Coverage Report

Created: 2024-09-08 06:25

/src/zstd/lib/compress/zstdmt_compress.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) Meta Platforms, Inc. and affiliates.
3
 * All rights reserved.
4
 *
5
 * This source code is licensed under both the BSD-style license (found in the
6
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
 * in the COPYING file in the root directory of this source tree).
8
 * You may select, at your option, one of the above-listed licenses.
9
 */
10
11
12
/* ======   Compiler specifics   ====== */
13
#if defined(_MSC_VER)
14
#  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
15
#endif
16
17
18
/* ======   Dependencies   ====== */
19
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
20
#include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
21
#include "../common/mem.h"         /* MEM_STATIC */
22
#include "../common/pool.h"        /* threadpool */
23
#include "../common/threading.h"   /* mutex */
24
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
25
#include "zstd_ldm.h"
26
#include "zstdmt_compress.h"
27
28
/* Guards code to support resizing the SeqPool.
29
 * We will want to resize the SeqPool to save memory in the future.
30
 * Until then, comment the code out since it is unused.
31
 */
32
#define ZSTD_RESIZE_SEQPOOL 0
33
34
/* ======   Debug   ====== */
35
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
36
    && !defined(_MSC_VER) \
37
    && !defined(__MINGW32__)
38
39
#  include <stdio.h>
40
#  include <unistd.h>
41
#  include <sys/times.h>
42
43
#  define DEBUG_PRINTHEX(l,p,n)                                       \
44
    do {                                                              \
45
        unsigned debug_u;                                             \
46
        for (debug_u=0; debug_u<(n); debug_u++)                       \
47
            RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
48
        RAWLOG(l, " \n");                                             \
49
    } while (0)
50
51
static unsigned long long GetCurrentClockTimeMicroseconds(void)
52
{
53
   static clock_t _ticksPerSecond = 0;
54
   if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
55
56
   {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
57
       return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
58
}  }
59
60
#define MUTEX_WAIT_TIME_DLEVEL 6
61
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex)                                                  \
62
    do {                                                                                \
63
        if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {                                     \
64
            unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds();    \
65
            ZSTD_pthread_mutex_lock(mutex);                                             \
66
            {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
67
                unsigned long long const elapsedTime = (afterTime-beforeTime);          \
68
                if (elapsedTime > 1000) {                                               \
69
                    /* or whatever threshold you like; I'm using 1 millisecond here */  \
70
                    DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL,                                    \
71
                        "Thread took %llu microseconds to acquire mutex %s \n",         \
72
                        elapsedTime, #mutex);                                           \
73
            }   }                                                                       \
74
        } else {                                                                        \
75
            ZSTD_pthread_mutex_lock(mutex);                                             \
76
        }                                                                               \
77
    } while (0)
78
79
#else
80
81
0
#  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
82
#  define DEBUG_PRINTHEX(l,p,n) do { } while (0)
83
84
#endif
85
86
87
/* =====   Buffer Pool   ===== */
88
/* a single Buffer Pool can be invoked from multiple threads in parallel */
89
90
typedef struct buffer_s {
91
    void* start;
92
    size_t capacity;
93
} buffer_t;
94
95
static const buffer_t g_nullBuffer = { NULL, 0 };
96
97
typedef struct ZSTDMT_bufferPool_s {
98
    ZSTD_pthread_mutex_t poolMutex;
99
    size_t bufferSize;
100
    unsigned totalBuffers;
101
    unsigned nbBuffers;
102
    ZSTD_customMem cMem;
103
    buffer_t* buffers;
104
} ZSTDMT_bufferPool;
105
106
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
107
0
{
108
0
    DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
109
0
    if (!bufPool) return;   /* compatibility with free on NULL */
110
0
    if (bufPool->buffers) {
111
0
        unsigned u;
112
0
        for (u=0; u<bufPool->totalBuffers; u++) {
113
0
            DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start);
114
0
            ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem);
115
0
        }
116
0
        ZSTD_customFree(bufPool->buffers, bufPool->cMem);
117
0
    }
118
0
    ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
119
0
    ZSTD_customFree(bufPool, bufPool->cMem);
120
0
}
121
122
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
123
0
{
124
0
    ZSTDMT_bufferPool* const bufPool =
125
0
        (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem);
126
0
    if (bufPool==NULL) return NULL;
127
0
    if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
128
0
        ZSTD_customFree(bufPool, cMem);
129
0
        return NULL;
130
0
    }
131
0
    bufPool->buffers = (buffer_t*)ZSTD_customCalloc(maxNbBuffers * sizeof(buffer_t), cMem);
132
0
    if (bufPool->buffers==NULL) {
133
0
        ZSTDMT_freeBufferPool(bufPool);
134
0
        return NULL;
135
0
    }
136
0
    bufPool->bufferSize = 64 KB;
137
0
    bufPool->totalBuffers = maxNbBuffers;
138
0
    bufPool->nbBuffers = 0;
139
0
    bufPool->cMem = cMem;
140
0
    return bufPool;
141
0
}
142
143
/* only works at initialization, not during compression */
144
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
145
0
{
146
0
    size_t const poolSize = sizeof(*bufPool);
147
0
    size_t const arraySize = bufPool->totalBuffers * sizeof(buffer_t);
148
0
    unsigned u;
149
0
    size_t totalBufferSize = 0;
150
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
151
0
    for (u=0; u<bufPool->totalBuffers; u++)
152
0
        totalBufferSize += bufPool->buffers[u].capacity;
153
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
154
155
0
    return poolSize + arraySize + totalBufferSize;
156
0
}
157
158
/* ZSTDMT_setBufferSize() :
159
 * all future buffers provided by this buffer pool will have _at least_ this size
160
 * note : it's better for all buffers to have same size,
161
 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
162
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
163
0
{
164
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
165
0
    DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
166
0
    bufPool->bufferSize = bSize;
167
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
168
0
}
169
170
171
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
172
0
{
173
0
    if (srcBufPool==NULL) return NULL;
174
0
    if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
175
0
        return srcBufPool;
176
    /* need a larger buffer pool */
177
0
    {   ZSTD_customMem const cMem = srcBufPool->cMem;
178
0
        size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
179
0
        ZSTDMT_bufferPool* newBufPool;
180
0
        ZSTDMT_freeBufferPool(srcBufPool);
181
0
        newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
182
0
        if (newBufPool==NULL) return newBufPool;
183
0
        ZSTDMT_setBufferSize(newBufPool, bSize);
184
0
        return newBufPool;
185
0
    }
186
0
}
187
188
/** ZSTDMT_getBuffer() :
189
 *  assumption : bufPool must be valid
190
 * @return : a buffer, with start