |
4643 | | } |
4644 | | acc += XXH3_mix16B(input+0, secret+0, seed); |
4645 | | acc += XXH3_mix16B(input+len-16, secret+16, seed); |
4646 | | #endif |
4647 | | return XXH3_avalanche(acc); |
4648 | | } |
4649 | | } |
4650 | | |
4651 | | /*! |
4652 | | * @brief Maximum size of "short" key in bytes. |
4653 | | */ |
4654 | | #define XXH3_MIDSIZE_MAX 240 |
4655 | | |
4656 | | XXH_NO_INLINE XXH_PUREF XXH64_hash_t |
4657 | | XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
4658 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
4659 | | XXH64_hash_t seed) |
4660 | | { |
4661 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
4662 | | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
4663 | | |
4664 | | #define XXH3_MIDSIZE_STARTOFFSET 3 |
4665 | | #define XXH3_MIDSIZE_LASTOFFSET 17 |
4666 | | |
4667 | | { xxh_u64 acc = len * XXH_PRIME64_1; |
4668 | | xxh_u64 acc_end; |
4669 | | unsigned int const nbRounds = (unsigned int)len / 16; |
4670 | | unsigned int i; |
4671 | | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
4672 | | for (i=0; i<8; i++) { |
4673 | | acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
4674 | | } |
4675 | | /* last bytes */ |
4676 | | acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
4677 | | XXH_ASSERT(nbRounds >= 8); |
4678 | | acc = XXH3_avalanche(acc); |
4679 | | #if defined(__clang__) /* Clang */ \ |
4680 | | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
4681 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
4682 | | /* |
4683 | | * UGLY HACK: |
4684 | | * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
4685 | | * In everywhere else, it uses scalar code. |
4686 | | * |
4687 | | * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
4688 | | * would still be slower than UMAAL (see XXH_mult64to128). |
4689 | | * |
4690 | | * Unfortunately, Clang doesn't handle the long multiplies properly and |
4691 | | * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
4692 | | * scalarized into an ugly mess of VMOV.32 instructions. |
4693 | | * |
4694 | | * This mess is difficult to avoid without turning autovectorization |
4695 | | * off completely, but they are usually relatively minor and/or not |
4696 | | * worth it to fix. |
4697 | | * |
4698 | | * This loop is the easiest to fix, as unlike XXH32, this pragma |
4699 | | * _actually works_ because it is a loop vectorization instead of an |
4700 | | * SLP vectorization. |
4701 | | */ |
4702 | | #pragma clang loop vectorize(disable) |
4703 | | #endif |
4704 | | for (i=8 ; i < nbRounds; i++) { |
4705 | | /* |
4706 | | * Prevents clang for unrolling the acc loop and interleaving with this one. |
4707 | | */ |
4708 | | XXH_COMPILER_GUARD(acc); |
4709 | | acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
4710 | | } |
4711 | | return XXH3_avalanche(acc + acc_end); |
4712 | | } |
4713 | | } |
4714 | | |
4715 | | |
4716 | | /* ======= Long Keys ======= */ |
4717 | | |
4718 | | #define XXH_STRIPE_LEN 64 |
4719 | | #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
4720 | | #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
4721 | | |
4722 | | #ifdef XXH_OLD_NAMES |
4723 | | # define STRIPE_LEN XXH_STRIPE_LEN |
4724 | | # define ACC_NB XXH_ACC_NB |
4725 | | #endif |
4726 | | |
4727 | | #ifndef XXH_PREFETCH_DIST |
4728 | | # ifdef __clang__ |
4729 | | # define XXH_PREFETCH_DIST 320 |
4730 | | # else |
4731 | | # if (XXH_VECTOR == XXH_AVX512) |
4732 | | # define XXH_PREFETCH_DIST 512 |
4733 | | # else |
4734 | | # define XXH_PREFETCH_DIST 384 |
4735 | | # endif |
4736 | | # endif /* __clang__ */ |
4737 | | #endif /* XXH_PREFETCH_DIST */ |
4738 | | |
4739 | | /* |
4740 | | * These macros are to generate an XXH3_accumulate() function. |
4741 | | * The two arguments select the name suffix and target attribute. |
4742 | | * |
4743 | | * The name of this symbol is XXH3_accumulate_<name>() and it calls |
4744 | | * XXH3_accumulate_512_<name>(). |
4745 | | * |
4746 | | * It may be useful to hand implement this function if the compiler fails to |
4747 | | * optimize the inline function. |
4748 | | */ |
4749 | | #define XXH3_ACCUMULATE_TEMPLATE(name) \ |
4750 | | void \ |
4751 | | XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \ |
4752 | | const xxh_u8* XXH_RESTRICT input, \ |
4753 | | const xxh_u8* XXH_RESTRICT secret, \ |
4754 | | size_t nbStripes) \ |
4755 | | { \ |
4756 | | size_t n; \ |
4757 | | for (n = 0; n < nbStripes; n++ ) { \ |
4758 | | const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \ |
4759 | | XXH_PREFETCH(in + XXH_PREFETCH_DIST); \ |
4760 | | XXH3_accumulate_512_##name( \ |
4761 | | acc, \ |
4762 | | in, \ |
4763 | | secret + n*XXH_SECRET_CONSUME_RATE); \ |
4764 | | } \ |
4765 | | } |
4766 | | |
4767 | | |
4768 | | XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
4769 | | { |
4770 | | if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
4771 | | XXH_memcpy(dst, &v64, sizeof(v64)); |
4772 | | } |
4773 | | |
4774 | | /* Several intrinsic functions below are supposed to accept __int64 as argument, |
4775 | | * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
4776 | | * However, several environments do not define __int64 type, |
4777 | | * requiring a workaround. |
4778 | | */ |
4779 | | #if !defined (__VMS) \ |
4780 | | && (defined (__cplusplus) \ |
4781 | | || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
4782 | | typedef int64_t xxh_i64; |
4783 | | #else |
4784 | | /* the following type must have a width of 64-bit */ |
4785 | | typedef long long xxh_i64; |
4786 | | #endif |
4787 | | |
4788 | | |
4789 | | /* |
4790 | | * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
4791 | | * |
4792 | | * It is a hardened version of UMAC, based off of FARSH's implementation. |
4793 | | * |
4794 | | * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
4795 | | * implementations, and it is ridiculously fast. |
4796 | | * |
4797 | | * We harden it by mixing the original input to the accumulators as well as the product. |
4798 | | * |
4799 | | * This means that in the (relatively likely) case of a multiply by zero, the |
4800 | | * original input is preserved. |
4801 | | * |
4802 | | * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
4803 | | * cross-pollination, as otherwise the upper and lower halves would be |
4804 | | * essentially independent. |
4805 | | * |
4806 | | * This doesn't matter on 64-bit hashes since they all get merged together in |
4807 | | * the end, so we skip the extra step. |
4808 | | * |
4809 | | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
4810 | | */ |
4811 | | |
4812 | | #if (XXH_VECTOR == XXH_AVX512) \ |
4813 | | || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0) |
4814 | | |
4815 | | #ifndef XXH_TARGET_AVX512 |
4816 | | # define XXH_TARGET_AVX512 /* disable attribute target */ |
4817 | | #endif |
4818 | | |
4819 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
4820 | | XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
4821 | | const void* XXH_RESTRICT input, |
4822 | | const void* XXH_RESTRICT secret) |
4823 | | { |
4824 | | __m512i* const xacc = (__m512i *) acc; |
4825 | | XXH_ASSERT((((size_t)acc) & 63) == 0); |
4826 | | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
4827 | | |
4828 | | { |
4829 | | /* data_vec = input[0]; */ |
4830 | | __m512i const data_vec = _mm512_loadu_si512 (input); |
4831 | | /* key_vec = secret[0]; */ |
4832 | | __m512i const key_vec = _mm512_loadu_si512 (secret); |
4833 | | /* data_key = data_vec ^ key_vec; */ |
4834 | | __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
4835 | | /* data_key_lo = data_key >> 32; */ |
4836 | | __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32); |
4837 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
4838 | | __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
4839 | | /* xacc[0] += swap(data_vec); */ |
4840 | | __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2)); |
4841 | | __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
4842 | | /* xacc[0] += product; */ |
4843 | | *xacc = _mm512_add_epi64(product, sum); |
4844 | | } |
4845 | | } |
4846 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512) |
4847 | | |
4848 | | /* |
4849 | | * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
4850 | | * |
4851 | | * Multiplication isn't perfect, as explained by Google in HighwayHash: |
4852 | | * |
4853 | | * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
4854 | | * // varying degrees. In descending order of goodness, bytes |
4855 | | * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
4856 | | * // As expected, the upper and lower bytes are much worse. |
4857 | | * |
4858 | | * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
4859 | | * |
4860 | | * Since our algorithm uses a pseudorandom secret to add some variance into the |
4861 | | * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
4862 | | * |
4863 | | * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
4864 | | * extraction. |
4865 | | * |
4866 | | * Both XXH3_64bits and XXH3_128bits use this subroutine. |
4867 | | */ |
4868 | | |
4869 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
4870 | | XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4871 | | { |
4872 | | XXH_ASSERT((((size_t)acc) & 63) == 0); |
4873 | | XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
4874 | | { __m512i* const xacc = (__m512i*) acc; |
4875 | | const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
4876 | | |
4877 | | /* xacc[0] ^= (xacc[0] >> 47) */ |
4878 | | __m512i const acc_vec = *xacc; |
4879 | | __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
4880 | | /* xacc[0] ^= secret; */ |
4881 | | __m512i const key_vec = _mm512_loadu_si512 (secret); |
4882 | | __m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */); |
4883 | | |
4884 | | /* xacc[0] *= XXH_PRIME32_1; */ |
4885 | | __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32); |
4886 | | __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
4887 | | __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
4888 | | *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
4889 | | } |
4890 | | } |
4891 | | |
4892 | | XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
4893 | | XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4894 | | { |
4895 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
4896 | | XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
4897 | | XXH_ASSERT(((size_t)customSecret & 63) == 0); |
4898 | | (void)(&XXH_writeLE64); |
4899 | | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
4900 | | __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64); |
4901 | | __m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos); |
4902 | | |
4903 | | const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret); |
4904 | | __m512i* const dest = ( __m512i*) customSecret; |
4905 | | int i; |
4906 | | XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */ |
4907 | | XXH_ASSERT(((size_t)dest & 63) == 0); |
4908 | | for (i=0; i < nbRounds; ++i) { |
4909 | | dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed); |
4910 | | } } |
4911 | | } |
4912 | | |
4913 | | #endif |
4914 | | |
4915 | | #if (XXH_VECTOR == XXH_AVX2) \ |
4916 | | || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0) |
4917 | | |
4918 | | #ifndef XXH_TARGET_AVX2 |
4919 | | # define XXH_TARGET_AVX2 /* disable attribute target */ |
4920 | | #endif |
4921 | | |
4922 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
4923 | | XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
4924 | | const void* XXH_RESTRICT input, |
4925 | | const void* XXH_RESTRICT secret) |
4926 | | { |
4927 | | XXH_ASSERT((((size_t)acc) & 31) == 0); |
4928 | | { __m256i* const xacc = (__m256i *) acc; |
4929 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
4930 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
4931 | | const __m256i* const xinput = (const __m256i *) input; |
4932 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
4933 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
4934 | | const __m256i* const xsecret = (const __m256i *) secret; |
4935 | | |
4936 | | size_t i; |
4937 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
4938 | | /* data_vec = xinput[i]; */ |
4939 | | __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
4940 | | /* key_vec = xsecret[i]; */ |
4941 | | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
4942 | | /* data_key = data_vec ^ key_vec; */ |
4943 | | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
4944 | | /* data_key_lo = data_key >> 32; */ |
4945 | | __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32); |
4946 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
4947 | | __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
4948 | | /* xacc[i] += swap(data_vec); */ |
4949 | | __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
4950 | | __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
4951 | | /* xacc[i] += product; */ |
4952 | | xacc[i] = _mm256_add_epi64(product, sum); |
4953 | | } } |
4954 | | } |
4955 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2) |
4956 | | |
4957 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
4958 | | XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
4959 | | { |
4960 | | XXH_ASSERT((((size_t)acc) & 31) == 0); |
4961 | | { __m256i* const xacc = (__m256i*) acc; |
4962 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
4963 | | * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
4964 | | const __m256i* const xsecret = (const __m256i *) secret; |
4965 | | const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
4966 | | |
4967 | | size_t i; |
4968 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
4969 | | /* xacc[i] ^= (xacc[i] >> 47) */ |
4970 | | __m256i const acc_vec = xacc[i]; |
4971 | | __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
4972 | | __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
4973 | | /* xacc[i] ^= xsecret; */ |
4974 | | __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
4975 | | __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
4976 | | |
4977 | | /* xacc[i] *= XXH_PRIME32_1; */ |
4978 | | __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32); |
4979 | | __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
4980 | | __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
4981 | | xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
4982 | | } |
4983 | | } |
4984 | | } |
4985 | | |
4986 | | XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
4987 | | { |
4988 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
4989 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
4990 | | XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
4991 | | (void)(&XXH_writeLE64); |
4992 | | XXH_PREFETCH(customSecret); |
4993 | | { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64); |
4994 | | |
4995 | | const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret); |
4996 | | __m256i* dest = ( __m256i*) customSecret; |
4997 | | |
4998 | | # if defined(__GNUC__) || defined(__clang__) |
4999 | | /* |
5000 | | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
5001 | | * - do not extract the secret from sse registers in the internal loop |
5002 | | * - use less common registers, and avoid pushing these reg into stack |
5003 | | */ |
5004 | | XXH_COMPILER_GUARD(dest); |
5005 | | # endif |
5006 | | XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */ |
5007 | | XXH_ASSERT(((size_t)dest & 31) == 0); |
5008 | | |
5009 | | /* GCC -O2 need unroll loop manually */ |
5010 | | dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed); |
5011 | | dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed); |
5012 | | dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed); |
5013 | | dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed); |
5014 | | dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed); |
5015 | | dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed); |
5016 | | } |
5017 | | } |
5018 | | |
5019 | | #endif |
5020 | | |
5021 | | /* x86dispatch always generates SSE2 */ |
5022 | | #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
5023 | | |
5024 | | #ifndef XXH_TARGET_SSE2 |
5025 | | # define XXH_TARGET_SSE2 /* disable attribute target */ |
5026 | | #endif |
5027 | | |
5028 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
5029 | | XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
5030 | | const void* XXH_RESTRICT input, |
5031 | | const void* XXH_RESTRICT secret) |
5032 | | { |
5033 | | /* SSE2 is just a half-scale version of the AVX2 version. */ |
5034 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
5035 | | { __m128i* const xacc = (__m128i *) acc; |
5036 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
5037 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
5038 | | const __m128i* const xinput = (const __m128i *) input; |
5039 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
5040 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
5041 | | const __m128i* const xsecret = (const __m128i *) secret; |
5042 | | |
5043 | | size_t i; |
5044 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
5045 | | /* data_vec = xinput[i]; */ |
5046 | | __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
5047 | | /* key_vec = xsecret[i]; */ |
5048 | | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
5049 | | /* data_key = data_vec ^ key_vec; */ |
5050 | | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
5051 | | /* data_key_lo = data_key >> 32; */ |
5052 | | __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
5053 | | /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
5054 | | __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
5055 | | /* xacc[i] += swap(data_vec); */ |
5056 | | __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
5057 | | __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
5058 | | /* xacc[i] += product; */ |
5059 | | xacc[i] = _mm_add_epi64(product, sum); |
5060 | | } } |
5061 | | } |
5062 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2) |
5063 | | |
5064 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
5065 | | XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
5066 | | { |
5067 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
5068 | | { __m128i* const xacc = (__m128i*) acc; |
5069 | | /* Unaligned. This is mainly for pointer arithmetic, and because |
5070 | | * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
5071 | | const __m128i* const xsecret = (const __m128i *) secret; |
5072 | | const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
5073 | | |
5074 | | size_t i; |
5075 | | for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
5076 | | /* xacc[i] ^= (xacc[i] >> 47) */ |
5077 | | __m128i const acc_vec = xacc[i]; |
5078 | | __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
5079 | | __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
5080 | | /* xacc[i] ^= xsecret[i]; */ |
5081 | | __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
5082 | | __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
5083 | | |
5084 | | /* xacc[i] *= XXH_PRIME32_1; */ |
5085 | | __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
5086 | | __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
5087 | | __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
5088 | | xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
5089 | | } |
5090 | | } |
5091 | | } |
5092 | | |
5093 | | XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
5094 | | { |
5095 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
5096 | | (void)(&XXH_writeLE64); |
5097 | | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
5098 | | |
5099 | | # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
5100 | | /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */ |
5101 | | XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) }; |
5102 | | __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
5103 | | # else |
5104 | | __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64); |
5105 | | # endif |
5106 | | int i; |
5107 | | |
5108 | | const void* const src16 = XXH3_kSecret; |
5109 | | __m128i* dst16 = (__m128i*) customSecret; |
5110 | | # if defined(__GNUC__) || defined(__clang__) |
5111 | | /* |
5112 | | * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
5113 | | * - do not extract the secret from sse registers in the internal loop |
5114 | | * - use less common registers, and avoid pushing these reg into stack |
5115 | | */ |
5116 | | XXH_COMPILER_GUARD(dst16); |
5117 | | # endif |
5118 | | XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */ |
5119 | | XXH_ASSERT(((size_t)dst16 & 15) == 0); |
5120 | | |
5121 | | for (i=0; i < nbRounds; ++i) { |
5122 | | dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed); |
5123 | | } } |
5124 | | } |
5125 | | |
5126 | | #endif |
5127 | | |
5128 | | #if (XXH_VECTOR == XXH_NEON) |
5129 | | |
5130 | | /* forward declarations for the scalar routines */ |
5131 | | XXH_FORCE_INLINE void |
5132 | | XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input, |
5133 | | void const* XXH_RESTRICT secret, size_t lane); |
5134 | | |
5135 | | XXH_FORCE_INLINE void |
5136 | | XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
5137 | | void const* XXH_RESTRICT secret, size_t lane); |
5138 | | |
5139 | | /*! |
5140 | | * @internal |
5141 | | * @brief The bulk processing loop for NEON and WASM SIMD128. |
5142 | | * |
5143 | | * The NEON code path is actually partially scalar when running on AArch64. This |
5144 | | * is to optimize the pipelining and can have up to 15% speedup depending on the |
5145 | | * CPU, and it also mitigates some GCC codegen issues. |
5146 | | * |
5147 | | * @see XXH3_NEON_LANES for configuring this and details about this optimization. |
5148 | | * |
5149 | | * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit |
5150 | | * integers instead of the other platforms which mask full 64-bit vectors, |
5151 | | * so the setup is more complicated than just shifting right. |
5152 | | * |
5153 | | * Additionally, there is an optimization for 4 lanes at once noted below. |
5154 | | * |
5155 | | * Since, as stated, the most optimal amount of lanes for Cortexes is 6, |
5156 | | * there needs to be *three* versions of the accumulate operation used |
5157 | | * for the remaining 2 lanes. |
5158 | | * |
5159 | | * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap |
5160 | | * nearly perfectly. |
5161 | | */ |
5162 | | |
5163 | | XXH_FORCE_INLINE void |
5164 | | XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
5165 | | const void* XXH_RESTRICT input, |
5166 | | const void* XXH_RESTRICT secret) |
5167 | | { |
5168 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
5169 | | XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0); |
5170 | | { /* GCC for darwin arm64 does not like aliasing here */ |
5171 | | xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc; |
5172 | | /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
5173 | | uint8_t const* xinput = (const uint8_t *) input; |
5174 | | uint8_t const* xsecret = (const uint8_t *) secret; |
5175 | | |
5176 | | size_t i; |
5177 | | #ifdef __wasm_simd128__ |
5178 | | /* |
5179 | | * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret |
5180 | | * is constant propagated, which results in it converting it to this |
5181 | | * inside the loop: |
5182 | | * |
5183 | | * a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0) |
5184 | | * b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0) |
5185 | | * ... |
5186 | | * |
5187 | | * This requires a full 32-bit address immediate (and therefore a 6 byte |
5188 | | * instruction) as well as an add for each offset. |
5189 | | * |
5190 | | * Putting an asm guard prevents it from folding (at the cost of losing |
5191 | | * the alignment hint), and uses the free offset in `v128.load` instead |
5192 | | * of adding secret_offset each time which overall reduces code size by |
5193 | | * about a kilobyte and improves performance. |
5194 | | */ |
5195 | | XXH_COMPILER_GUARD(xsecret); |
5196 | | #endif |
5197 | | /* Scalar lanes use the normal scalarRound routine */ |
5198 | | for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
5199 | | XXH3_scalarRound(acc, input, secret, i); |
5200 | | } |
5201 | | i = 0; |
5202 | | /* 4 NEON lanes at a time. */ |
5203 | | for (; i+1 < XXH3_NEON_LANES / 2; i+=2) { |
5204 | | /* data_vec = xinput[i]; */ |
5205 | | uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16)); |
5206 | | uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16)); |
5207 | | /* key_vec = xsecret[i]; */ |
5208 | | uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16)); |
5209 | | uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16)); |
5210 | | /* data_swap = swap(data_vec) */ |
5211 | | uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1); |
5212 | | uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1); |
5213 | | /* data_key = data_vec ^ key_vec; */ |
5214 | | uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1); |
5215 | | uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2); |
5216 | | |
5217 | | /* |
5218 | | * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a |
5219 | | * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to |
5220 | | * get one vector with the low 32 bits of each lane, and one vector |
5221 | | * with the high 32 bits of each lane. |
5222 | | * |
5223 | | * The intrinsic returns a double vector because the original ARMv7-a |
5224 | | * instruction modified both arguments in place. AArch64 and SIMD128 emit |
5225 | | * two instructions from this intrinsic. |
5226 | | * |
5227 | | * [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ] |
5228 | | * [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ] |
5229 | | */ |
5230 | | uint32x4x2_t unzipped = vuzpq_u32( |
5231 | | vreinterpretq_u32_u64(data_key_1), |
5232 | | vreinterpretq_u32_u64(data_key_2) |
5233 | | ); |
5234 | | /* data_key_lo = data_key & 0xFFFFFFFF */ |
5235 | | uint32x4_t data_key_lo = unzipped.val[0]; |
5236 | | /* data_key_hi = data_key >> 32 */ |
5237 | | uint32x4_t data_key_hi = unzipped.val[1]; |
5238 | | /* |
5239 | | * Then, we can split the vectors horizontally and multiply which, as for most |
5240 | | * widening intrinsics, have a variant that works on both high half vectors |
5241 | | * for free on AArch64. A similar instruction is available on SIMD128. |
5242 | | * |
5243 | | * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi |
5244 | | */ |
5245 | | uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi); |
5246 | | uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi); |
5247 | | /* |
5248 | | * Clang reorders |
5249 | | * a += b * c; // umlal swap.2d, dkl.2s, dkh.2s |
5250 | | * c += a; // add acc.2d, acc.2d, swap.2d |
5251 | | * to |
5252 | | * c += a; // add acc.2d, acc.2d, swap.2d |
5253 | | * c += b * c; // umlal acc.2d, dkl.2s, dkh.2s |
5254 | | * |
5255 | | * While it would make sense in theory since the addition is faster, |
5256 | | * for reasons likely related to umlal being limited to certain NEON |
5257 | | * pipelines, this is worse. A compiler guard fixes this. |
5258 | | */ |
5259 | | XXH_COMPILER_GUARD_CLANG_NEON(sum_1); |
5260 | | XXH_COMPILER_GUARD_CLANG_NEON(sum_2); |
5261 | | /* xacc[i] = acc_vec + sum; */ |
5262 | | xacc[i] = vaddq_u64(xacc[i], sum_1); |
5263 | | xacc[i+1] = vaddq_u64(xacc[i+1], sum_2); |
5264 | | } |
5265 | | /* Operate on the remaining NEON lanes 2 at a time. */ |
5266 | | for (; i < XXH3_NEON_LANES / 2; i++) { |
5267 | | /* data_vec = xinput[i]; */ |
5268 | | uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16)); |
5269 | | /* key_vec = xsecret[i]; */ |
5270 | | uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); |
5271 | | /* acc_vec_2 = swap(data_vec) */ |
5272 | | uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1); |
5273 | | /* data_key = data_vec ^ key_vec; */ |
5274 | | uint64x2_t data_key = veorq_u64(data_vec, key_vec); |
5275 | | /* For two lanes, just use VMOVN and VSHRN. */ |
5276 | | /* data_key_lo = data_key & 0xFFFFFFFF; */ |
5277 | | uint32x2_t data_key_lo = vmovn_u64(data_key); |
5278 | | /* data_key_hi = data_key >> 32; */ |
5279 | | uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32); |
5280 | | /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */ |
5281 | | uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi); |
5282 | | /* Same Clang workaround as before */ |
5283 | | XXH_COMPILER_GUARD_CLANG_NEON(sum); |
5284 | | /* xacc[i] = acc_vec + sum; */ |
5285 | | xacc[i] = vaddq_u64 (xacc[i], sum); |
5286 | | } |
5287 | | } |
5288 | | } |
5289 | | XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon) |
5290 | | |
5291 | | XXH_FORCE_INLINE void |
5292 | | XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
5293 | | { |
5294 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
5295 | | |
5296 | | { xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc; |
5297 | | uint8_t const* xsecret = (uint8_t const*) secret; |
5298 | | |
5299 | | size_t i; |
5300 | | /* WASM uses operator overloads and doesn't need these. */ |
5301 | | #ifndef __wasm_simd128__ |
5302 | | /* { prime32_1, prime32_1 } */ |
5303 | | uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1); |
5304 | | /* { 0, prime32_1, 0, prime32_1 } */ |
5305 | | uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32)); |
5306 | | #endif |
5307 | | |
5308 | | /* AArch64 uses both scalar and neon at the same time */ |
5309 | | for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) { |
5310 | | XXH3_scalarScrambleRound(acc, secret, i); |
5311 | | } |
5312 | | for (i=0; i < XXH3_NEON_LANES / 2; i++) { |
5313 | | /* xacc[i] ^= (xacc[i] >> 47); */ |
5314 | | uint64x2_t acc_vec = xacc[i]; |
5315 | | uint64x2_t shifted = vshrq_n_u64(acc_vec, 47); |
5316 | | uint64x2_t data_vec = veorq_u64(acc_vec, shifted); |
5317 | | |
5318 | | /* xacc[i] ^= xsecret[i]; */ |
5319 | | uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16)); |
5320 | | uint64x2_t data_key = veorq_u64(data_vec, key_vec); |
5321 | | /* xacc[i] *= XXH_PRIME32_1 */ |
5322 | | #ifdef __wasm_simd128__ |
5323 | | /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */ |
5324 | | xacc[i] = data_key * XXH_PRIME32_1; |
5325 | | #else |
5326 | | /* |
5327 | | * Expanded version with portable NEON intrinsics |
5328 | | * |
5329 | | * lo(x) * lo(y) + (hi(x) * lo(y) << 32) |
5330 | | * |
5331 | | * prod_hi = hi(data_key) * lo(prime) << 32 |
5332 | | * |
5333 | | * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector |
5334 | | * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits |
5335 | | * and avoid the shift. |
5336 | | */ |
5337 | | uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi); |
5338 | | /* Extract low bits for vmlal_u32 */ |
5339 | | uint32x2_t data_key_lo = vmovn_u64(data_key); |
5340 | | /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */ |
5341 | | xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo); |
5342 | | #endif |
5343 | | } |
5344 | | } |
5345 | | } |
5346 | | #endif |
5347 | | |
5348 | | #if (XXH_VECTOR == XXH_VSX) |
5349 | | |
5350 | | XXH_FORCE_INLINE void |
5351 | | XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
5352 | | const void* XXH_RESTRICT input, |
5353 | | const void* XXH_RESTRICT secret) |
5354 | | { |
5355 | | /* presumed aligned */ |
5356 | | xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; |
5357 | | xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */ |
5358 | | xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */ |
5359 | | xxh_u64x2 const v32 = { 32, 32 }; |
5360 | | size_t i; |
5361 | | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
5362 | | /* data_vec = xinput[i]; */ |
5363 | | xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i); |
5364 | | /* key_vec = xsecret[i]; */ |
5365 | | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); |
5366 | | xxh_u64x2 const data_key = data_vec ^ key_vec; |
5367 | | /* shuffled = (data_key << 32) | (data_key >> 32); */ |
5368 | | xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
5369 | | /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
5370 | | xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
5371 | | /* acc_vec = xacc[i]; */ |
5372 | | xxh_u64x2 acc_vec = xacc[i]; |
5373 | | acc_vec += product; |
5374 | | |
5375 | | /* swap high and low halves */ |
5376 | | #ifdef __s390x__ |
5377 | | acc_vec += vec_permi(data_vec, data_vec, 2); |
5378 | | #else |
5379 | | acc_vec += vec_xxpermdi(data_vec, data_vec, 2); |
5380 | | #endif |
5381 | | xacc[i] = acc_vec; |
5382 | | } |
5383 | | } |
5384 | | XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx) |
5385 | | |
5386 | | XXH_FORCE_INLINE void |
5387 | | XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
5388 | | { |
5389 | | XXH_ASSERT((((size_t)acc) & 15) == 0); |
5390 | | |
5391 | | { xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc; |
5392 | | const xxh_u8* const xsecret = (const xxh_u8*) secret; |
5393 | | /* constants */ |
5394 | | xxh_u64x2 const v32 = { 32, 32 }; |
5395 | | xxh_u64x2 const v47 = { 47, 47 }; |
5396 | | xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
5397 | | size_t i; |
5398 | | for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
5399 | | /* xacc[i] ^= (xacc[i] >> 47); */ |
5400 | | xxh_u64x2 const acc_vec = xacc[i]; |
5401 | | xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
5402 | | |
5403 | | /* xacc[i] ^= xsecret[i]; */ |
5404 | | xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i); |
5405 | | xxh_u64x2 const data_key = data_vec ^ key_vec; |
5406 | | |
5407 | | /* xacc[i] *= XXH_PRIME32_1 */ |
5408 | | /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
5409 | | xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
5410 | | /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
5411 | | xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
5412 | | xacc[i] = prod_odd + (prod_even << v32); |
5413 | | } } |
5414 | | } |
5415 | | |
5416 | | #endif |
5417 | | |
5418 | | #if (XXH_VECTOR == XXH_SVE) |
5419 | | |
5420 | | XXH_FORCE_INLINE void |
5421 | | XXH3_accumulate_512_sve( void* XXH_RESTRICT acc, |
5422 | | const void* XXH_RESTRICT input, |
5423 | | const void* XXH_RESTRICT secret) |
5424 | | { |
5425 | | uint64_t *xacc = (uint64_t *)acc; |
5426 | | const uint64_t *xinput = (const uint64_t *)(const void *)input; |
5427 | | const uint64_t *xsecret = (const uint64_t *)(const void *)secret; |
5428 | | svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); |
5429 | | uint64_t element_count = svcntd(); |
5430 | | if (element_count >= 8) { |
5431 | | svbool_t mask = svptrue_pat_b64(SV_VL8); |
5432 | | svuint64_t vacc = svld1_u64(mask, xacc); |
5433 | | ACCRND(vacc, 0); |
5434 | | svst1_u64(mask, xacc, vacc); |
5435 | | } else if (element_count == 2) { /* sve128 */ |
5436 | | svbool_t mask = svptrue_pat_b64(SV_VL2); |
5437 | | svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
5438 | | svuint64_t acc1 = svld1_u64(mask, xacc + 2); |
5439 | | svuint64_t acc2 = svld1_u64(mask, xacc + 4); |
5440 | | svuint64_t acc3 = svld1_u64(mask, xacc + 6); |
5441 | | ACCRND(acc0, 0); |
5442 | | ACCRND(acc1, 2); |
5443 | | ACCRND(acc2, 4); |
5444 | | ACCRND(acc3, 6); |
5445 | | svst1_u64(mask, xacc + 0, acc0); |
5446 | | svst1_u64(mask, xacc + 2, acc1); |
5447 | | svst1_u64(mask, xacc + 4, acc2); |
5448 | | svst1_u64(mask, xacc + 6, acc3); |
5449 | | } else { |
5450 | | svbool_t mask = svptrue_pat_b64(SV_VL4); |
5451 | | svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
5452 | | svuint64_t acc1 = svld1_u64(mask, xacc + 4); |
5453 | | ACCRND(acc0, 0); |
5454 | | ACCRND(acc1, 4); |
5455 | | svst1_u64(mask, xacc + 0, acc0); |
5456 | | svst1_u64(mask, xacc + 4, acc1); |
5457 | | } |
5458 | | } |
5459 | | |
5460 | | XXH_FORCE_INLINE void |
5461 | | XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc, |
5462 | | const xxh_u8* XXH_RESTRICT input, |
5463 | | const xxh_u8* XXH_RESTRICT secret, |
5464 | | size_t nbStripes) |
5465 | | { |
5466 | | if (nbStripes != 0) { |
5467 | | uint64_t *xacc = (uint64_t *)acc; |
5468 | | const uint64_t *xinput = (const uint64_t *)(const void *)input; |
5469 | | const uint64_t *xsecret = (const uint64_t *)(const void *)secret; |
5470 | | svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1); |
5471 | | uint64_t element_count = svcntd(); |
5472 | | if (element_count >= 8) { |
5473 | | svbool_t mask = svptrue_pat_b64(SV_VL8); |
5474 | | svuint64_t vacc = svld1_u64(mask, xacc + 0); |
5475 | | do { |
5476 | | /* svprfd(svbool_t, void *, enum svfprop); */ |
5477 | | svprfd(mask, xinput + 128, SV_PLDL1STRM); |
5478 | | ACCRND(vacc, 0); |
5479 | | xinput += 8; |
5480 | | xsecret += 1; |
5481 | | nbStripes--; |
5482 | | } while (nbStripes != 0); |
5483 | | |
5484 | | svst1_u64(mask, xacc + 0, vacc); |
5485 | | } else if (element_count == 2) { /* sve128 */ |
5486 | | svbool_t mask = svptrue_pat_b64(SV_VL2); |
5487 | | svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
5488 | | svuint64_t acc1 = svld1_u64(mask, xacc + 2); |
5489 | | svuint64_t acc2 = svld1_u64(mask, xacc + 4); |
5490 | | svuint64_t acc3 = svld1_u64(mask, xacc + 6); |
5491 | | do { |
5492 | | svprfd(mask, xinput + 128, SV_PLDL1STRM); |
5493 | | ACCRND(acc0, 0); |
5494 | | ACCRND(acc1, 2); |
5495 | | ACCRND(acc2, 4); |
5496 | | ACCRND(acc3, 6); |
5497 | | xinput += 8; |
5498 | | xsecret += 1; |
5499 | | nbStripes--; |
5500 | | } while (nbStripes != 0); |
5501 | | |
5502 | | svst1_u64(mask, xacc + 0, acc0); |
5503 | | svst1_u64(mask, xacc + 2, acc1); |
5504 | | svst1_u64(mask, xacc + 4, acc2); |
5505 | | svst1_u64(mask, xacc + 6, acc3); |
5506 | | } else { |
5507 | | svbool_t mask = svptrue_pat_b64(SV_VL4); |
5508 | | svuint64_t acc0 = svld1_u64(mask, xacc + 0); |
5509 | | svuint64_t acc1 = svld1_u64(mask, xacc + 4); |
5510 | | do { |
5511 | | svprfd(mask, xinput + 128, SV_PLDL1STRM); |
5512 | | ACCRND(acc0, 0); |
5513 | | ACCRND(acc1, 4); |
5514 | | xinput += 8; |
5515 | | xsecret += 1; |
5516 | | nbStripes--; |
5517 | | } while (nbStripes != 0); |
5518 | | |
5519 | | svst1_u64(mask, xacc + 0, acc0); |
5520 | | svst1_u64(mask, xacc + 4, acc1); |
5521 | | } |
5522 | | } |
5523 | | } |
5524 | | |
5525 | | #endif |
5526 | | |
5527 | | /* scalar variants - universal */ |
5528 | | |
5529 | | #if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__)) |
5530 | | /* |
5531 | | * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they |
5532 | | * emit an excess mask and a full 64-bit multiply-add (MADD X-form). |
5533 | | * |
5534 | | * While this might not seem like much, as AArch64 is a 64-bit architecture, only |
5535 | | * big Cortex designs have a full 64-bit multiplier. |
5536 | | * |
5537 | | * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit |
5538 | | * multiplies expand to 2-3 multiplies in microcode. This has a major penalty |
5539 | | * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline. |
5540 | | * |
5541 | | * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does |
5542 | | * not have this penalty and does the mask automatically. |
5543 | | */ |
5544 | | XXH_FORCE_INLINE xxh_u64 |
5545 | | XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) |
5546 | | { |
5547 | | xxh_u64 ret; |
5548 | | /* note: %x = 64-bit register, %w = 32-bit register */ |
5549 | | __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc)); |
5550 | | return ret; |
5551 | | } |
5552 | | #else |
5553 | | XXH_FORCE_INLINE xxh_u64 |
5554 | | XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc) |
5555 | | { |
5556 | | return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc; |
5557 | | } |
5558 | | #endif |
5559 | | |
5560 | | /*! |
5561 | | * @internal |
5562 | | * @brief Scalar round for @ref XXH3_accumulate_512_scalar(). |
5563 | | * |
5564 | | * This is extracted to its own function because the NEON path uses a combination |
5565 | | * of NEON and scalar. |
5566 | | */ |
5567 | | XXH_FORCE_INLINE void |
5568 | | XXH3_scalarRound(void* XXH_RESTRICT acc, |
5569 | | void const* XXH_RESTRICT input, |
5570 | | void const* XXH_RESTRICT secret, |
5571 | | size_t lane) |
5572 | | { |
5573 | | xxh_u64* xacc = (xxh_u64*) acc; |
5574 | | xxh_u8 const* xinput = (xxh_u8 const*) input; |
5575 | | xxh_u8 const* xsecret = (xxh_u8 const*) secret; |
5576 | | XXH_ASSERT(lane < XXH_ACC_NB); |
5577 | | XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
5578 | | { |
5579 | | xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8); |
5580 | | xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8); |
5581 | | xacc[lane ^ 1] += data_val; /* swap adjacent lanes */ |
5582 | | xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]); |
5583 | | } |
5584 | | } |
5585 | | |
5586 | | /*! |
5587 | | * @internal |
5588 | | * @brief Processes a 64 byte block of data using the scalar path. |
5589 | | */ |
5590 | | XXH_FORCE_INLINE void |
5591 | | XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
5592 | | const void* XXH_RESTRICT input, |
5593 | | const void* XXH_RESTRICT secret) |
5594 | | { |
5595 | | size_t i; |
5596 | | /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */ |
5597 | | #if defined(__GNUC__) && !defined(__clang__) \ |
5598 | | && (defined(__arm__) || defined(__thumb2__)) \ |
5599 | | && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \ |
5600 | | && XXH_SIZE_OPT <= 0 |
5601 | | # pragma GCC unroll 8 |
5602 | | #endif |
5603 | | for (i=0; i < XXH_ACC_NB; i++) { |
5604 | | XXH3_scalarRound(acc, input, secret, i); |
5605 | | } |
5606 | | } |
5607 | | XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar) |
5608 | | |
5609 | | /*! |
5610 | | * @internal |
5611 | | * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar(). |
5612 | | * |
5613 | | * This is extracted to its own function because the NEON path uses a combination |
5614 | | * of NEON and scalar. |
5615 | | */ |
5616 | | XXH_FORCE_INLINE void |
5617 | | XXH3_scalarScrambleRound(void* XXH_RESTRICT acc, |
5618 | | void const* XXH_RESTRICT secret, |
5619 | | size_t lane) |
5620 | | { |
5621 | | xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
5622 | | const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
5623 | | XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
5624 | | XXH_ASSERT(lane < XXH_ACC_NB); |
5625 | | { |
5626 | | xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8); |
5627 | | xxh_u64 acc64 = xacc[lane]; |
5628 | | acc64 = XXH_xorshift64(acc64, 47); |
5629 | | acc64 ^= key64; |
5630 | | acc64 *= XXH_PRIME32_1; |
5631 | | xacc[lane] = acc64; |
5632 | | } |
5633 | | } |
5634 | | |
5635 | | /*! |
5636 | | * @internal |
5637 | | * @brief Scrambles the accumulators after a large chunk has been read |
5638 | | */ |
5639 | | XXH_FORCE_INLINE void |
5640 | | XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
5641 | | { |
5642 | | size_t i; |
5643 | | for (i=0; i < XXH_ACC_NB; i++) { |
5644 | | XXH3_scalarScrambleRound(acc, secret, i); |
5645 | | } |
5646 | | } |
5647 | | |
5648 | | XXH_FORCE_INLINE void |
5649 | | XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
5650 | | { |
5651 | | /* |
5652 | | * We need a separate pointer for the hack below, |
5653 | | * which requires a non-const pointer. |
5654 | | * Any decent compiler will optimize this out otherwise. |
5655 | | */ |
5656 | | const xxh_u8* kSecretPtr = XXH3_kSecret; |
5657 | | XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
5658 | | |
5659 | | #if defined(__GNUC__) && defined(__aarch64__) |
5660 | | /* |
5661 | | * UGLY HACK: |
5662 | | * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are |
5663 | | * placed sequentially, in order, at the top of the unrolled loop. |
5664 | | * |
5665 | | * While MOVK is great for generating constants (2 cycles for a 64-bit |
5666 | | * constant compared to 4 cycles for LDR), it fights for bandwidth with |
5667 | | * the arithmetic instructions. |
5668 | | * |
5669 | | * I L S |
5670 | | * MOVK |
5671 | | * MOVK |
5672 | | * MOVK |
5673 | | * MOVK |
5674 | | * ADD |
5675 | | * SUB STR |
5676 | | * STR |
5677 | | * By forcing loads from memory (as the asm line causes the compiler to assume |
5678 | | * that XXH3_kSecretPtr has been changed), the pipelines are used more |
5679 | | * efficiently: |
5680 | | * I L S |
5681 | | * LDR |
5682 | | * ADD LDR |
5683 | | * SUB STR |
5684 | | * STR |
5685 | | * |
5686 | | * See XXH3_NEON_LANES for details on the pipsline. |
5687 | | * |
5688 | | * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
5689 | | * without hack: 2654.4 MB/s |
5690 | | * with hack: 3202.9 MB/s |
5691 | | */ |
5692 | | XXH_COMPILER_GUARD(kSecretPtr); |
5693 | | #endif |
5694 | | { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
5695 | | int i; |
5696 | | for (i=0; i < nbRounds; i++) { |
5697 | | /* |
5698 | | * The asm hack causes the compiler to assume that kSecretPtr aliases with |
5699 | | * customSecret, and on aarch64, this prevented LDP from merging two |
5700 | | * loads together for free. Putting the loads together before the stores |
5701 | | * properly generates LDP. |
5702 | | */ |
5703 | | xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
5704 | | xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
5705 | | XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
5706 | | XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
5707 | | } } |
5708 | | } |
5709 | | |
5710 | | |
5711 | | typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t); |
5712 | | typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
5713 | | typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
5714 | | |
5715 | | |
5716 | | #if (XXH_VECTOR == XXH_AVX512) |
5717 | | |
5718 | | #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
5719 | | #define XXH3_accumulate XXH3_accumulate_avx512 |
5720 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
5721 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
5722 | | |
5723 | | #elif (XXH_VECTOR == XXH_AVX2) |
5724 | | |
5725 | | #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
5726 | | #define XXH3_accumulate XXH3_accumulate_avx2 |
5727 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
5728 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
5729 | | |
5730 | | #elif (XXH_VECTOR == XXH_SSE2) |
5731 | | |
5732 | | #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
5733 | | #define XXH3_accumulate XXH3_accumulate_sse2 |
5734 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
5735 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
5736 | | |
5737 | | #elif (XXH_VECTOR == XXH_NEON) |
5738 | | |
5739 | | #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
5740 | | #define XXH3_accumulate XXH3_accumulate_neon |
5741 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
5742 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
5743 | | |
5744 | | #elif (XXH_VECTOR == XXH_VSX) |
5745 | | |
5746 | | #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
5747 | | #define XXH3_accumulate XXH3_accumulate_vsx |
5748 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
5749 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
5750 | | |
5751 | | #elif (XXH_VECTOR == XXH_SVE) |
5752 | | #define XXH3_accumulate_512 XXH3_accumulate_512_sve |
5753 | | #define XXH3_accumulate XXH3_accumulate_sve |
5754 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
5755 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
5756 | | |
5757 | | #else /* scalar */ |
5758 | | |
5759 | | #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
5760 | | #define XXH3_accumulate XXH3_accumulate_scalar |
5761 | | #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
5762 | | #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
5763 | | |
5764 | | #endif |
5765 | | |
5766 | | #if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */ |
5767 | | # undef XXH3_initCustomSecret |
5768 | | # define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
5769 | | #endif |
5770 | | |
5771 | | XXH_FORCE_INLINE void |
5772 | | XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
5773 | | const xxh_u8* XXH_RESTRICT input, size_t len, |
5774 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
5775 | | XXH3_f_accumulate f_acc, |
5776 | | XXH3_f_scrambleAcc f_scramble) |
5777 | | { |
5778 | | size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
5779 | | size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
5780 | | size_t const nb_blocks = (len - 1) / block_len; |
5781 | | |
5782 | | size_t n; |
5783 | | |
5784 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
5785 | | |
5786 | | for (n = 0; n < nb_blocks; n++) { |
5787 | | f_acc(acc, input + n*block_len, secret, nbStripesPerBlock); |
5788 | | f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
5789 | | } |
5790 | | |
5791 | | /* last partial block */ |
5792 | | XXH_ASSERT(len > XXH_STRIPE_LEN); |
5793 | | { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
5794 | | XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
5795 | | f_acc(acc, input + nb_blocks*block_len, secret, nbStripes); |
5796 | | |
5797 | | /* last stripe */ |
5798 | | { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
5799 | | #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
5800 | | XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
5801 | | } } |
5802 | | } |
5803 | | |
5804 | | XXH_FORCE_INLINE xxh_u64 |
5805 | | XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
5806 | | { |
5807 | | return XXH3_mul128_fold64( |
5808 | | acc[0] ^ XXH_readLE64(secret), |
5809 | | acc[1] ^ XXH_readLE64(secret+8) ); |
5810 | | } |
5811 | | |
5812 | | static XXH64_hash_t |
5813 | | XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
5814 | | { |
5815 | | xxh_u64 result64 = start; |
5816 | | size_t i = 0; |
5817 | | |
5818 | | for (i = 0; i < 4; i++) { |
5819 | | result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
5820 | | #if defined(__clang__) /* Clang */ \ |
5821 | | && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
5822 | | && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
5823 | | && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
5824 | | /* |
5825 | | * UGLY HACK: |
5826 | | * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
5827 | | * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
5828 | | * XXH3_64bits, len == 256, Snapdragon 835: |
5829 | | * without hack: 2063.7 MB/s |
5830 | | * with hack: 2560.7 MB/s |
5831 | | */ |
5832 | | XXH_COMPILER_GUARD(result64); |
5833 | | #endif |
5834 | | } |
5835 | | |
5836 | | return XXH3_avalanche(result64); |
5837 | | } |
5838 | | |
5839 | | #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
5840 | | XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
5841 | | |
5842 | | XXH_FORCE_INLINE XXH64_hash_t |
5843 | | XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len, |
5844 | | const void* XXH_RESTRICT secret, size_t secretSize, |
5845 | | XXH3_f_accumulate f_acc, |
5846 | | XXH3_f_scrambleAcc f_scramble) |
5847 | | { |
5848 | | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
5849 | | |
5850 | | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble); |
5851 | | |
5852 | | /* converge into final hash */ |
5853 | | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
5854 | | /* do not align on 8, so that the secret is different from the accumulator */ |
5855 | | #define XXH_SECRET_MERGEACCS_START 11 |
5856 | | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
5857 | | return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
5858 | | } |
5859 | | |
5860 | | /* |
5861 | | * It's important for performance to transmit secret's size (when it's static) |
5862 | | * so that the compiler can properly optimize the vectorized loop. |
5863 | | * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set. |
5864 | | * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE |
5865 | | * breaks -Og, this is XXH_NO_INLINE. |
5866 | | */ |
5867 | | XXH3_WITH_SECRET_INLINE XXH64_hash_t |
5868 | | XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len, |
5869 | | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
5870 | | { |
5871 | | (void)seed64; |
5872 | | return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc); |
5873 | | } |
5874 | | |
5875 | | /* |
5876 | | * It's preferable for performance that XXH3_hashLong is not inlined, |
5877 | | * as it results in a smaller function for small data, easier to the instruction cache. |
5878 | | * Note that inside this no_inline function, we do inline the internal loop, |
5879 | | * and provide a statically defined secret size to allow optimization of vector loop. |
5880 | | */ |
5881 | | XXH_NO_INLINE XXH_PUREF XXH64_hash_t |
5882 | | XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len, |
5883 | | XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
5884 | | { |
5885 | | (void)seed64; (void)secret; (void)secretLen; |
5886 | | return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc); |
5887 | | } |
5888 | | |
5889 | | /* |
5890 | | * XXH3_hashLong_64b_withSeed(): |
5891 | | * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
5892 | | * and then use this key for long mode hashing. |
5893 | | * |
5894 | | * This operation is decently fast but nonetheless costs a little bit of time. |
5895 | | * Try to avoid it whenever possible (typically when seed==0). |
5896 | | * |
5897 | | * It's important for performance that XXH3_hashLong is not inlined. Not sure |
5898 | | * why (uop cache maybe?), but the difference is large and easily measurable. |
5899 | | */ |
5900 | | XXH_FORCE_INLINE XXH64_hash_t |
5901 | | XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len, |
5902 | | XXH64_hash_t seed, |
5903 | | XXH3_f_accumulate f_acc, |
5904 | | XXH3_f_scrambleAcc f_scramble, |
5905 | | XXH3_f_initCustomSecret f_initSec) |
5906 | | { |
5907 | | #if XXH_SIZE_OPT <= 0 |
5908 | | if (seed == 0) |
5909 | | return XXH3_hashLong_64b_internal(input, len, |
5910 | | XXH3_kSecret, sizeof(XXH3_kSecret), |
5911 | | f_acc, f_scramble); |
5912 | | #endif |
5913 | | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
5914 | | f_initSec(secret, seed); |
5915 | | return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
5916 | | f_acc, f_scramble); |
5917 | | } |
5918 | | } |
5919 | | |
5920 | | /* |
5921 | | * It's important for performance that XXH3_hashLong is not inlined. |
5922 | | */ |
5923 | | XXH_NO_INLINE XXH64_hash_t |
5924 | | XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len, |
5925 | | XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
5926 | | { |
5927 | | (void)secret; (void)secretLen; |
5928 | | return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
5929 | | XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); |
5930 | | } |
5931 | | |
5932 | | |
5933 | | typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t, |
5934 | | XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
5935 | | |
5936 | | XXH_FORCE_INLINE XXH64_hash_t |
5937 | | XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
5938 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
5939 | | XXH3_hashLong64_f f_hashLong) |
5940 | | { |
5941 | | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
5942 | | /* |
5943 | | * If an action is to be taken if `secretLen` condition is not respected, |
5944 | | * it should be done here. |
5945 | | * For now, it's a contract pre-condition. |
5946 | | * Adding a check and a branch here would cost performance at every hash. |
5947 | | * Also, note that function signature doesn't offer room to return an error. |
5948 | | */ |
5949 | | if (len <= 16) |
5950 | | return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
5951 | | if (len <= 128) |
5952 | | return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5953 | | if (len <= XXH3_MIDSIZE_MAX) |
5954 | | return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
5955 | | return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen); |
5956 | | } |
5957 | | |
5958 | | |
5959 | | /* === Public entry point === */ |
5960 | | |
5961 | | /*! @ingroup XXH3_family */ |
5962 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length) |
5963 | | { |
5964 | | return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
5965 | | } |
5966 | | |
5967 | | /*! @ingroup XXH3_family */ |
5968 | | XXH_PUBLIC_API XXH64_hash_t |
5969 | | XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize) |
5970 | | { |
5971 | | return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
5972 | | } |
5973 | | |
5974 | | /*! @ingroup XXH3_family */ |
5975 | | XXH_PUBLIC_API XXH64_hash_t |
5976 | | XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed) |
5977 | | { |
5978 | | return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
5979 | | } |
5980 | | |
5981 | | XXH_PUBLIC_API XXH64_hash_t |
5982 | | XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
5983 | | { |
5984 | | if (length <= XXH3_MIDSIZE_MAX) |
5985 | | return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
5986 | | return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize); |
5987 | | } |
5988 | | |
5989 | | |
5990 | | /* === XXH3 streaming === */ |
5991 | | #ifndef XXH_NO_STREAM |
5992 | | /* |
5993 | | * Malloc's a pointer that is always aligned to align. |
5994 | | * |
5995 | | * This must be freed with `XXH_alignedFree()`. |
5996 | | * |
5997 | | * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
5998 | | * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
5999 | | * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
6000 | | * |
6001 | | * This underalignment previously caused a rather obvious crash which went |
6002 | | * completely unnoticed due to XXH3_createState() not actually being tested. |
6003 | | * Credit to RedSpah for noticing this bug. |
6004 | | * |
6005 | | * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
6006 | | * are avoided: To maintain portability, we would have to write a fallback |
6007 | | * like this anyways, and besides, testing for the existence of library |
6008 | | * functions without relying on external build tools is impossible. |
6009 | | * |
6010 | | * The method is simple: Overallocate, manually align, and store the offset |
6011 | | * to the original behind the returned pointer. |
6012 | | * |
6013 | | * Align must be a power of 2 and 8 <= align <= 128. |
6014 | | */ |
6015 | | static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align) |
6016 | | { |
6017 | | XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
6018 | | XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
6019 | | XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
6020 | | { /* Overallocate to make room for manual realignment and an offset byte */ |
6021 | | xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
6022 | | if (base != NULL) { |
6023 | | /* |
6024 | | * Get the offset needed to align this pointer. |
6025 | | * |
6026 | | * Even if the returned pointer is aligned, there will always be |
6027 | | * at least one byte to store the offset to the original pointer. |
6028 | | */ |
6029 | | size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
6030 | | /* Add the offset for the now-aligned pointer */ |
6031 | | xxh_u8* ptr = base + offset; |
6032 | | |
6033 | | XXH_ASSERT((size_t)ptr % align == 0); |
6034 | | |
6035 | | /* Store the offset immediately before the returned pointer. */ |
6036 | | ptr[-1] = (xxh_u8)offset; |
6037 | | return ptr; |
6038 | | } |
6039 | | return NULL; |
6040 | | } |
6041 | | } |
6042 | | /* |
6043 | | * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
6044 | | * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
6045 | | */ |
6046 | | static void XXH_alignedFree(void* p) |
6047 | | { |
6048 | | if (p != NULL) { |
6049 | | xxh_u8* ptr = (xxh_u8*)p; |
6050 | | /* Get the offset byte we added in XXH_malloc. */ |
6051 | | xxh_u8 offset = ptr[-1]; |
6052 | | /* Free the original malloc'd pointer */ |
6053 | | xxh_u8* base = ptr - offset; |
6054 | | XXH_free(base); |
6055 | | } |
6056 | | } |
6057 | | /*! @ingroup XXH3_family */ |
6058 | | /*! |
6059 | | * @brief Allocate an @ref XXH3_state_t. |
6060 | | * |
6061 | | * @return An allocated pointer of @ref XXH3_state_t on success. |
6062 | | * @return `NULL` on failure. |
6063 | | * |
6064 | | * @note Must be freed with XXH3_freeState(). |
6065 | | */ |
6066 | | XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
6067 | | { |
6068 | | XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
6069 | | if (state==NULL) return NULL; |
6070 | | XXH3_INITSTATE(state); |
6071 | | return state; |
6072 | | } |
6073 | | |
6074 | | /*! @ingroup XXH3_family */ |
6075 | | /*! |
6076 | | * @brief Frees an @ref XXH3_state_t. |
6077 | | * |
6078 | | * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState(). |
6079 | | * |
6080 | | * @return @ref XXH_OK. |
6081 | | * |
6082 | | * @note Must be allocated with XXH3_createState(). |
6083 | | */ |
6084 | | XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
6085 | | { |
6086 | | XXH_alignedFree(statePtr); |
6087 | | return XXH_OK; |
6088 | | } |
6089 | | |
6090 | | /*! @ingroup XXH3_family */ |
6091 | | XXH_PUBLIC_API void |
6092 | | XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state) |
6093 | | { |
6094 | | XXH_memcpy(dst_state, src_state, sizeof(*dst_state)); |
6095 | | } |
6096 | | |
6097 | | static void |
6098 | | XXH3_reset_internal(XXH3_state_t* statePtr, |
6099 | | XXH64_hash_t seed, |
6100 | | const void* secret, size_t secretSize) |
6101 | | { |
6102 | | size_t const initStart = offsetof(XXH3_state_t, bufferedSize); |
6103 | | size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart; |
6104 | | XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart); |
6105 | | XXH_ASSERT(statePtr != NULL); |
6106 | | /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */ |
6107 | | memset((char*)statePtr + initStart, 0, initLength); |
6108 | | statePtr->acc[0] = XXH_PRIME32_3; |
6109 | | statePtr->acc[1] = XXH_PRIME64_1; |
6110 | | statePtr->acc[2] = XXH_PRIME64_2; |
6111 | | statePtr->acc[3] = XXH_PRIME64_3; |
6112 | | statePtr->acc[4] = XXH_PRIME64_4; |
6113 | | statePtr->acc[5] = XXH_PRIME32_2; |
6114 | | statePtr->acc[6] = XXH_PRIME64_5; |
6115 | | statePtr->acc[7] = XXH_PRIME32_1; |
6116 | | statePtr->seed = seed; |
6117 | | statePtr->useSeed = (seed != 0); |
6118 | | statePtr->extSecret = (const unsigned char*)secret; |
6119 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
6120 | | statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
6121 | | statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
6122 | | } |
6123 | | |
6124 | | /*! @ingroup XXH3_family */ |
6125 | | XXH_PUBLIC_API XXH_errorcode |
6126 | | XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) |
6127 | | { |
6128 | | if (statePtr == NULL) return XXH_ERROR; |
6129 | | XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
6130 | | return XXH_OK; |
6131 | | } |
6132 | | |
6133 | | /*! @ingroup XXH3_family */ |
6134 | | XXH_PUBLIC_API XXH_errorcode |
6135 | | XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) |
6136 | | { |
6137 | | if (statePtr == NULL) return XXH_ERROR; |
6138 | | XXH3_reset_internal(statePtr, 0, secret, secretSize); |
6139 | | if (secret == NULL) return XXH_ERROR; |
6140 | | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
6141 | | return XXH_OK; |
6142 | | } |
6143 | | |
6144 | | /*! @ingroup XXH3_family */ |
6145 | | XXH_PUBLIC_API XXH_errorcode |
6146 | | XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) |
6147 | | { |
6148 | | if (statePtr == NULL) return XXH_ERROR; |
6149 | | if (seed==0) return XXH3_64bits_reset(statePtr); |
6150 | | if ((seed != statePtr->seed) || (statePtr->extSecret != NULL)) |
6151 | | XXH3_initCustomSecret(statePtr->customSecret, seed); |
6152 | | XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE); |
6153 | | return XXH_OK; |
6154 | | } |
6155 | | |
6156 | | /*! @ingroup XXH3_family */ |
6157 | | XXH_PUBLIC_API XXH_errorcode |
6158 | | XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64) |
6159 | | { |
6160 | | if (statePtr == NULL) return XXH_ERROR; |
6161 | | if (secret == NULL) return XXH_ERROR; |
6162 | | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
6163 | | XXH3_reset_internal(statePtr, seed64, secret, secretSize); |
6164 | | statePtr->useSeed = 1; /* always, even if seed64==0 */ |
6165 | | return XXH_OK; |
6166 | | } |
6167 | | |
6168 | | /*! |
6169 | | * @internal |
6170 | | * @brief Processes a large input for XXH3_update() and XXH3_digest_long(). |
6171 | | * |
6172 | | * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block. |
6173 | | * |
6174 | | * @param acc Pointer to the 8 accumulator lanes |
6175 | | * @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block* |
6176 | | * @param nbStripesPerBlock Number of stripes in a block |
6177 | | * @param input Input pointer |
6178 | | * @param nbStripes Number of stripes to process |
6179 | | * @param secret Secret pointer |
6180 | | * @param secretLimit Offset of the last block in @p secret |
6181 | | * @param f_acc Pointer to an XXH3_accumulate implementation |
6182 | | * @param f_scramble Pointer to an XXH3_scrambleAcc implementation |
6183 | | * @return Pointer past the end of @p input after processing |
6184 | | */ |
6185 | | XXH_FORCE_INLINE const xxh_u8 * |
6186 | | XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
6187 | | size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
6188 | | const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
6189 | | const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
6190 | | XXH3_f_accumulate f_acc, |
6191 | | XXH3_f_scrambleAcc f_scramble) |
6192 | | { |
6193 | | const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE; |
6194 | | /* Process full blocks */ |
6195 | | if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) { |
6196 | | /* Process the initial partial block... */ |
6197 | | size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr; |
6198 | | |
6199 | | do { |
6200 | | /* Accumulate and scramble */ |
6201 | | f_acc(acc, input, initialSecret, nbStripesThisIter); |
6202 | | f_scramble(acc, secret + secretLimit); |
6203 | | input += nbStripesThisIter * XXH_STRIPE_LEN; |
6204 | | nbStripes -= nbStripesThisIter; |
6205 | | /* Then continue the loop with the full block size */ |
6206 | | nbStripesThisIter = nbStripesPerBlock; |
6207 | | initialSecret = secret; |
6208 | | } while (nbStripes >= nbStripesPerBlock); |
6209 | | *nbStripesSoFarPtr = 0; |
6210 | | } |
6211 | | /* Process a partial block */ |
6212 | | if (nbStripes > 0) { |
6213 | | f_acc(acc, input, initialSecret, nbStripes); |
6214 | | input += nbStripes * XXH_STRIPE_LEN; |
6215 | | *nbStripesSoFarPtr += nbStripes; |
6216 | | } |
6217 | | /* Return end pointer */ |
6218 | | return input; |
6219 | | } |
6220 | | |
6221 | | #ifndef XXH3_STREAM_USE_STACK |
6222 | | # if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */ |
6223 | | # define XXH3_STREAM_USE_STACK 1 |
6224 | | # endif |
6225 | | #endif |
6226 | | /* |
6227 | | * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
6228 | | */ |
6229 | | XXH_FORCE_INLINE XXH_errorcode |
6230 | | XXH3_update(XXH3_state_t* XXH_RESTRICT const state, |
6231 | | const xxh_u8* XXH_RESTRICT input, size_t len, |
6232 | | XXH3_f_accumulate f_acc, |
6233 | | XXH3_f_scrambleAcc f_scramble) |
6234 | | { |
6235 | | if (input==NULL) { |
6236 | | XXH_ASSERT(len == 0); |
6237 | | return XXH_OK; |
6238 | | } |
6239 | | |
6240 | | XXH_ASSERT(state != NULL); |
6241 | | { const xxh_u8* const bEnd = input + len; |
6242 | | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
6243 | | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
6244 | | /* For some reason, gcc and MSVC seem to suffer greatly |
6245 | | * when operating accumulators directly into state. |
6246 | | * Operating into stack space seems to enable proper optimization. |
6247 | | * clang, on the other hand, doesn't seem to need this trick */ |
6248 | | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; |
6249 | | XXH_memcpy(acc, state->acc, sizeof(acc)); |
6250 | | #else |
6251 | | xxh_u64* XXH_RESTRICT const acc = state->acc; |
6252 | | #endif |
6253 | | state->totalLen += len; |
6254 | | XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE); |
6255 | | |
6256 | | /* small input : just fill in tmp buffer */ |
6257 | | if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) { |
6258 | | XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
6259 | | state->bufferedSize += (XXH32_hash_t)len; |
6260 | | return XXH_OK; |
6261 | | } |
6262 | | |
6263 | | /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
6264 | | #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
6265 | | XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
6266 | | |
6267 | | /* |
6268 | | * Internal buffer is partially filled (always, except at beginning) |
6269 | | * Complete it, then consume it. |
6270 | | */ |
6271 | | if (state->bufferedSize) { |
6272 | | size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
6273 | | XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
6274 | | input += loadSize; |
6275 | | XXH3_consumeStripes(acc, |
6276 | | &state->nbStripesSoFar, state->nbStripesPerBlock, |
6277 | | state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
6278 | | secret, state->secretLimit, |
6279 | | f_acc, f_scramble); |
6280 | | state->bufferedSize = 0; |
6281 | | } |
6282 | | XXH_ASSERT(input < bEnd); |
6283 | | if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) { |
6284 | | size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN; |
6285 | | input = XXH3_consumeStripes(acc, |
6286 | | &state->nbStripesSoFar, state->nbStripesPerBlock, |
6287 | | input, nbStripes, |
6288 | | secret, state->secretLimit, |
6289 | | f_acc, f_scramble); |
6290 | | XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
6291 | | |
6292 | | } |
6293 | | /* Some remaining input (always) : buffer it */ |
6294 | | XXH_ASSERT(input < bEnd); |
6295 | | XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE); |
6296 | | XXH_ASSERT(state->bufferedSize == 0); |
6297 | | XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
6298 | | state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
6299 | | #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1 |
6300 | | /* save stack accumulators into state */ |
6301 | | XXH_memcpy(state->acc, acc, sizeof(acc)); |
6302 | | #endif |
6303 | | } |
6304 | | |
6305 | | return XXH_OK; |
6306 | | } |
6307 | | |
6308 | | /*! @ingroup XXH3_family */ |
6309 | | XXH_PUBLIC_API XXH_errorcode |
6310 | | XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
6311 | | { |
6312 | | return XXH3_update(state, (const xxh_u8*)input, len, |
6313 | | XXH3_accumulate, XXH3_scrambleAcc); |
6314 | | } |
6315 | | |
6316 | | |
6317 | | XXH_FORCE_INLINE void |
6318 | | XXH3_digest_long (XXH64_hash_t* acc, |
6319 | | const XXH3_state_t* state, |
6320 | | const unsigned char* secret) |
6321 | | { |
6322 | | xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
6323 | | const xxh_u8* lastStripePtr; |
6324 | | |
6325 | | /* |
6326 | | * Digest on a local copy. This way, the state remains unaltered, and it can |
6327 | | * continue ingesting more input afterwards. |
6328 | | */ |
6329 | | XXH_memcpy(acc, state->acc, sizeof(state->acc)); |
6330 | | if (state->bufferedSize >= XXH_STRIPE_LEN) { |
6331 | | /* Consume remaining stripes then point to remaining data in buffer */ |
6332 | | size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
6333 | | size_t nbStripesSoFar = state->nbStripesSoFar; |
6334 | | XXH3_consumeStripes(acc, |
6335 | | &nbStripesSoFar, state->nbStripesPerBlock, |
6336 | | state->buffer, nbStripes, |
6337 | | secret, state->secretLimit, |
6338 | | XXH3_accumulate, XXH3_scrambleAcc); |
6339 | | lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN; |
6340 | | } else { /* bufferedSize < XXH_STRIPE_LEN */ |
6341 | | /* Copy to temp buffer */ |
6342 | | size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
6343 | | XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
6344 | | XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
6345 | | XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
6346 | | lastStripePtr = lastStripe; |
6347 | | } |
6348 | | /* Last stripe */ |
6349 | | XXH3_accumulate_512(acc, |
6350 | | lastStripePtr, |
6351 | | secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
6352 | | } |
6353 | | |
6354 | | /*! @ingroup XXH3_family */ |
6355 | | XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state) |
6356 | | { |
6357 | | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
6358 | | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
6359 | | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
6360 | | XXH3_digest_long(acc, state, secret); |
6361 | | return XXH3_mergeAccs(acc, |
6362 | | secret + XXH_SECRET_MERGEACCS_START, |
6363 | | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
6364 | | } |
6365 | | /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
6366 | | if (state->useSeed) |
6367 | | return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
6368 | | return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
6369 | | secret, state->secretLimit + XXH_STRIPE_LEN); |
6370 | | } |
6371 | | #endif /* !XXH_NO_STREAM */ |
6372 | | |
6373 | | |
6374 | | /* ========================================== |
6375 | | * XXH3 128 bits (a.k.a XXH128) |
6376 | | * ========================================== |
6377 | | * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
6378 | | * even without counting the significantly larger output size. |
6379 | | * |
6380 | | * For example, extra steps are taken to avoid the seed-dependent collisions |
6381 | | * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
6382 | | * |
6383 | | * This strength naturally comes at the cost of some speed, especially on short |
6384 | | * lengths. Note that longer hashes are about as fast as the 64-bit version |
6385 | | * due to it using only a slight modification of the 64-bit loop. |
6386 | | * |
6387 | | * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
6388 | | * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
6389 | | */ |
6390 | | |
6391 | | XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
6392 | | XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
6393 | | { |
6394 | | /* A doubled version of 1to3_64b with different constants. */ |
6395 | | XXH_ASSERT(input != NULL); |
6396 | | XXH_ASSERT(1 <= len && len <= 3); |
6397 | | XXH_ASSERT(secret != NULL); |
6398 | | /* |
6399 | | * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
6400 | | * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
6401 | | * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
6402 | | */ |
6403 | | { xxh_u8 const c1 = input[0]; |
6404 | | xxh_u8 const c2 = input[len >> 1]; |
6405 | | xxh_u8 const c3 = input[len - 1]; |
6406 | | xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
6407 | | | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
6408 | | xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
6409 | | xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
6410 | | xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
6411 | | xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
6412 | | xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
6413 | | XXH128_hash_t h128; |
6414 | | h128.low64 = XXH64_avalanche(keyed_lo); |
6415 | | h128.high64 = XXH64_avalanche(keyed_hi); |
6416 | | return h128; |
6417 | | } |
6418 | | } |
6419 | | |
6420 | | XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
6421 | | XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
6422 | | { |
6423 | | XXH_ASSERT(input != NULL); |
6424 | | XXH_ASSERT(secret != NULL); |
6425 | | XXH_ASSERT(4 <= len && len <= 8); |
6426 | | seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
6427 | | { xxh_u32 const input_lo = XXH_readLE32(input); |
6428 | | xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
6429 | | xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
6430 | | xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
6431 | | xxh_u64 const keyed = input_64 ^ bitflip; |
6432 | | |
6433 | | /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
6434 | | XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
6435 | | |
6436 | | m128.high64 += (m128.low64 << 1); |
6437 | | m128.low64 ^= (m128.high64 >> 3); |
6438 | | |
6439 | | m128.low64 = XXH_xorshift64(m128.low64, 35); |
6440 | | m128.low64 *= PRIME_MX2; |
6441 | | m128.low64 = XXH_xorshift64(m128.low64, 28); |
6442 | | m128.high64 = XXH3_avalanche(m128.high64); |
6443 | | return m128; |
6444 | | } |
6445 | | } |
6446 | | |
6447 | | XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
6448 | | XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
6449 | | { |
6450 | | XXH_ASSERT(input != NULL); |
6451 | | XXH_ASSERT(secret != NULL); |
6452 | | XXH_ASSERT(9 <= len && len <= 16); |
6453 | | { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
6454 | | xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
6455 | | xxh_u64 const input_lo = XXH_readLE64(input); |
6456 | | xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
6457 | | XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
6458 | | /* |
6459 | | * Put len in the middle of m128 to ensure that the length gets mixed to |
6460 | | * both the low and high bits in the 128x64 multiply below. |
6461 | | */ |
6462 | | m128.low64 += (xxh_u64)(len - 1) << 54; |
6463 | | input_hi ^= bitfliph; |
6464 | | /* |
6465 | | * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
6466 | | * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
6467 | | * the high 64 bits of m128. |
6468 | | * |
6469 | | * The best approach to this operation is different on 32-bit and 64-bit. |
6470 | | */ |
6471 | | if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
6472 | | /* |
6473 | | * 32-bit optimized version, which is more readable. |
6474 | | * |
6475 | | * On 32-bit, it removes an ADC and delays a dependency between the two |
6476 | | * halves of m128.high64, but it generates an extra mask on 64-bit. |
6477 | | */ |
6478 | | m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
6479 | | } else { |
6480 | | /* |
6481 | | * 64-bit optimized (albeit more confusing) version. |
6482 | | * |
6483 | | * Uses some properties of addition and multiplication to remove the mask: |
6484 | | * |
6485 | | * Let: |
6486 | | * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
6487 | | * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
6488 | | * c = XXH_PRIME32_2 |
6489 | | * |
6490 | | * a + (b * c) |
6491 | | * Inverse Property: x + y - x == y |
6492 | | * a + (b * (1 + c - 1)) |
6493 | | * Distributive Property: x * (y + z) == (x * y) + (x * z) |
6494 | | * a + (b * 1) + (b * (c - 1)) |
6495 | | * Identity Property: x * 1 == x |
6496 | | * a + b + (b * (c - 1)) |
6497 | | * |
6498 | | * Substitute a, b, and c: |
6499 | | * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
6500 | | * |
6501 | | * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
6502 | | * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
6503 | | */ |
6504 | | m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
6505 | | } |
6506 | | /* m128 ^= XXH_swap64(m128 >> 64); */ |
6507 | | m128.low64 ^= XXH_swap64(m128.high64); |
6508 | | |
6509 | | { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
6510 | | XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
6511 | | h128.high64 += m128.high64 * XXH_PRIME64_2; |
6512 | | |
6513 | | h128.low64 = XXH3_avalanche(h128.low64); |
6514 | | h128.high64 = XXH3_avalanche(h128.high64); |
6515 | | return h128; |
6516 | | } } |
6517 | | } |
6518 | | |
6519 | | /* |
6520 | | * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
6521 | | */ |
6522 | | XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
6523 | | XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
6524 | | { |
6525 | | XXH_ASSERT(len <= 16); |
6526 | | { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
6527 | | if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
6528 | | if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
6529 | | { XXH128_hash_t h128; |
6530 | | xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
6531 | | xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
6532 | | h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
6533 | | h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
6534 | | return h128; |
6535 | | } } |
6536 | | } |
6537 | | |
6538 | | /* |
6539 | | * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
6540 | | */ |
6541 | | XXH_FORCE_INLINE XXH128_hash_t |
6542 | | XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
6543 | | const xxh_u8* secret, XXH64_hash_t seed) |
6544 | | { |
6545 | | acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
6546 | | acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
6547 | | acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
6548 | | acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
6549 | | return acc; |
6550 | | } |
6551 | | |
6552 | | |
6553 | | XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t |
6554 | | XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
6555 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
6556 | | XXH64_hash_t seed) |
6557 | | { |
6558 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
6559 | | XXH_ASSERT(16 < len && len <= 128); |
6560 | | |
6561 | | { XXH128_hash_t acc; |
6562 | | acc.low64 = len * XXH_PRIME64_1; |
6563 | | acc.high64 = 0; |
6564 | | |
6565 | | #if XXH_SIZE_OPT >= 1 |
6566 | | { |
6567 | | /* Smaller, but slightly slower. */ |
6568 | | unsigned int i = (unsigned int)(len - 1) / 32; |
6569 | | do { |
6570 | | acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed); |
6571 | | } while (i-- != 0); |
6572 | | } |
6573 | | #else |
6574 | | if (len > 32) { |
6575 | | if (len > 64) { |
6576 | | if (len > 96) { |
6577 | | acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
6578 | | } |
6579 | | acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
6580 | | } |
6581 | | acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
6582 | | } |
6583 | | acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
6584 | | #endif |
6585 | | { XXH128_hash_t h128; |
6586 | | h128.low64 = acc.low64 + acc.high64; |
6587 | | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
6588 | | + (acc.high64 * XXH_PRIME64_4) |
6589 | | + ((len - seed) * XXH_PRIME64_2); |
6590 | | h128.low64 = XXH3_avalanche(h128.low64); |
6591 | | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
6592 | | return h128; |
6593 | | } |
6594 | | } |
6595 | | } |
6596 | | |
6597 | | XXH_NO_INLINE XXH_PUREF XXH128_hash_t |
6598 | | XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
6599 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
6600 | | XXH64_hash_t seed) |
6601 | | { |
6602 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
6603 | | XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
6604 | | |
6605 | | { XXH128_hash_t acc; |
6606 | | unsigned i; |
6607 | | acc.low64 = len * XXH_PRIME64_1; |
6608 | | acc.high64 = 0; |
6609 | | /* |
6610 | | * We set as `i` as offset + 32. We do this so that unchanged |
6611 | | * `len` can be used as upper bound. This reaches a sweet spot |
6612 | | * where both x86 and aarch64 get simple agen and good codegen |
6613 | | * for the loop. |
6614 | | */ |
6615 | | for (i = 32; i < 160; i += 32) { |
6616 | | acc = XXH128_mix32B(acc, |
6617 | | input + i - 32, |
6618 | | input + i - 16, |
6619 | | secret + i - 32, |
6620 | | seed); |
6621 | | } |
6622 | | acc.low64 = XXH3_avalanche(acc.low64); |
6623 | | acc.high64 = XXH3_avalanche(acc.high64); |
6624 | | /* |
6625 | | * NB: `i <= len` will duplicate the last 32-bytes if |
6626 | | * len % 32 was zero. This is an unfortunate necessity to keep |
6627 | | * the hash result stable. |
6628 | | */ |
6629 | | for (i=160; i <= len; i += 32) { |
6630 | | acc = XXH128_mix32B(acc, |
6631 | | input + i - 32, |
6632 | | input + i - 16, |
6633 | | secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, |
6634 | | seed); |
6635 | | } |
6636 | | /* last bytes */ |
6637 | | acc = XXH128_mix32B(acc, |
6638 | | input + len - 16, |
6639 | | input + len - 32, |
6640 | | secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
6641 | | (XXH64_hash_t)0 - seed); |
6642 | | |
6643 | | { XXH128_hash_t h128; |
6644 | | h128.low64 = acc.low64 + acc.high64; |
6645 | | h128.high64 = (acc.low64 * XXH_PRIME64_1) |
6646 | | + (acc.high64 * XXH_PRIME64_4) |
6647 | | + ((len - seed) * XXH_PRIME64_2); |
6648 | | h128.low64 = XXH3_avalanche(h128.low64); |
6649 | | h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
6650 | | return h128; |
6651 | | } |
6652 | | } |
6653 | | } |
6654 | | |
6655 | | XXH_FORCE_INLINE XXH128_hash_t |
6656 | | XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len, |
6657 | | const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
6658 | | XXH3_f_accumulate f_acc, |
6659 | | XXH3_f_scrambleAcc f_scramble) |
6660 | | { |
6661 | | XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
6662 | | |
6663 | | XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble); |
6664 | | |
6665 | | /* converge into final hash */ |
6666 | | XXH_STATIC_ASSERT(sizeof(acc) == 64); |
6667 | | XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
6668 | | { XXH128_hash_t h128; |
6669 | | h128.low64 = XXH3_mergeAccs(acc, |
6670 | | secret + XXH_SECRET_MERGEACCS_START, |
6671 | | (xxh_u64)len * XXH_PRIME64_1); |
6672 | | h128.high64 = XXH3_mergeAccs(acc, |
6673 | | secret + secretSize |
6674 | | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
6675 | | ~((xxh_u64)len * XXH_PRIME64_2)); |
6676 | | return h128; |
6677 | | } |
6678 | | } |
6679 | | |
6680 | | /* |
6681 | | * It's important for performance that XXH3_hashLong() is not inlined. |
6682 | | */ |
6683 | | XXH_NO_INLINE XXH_PUREF XXH128_hash_t |
6684 | | XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len, |
6685 | | XXH64_hash_t seed64, |
6686 | | const void* XXH_RESTRICT secret, size_t secretLen) |
6687 | | { |
6688 | | (void)seed64; (void)secret; (void)secretLen; |
6689 | | return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
6690 | | XXH3_accumulate, XXH3_scrambleAcc); |
6691 | | } |
6692 | | |
6693 | | /* |
6694 | | * It's important for performance to pass @p secretLen (when it's static) |
6695 | | * to the compiler, so that it can properly optimize the vectorized loop. |
6696 | | * |
6697 | | * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE |
6698 | | * breaks -Og, this is XXH_NO_INLINE. |
6699 | | */ |
6700 | | XXH3_WITH_SECRET_INLINE XXH128_hash_t |
6701 | | XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len, |
6702 | | XXH64_hash_t seed64, |
6703 | | const void* XXH_RESTRICT secret, size_t secretLen) |
6704 | | { |
6705 | | (void)seed64; |
6706 | | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen, |
6707 | | XXH3_accumulate, XXH3_scrambleAcc); |
6708 | | } |
6709 | | |
6710 | | XXH_FORCE_INLINE XXH128_hash_t |
6711 | | XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len, |
6712 | | XXH64_hash_t seed64, |
6713 | | XXH3_f_accumulate f_acc, |
6714 | | XXH3_f_scrambleAcc f_scramble, |
6715 | | XXH3_f_initCustomSecret f_initSec) |
6716 | | { |
6717 | | if (seed64 == 0) |
6718 | | return XXH3_hashLong_128b_internal(input, len, |
6719 | | XXH3_kSecret, sizeof(XXH3_kSecret), |
6720 | | f_acc, f_scramble); |
6721 | | { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
6722 | | f_initSec(secret, seed64); |
6723 | | return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret), |
6724 | | f_acc, f_scramble); |
6725 | | } |
6726 | | } |
6727 | | |
6728 | | /* |
6729 | | * It's important for performance that XXH3_hashLong is not inlined. |
6730 | | */ |
6731 | | XXH_NO_INLINE XXH128_hash_t |
6732 | | XXH3_hashLong_128b_withSeed(const void* input, size_t len, |
6733 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen) |
6734 | | { |
6735 | | (void)secret; (void)secretLen; |
6736 | | return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
6737 | | XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret); |
6738 | | } |
6739 | | |
6740 | | typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t, |
6741 | | XXH64_hash_t, const void* XXH_RESTRICT, size_t); |
6742 | | |
6743 | | XXH_FORCE_INLINE XXH128_hash_t |
6744 | | XXH3_128bits_internal(const void* input, size_t len, |
6745 | | XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
6746 | | XXH3_hashLong128_f f_hl128) |
6747 | | { |
6748 | | XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
6749 | | /* |
6750 | | * If an action is to be taken if `secret` conditions are not respected, |
6751 | | * it should be done here. |
6752 | | * For now, it's a contract pre-condition. |
6753 | | * Adding a check and a branch here would cost performance at every hash. |
6754 | | */ |
6755 | | if (len <= 16) |
6756 | | return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
6757 | | if (len <= 128) |
6758 | | return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
6759 | | if (len <= XXH3_MIDSIZE_MAX) |
6760 | | return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
6761 | | return f_hl128(input, len, seed64, secret, secretLen); |
6762 | | } |
6763 | | |
6764 | | |
6765 | | /* === Public XXH128 API === */ |
6766 | | |
6767 | | /*! @ingroup XXH3_family */ |
6768 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len) |
6769 | | { |
6770 | | return XXH3_128bits_internal(input, len, 0, |
6771 | | XXH3_kSecret, sizeof(XXH3_kSecret), |
6772 | | XXH3_hashLong_128b_default); |
6773 | | } |
6774 | | |
6775 | | /*! @ingroup XXH3_family */ |
6776 | | XXH_PUBLIC_API XXH128_hash_t |
6777 | | XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize) |
6778 | | { |
6779 | | return XXH3_128bits_internal(input, len, 0, |
6780 | | (const xxh_u8*)secret, secretSize, |
6781 | | XXH3_hashLong_128b_withSecret); |
6782 | | } |
6783 | | |
6784 | | /*! @ingroup XXH3_family */ |
6785 | | XXH_PUBLIC_API XXH128_hash_t |
6786 | | XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
6787 | | { |
6788 | | return XXH3_128bits_internal(input, len, seed, |
6789 | | XXH3_kSecret, sizeof(XXH3_kSecret), |
6790 | | XXH3_hashLong_128b_withSeed); |
6791 | | } |
6792 | | |
6793 | | /*! @ingroup XXH3_family */ |
6794 | | XXH_PUBLIC_API XXH128_hash_t |
6795 | | XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
6796 | | { |
6797 | | if (len <= XXH3_MIDSIZE_MAX) |
6798 | | return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL); |
6799 | | return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize); |
6800 | | } |
6801 | | |
6802 | | /*! @ingroup XXH3_family */ |
6803 | | XXH_PUBLIC_API XXH128_hash_t |
6804 | | XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed) |
6805 | | { |
6806 | | return XXH3_128bits_withSeed(input, len, seed); |
6807 | | } |
6808 | | |
6809 | | |
6810 | | /* === XXH3 128-bit streaming === */ |
6811 | | #ifndef XXH_NO_STREAM |
6812 | | /* |
6813 | | * All initialization and update functions are identical to 64-bit streaming variant. |
6814 | | * The only difference is the finalization routine. |
6815 | | */ |
6816 | | |
6817 | | /*! @ingroup XXH3_family */ |
6818 | | XXH_PUBLIC_API XXH_errorcode |
6819 | | XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr) |
6820 | | { |
6821 | | return XXH3_64bits_reset(statePtr); |
6822 | | } |
6823 | | |
6824 | | /*! @ingroup XXH3_family */ |
6825 | | XXH_PUBLIC_API XXH_errorcode |
6826 | | XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize) |
6827 | | { |
6828 | | return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize); |
6829 | | } |
6830 | | |
6831 | | /*! @ingroup XXH3_family */ |
6832 | | XXH_PUBLIC_API XXH_errorcode |
6833 | | XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed) |
6834 | | { |
6835 | | return XXH3_64bits_reset_withSeed(statePtr, seed); |
6836 | | } |
6837 | | |
6838 | | /*! @ingroup XXH3_family */ |
6839 | | XXH_PUBLIC_API XXH_errorcode |
6840 | | XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed) |
6841 | | { |
6842 | | return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed); |
6843 | | } |
6844 | | |
6845 | | /*! @ingroup XXH3_family */ |
6846 | | XXH_PUBLIC_API XXH_errorcode |
6847 | | XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len) |
6848 | | { |
6849 | | return XXH3_64bits_update(state, input, len); |
6850 | | } |
6851 | | |
6852 | | /*! @ingroup XXH3_family */ |
6853 | | XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state) |
6854 | | { |
6855 | | const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
6856 | | if (state->totalLen > XXH3_MIDSIZE_MAX) { |
6857 | | XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
6858 | | XXH3_digest_long(acc, state, secret); |
6859 | | XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
6860 | | { XXH128_hash_t h128; |
6861 | | h128.low64 = XXH3_mergeAccs(acc, |
6862 | | secret + XXH_SECRET_MERGEACCS_START, |
6863 | | (xxh_u64)state->totalLen * XXH_PRIME64_1); |
6864 | | h128.high64 = XXH3_mergeAccs(acc, |
6865 | | secret + state->secretLimit + XXH_STRIPE_LEN |
6866 | | - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
6867 | | ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
6868 | | return h128; |
6869 | | } |
6870 | | } |
6871 | | /* len <= XXH3_MIDSIZE_MAX : short code */ |
6872 | | if (state->seed) |
6873 | | return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
6874 | | return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
6875 | | secret, state->secretLimit + XXH_STRIPE_LEN); |
6876 | | } |
6877 | | #endif /* !XXH_NO_STREAM */ |
6878 | | /* 128-bit utility functions */ |
6879 | | |
6880 | | #include <string.h> /* memcmp, memcpy */ |
6881 | | |
6882 | | /* return : 1 is equal, 0 if different */ |
6883 | | /*! @ingroup XXH3_family */ |
6884 | | XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
6885 | | { |
6886 | | /* note : XXH128_hash_t is compact, it has no padding byte */ |
6887 | | return !(memcmp(&h1, &h2, sizeof(h1))); |
6888 | | } |
6889 | | |
6890 | | /* This prototype is compatible with stdlib's qsort(). |
6891 | | * @return : >0 if *h128_1 > *h128_2 |
6892 | | * <0 if *h128_1 < *h128_2 |
6893 | | * =0 if *h128_1 == *h128_2 */ |
6894 | | /*! @ingroup XXH3_family */ |
6895 | | XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2) |
6896 | | { |
6897 | | XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
6898 | | XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
6899 | | int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
6900 | | /* note : bets that, in most cases, hash values are different */ |
6901 | | if (hcmp) return hcmp; |
6902 | | return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
6903 | | } |
6904 | | |
6905 | | |
6906 | | /*====== Canonical representation ======*/ |
6907 | | /*! @ingroup XXH3_family */ |
6908 | | XXH_PUBLIC_API void |
6909 | | XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash) |
6910 | | { |
6911 | | XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
6912 | | if (XXH_CPU_LITTLE_ENDIAN) { |
6913 | | hash.high64 = XXH_swap64(hash.high64); |
6914 | | hash.low64 = XXH_swap64(hash.low64); |
6915 | | } |
6916 | | XXH_memcpy(dst, &hash.high64, sizeof(hash.high64)); |
6917 | | XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
6918 | | } |
6919 | | |
6920 | | /*! @ingroup XXH3_family */ |
6921 | | XXH_PUBLIC_API XXH128_hash_t |
6922 | | XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src) |
6923 | | { |
6924 | | XXH128_hash_t h; |
6925 | | h.high64 = XXH_readBE64(src); |
6926 | | h.low64 = XXH_readBE64(src->digest + 8); |
6927 | | return h; |
6928 | | } |
6929 | | |
6930 | | |
6931 | | |
6932 | | /* ========================================== |
6933 | | * Secret generators |
6934 | | * ========================================== |
6935 | | */ |
6936 | | #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
6937 | | |
6938 | | XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128) |
6939 | | { |
6940 | | XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 ); |
6941 | | XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 ); |
6942 | | } |
6943 | | |
6944 | | /*! @ingroup XXH3_family */ |
6945 | | XXH_PUBLIC_API XXH_errorcode |
6946 | | XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize) |
6947 | | { |
6948 | | #if (XXH_DEBUGLEVEL >= 1) |
6949 | | XXH_ASSERT(secretBuffer != NULL); |
6950 | | XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
6951 | | #else |
6952 | | /* production mode, assert() are disabled */ |
6953 | | if (secretBuffer == NULL) return XXH_ERROR; |
6954 | | if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
6955 | | #endif |
6956 | | |
6957 | | if (customSeedSize == 0) { |
6958 | | customSeed = XXH3_kSecret; |
6959 | | customSeedSize = XXH_SECRET_DEFAULT_SIZE; |
6960 | | } |
6961 | | #if (XXH_DEBUGLEVEL >= 1) |
6962 | | XXH_ASSERT(customSeed != NULL); |
6963 | | #else |
6964 | | if (customSeed == NULL) return XXH_ERROR; |
6965 | | #endif |
6966 | | |
6967 | | /* Fill secretBuffer with a copy of customSeed - repeat as needed */ |
6968 | | { size_t pos = 0; |
6969 | | while (pos < secretSize) { |
6970 | | size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize); |
6971 | | memcpy((char*)secretBuffer + pos, customSeed, toCopy); |
6972 | | pos += toCopy; |
6973 | | } } |
6974 | | |
6975 | | { size_t const nbSeg16 = secretSize / 16; |
6976 | | size_t n; |
6977 | | XXH128_canonical_t scrambler; |
6978 | | XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
6979 | | for (n=0; n<nbSeg16; n++) { |
6980 | | XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n); |
6981 | | XXH3_combine16((char*)secretBuffer + n*16, h128); |
6982 | | } |
6983 | | /* last segment */ |
6984 | | XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler)); |
6985 | | } |
6986 | | return XXH_OK; |
6987 | | } |
6988 | | |
6989 | | /*! @ingroup XXH3_family */ |
6990 | | XXH_PUBLIC_API void |
6991 | | XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed) |
6992 | | { |
6993 | | XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
6994 | | XXH3_initCustomSecret(secret, seed); |
6995 | | XXH_ASSERT(secretBuffer != NULL); |
6996 | | memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE); |
6997 | | } |
6998 | | |
6999 | | |
7000 | | |
7001 | | /* Pop our optimization override from above */ |
7002 | | #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
7003 | | && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
7004 | | && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */ |
7005 | | # pragma GCC pop_options |
7006 | | #endif |
7007 | | |
7008 | | #endif /* XXH_NO_LONG_LONG */ |
7009 | | |
7010 | | #endif /* XXH_NO_XXH3 */ |
7011 | | |
7012 | | /*! |
7013 | | * @} |
7014 | | */ |
7015 | | #endif /* XXH_IMPLEMENTATION */ |
7016 | | |
7017 | | |
7018 | | #if defined (__cplusplus) |
7019 | | } /* extern "C" */ |
7020 | | #endif |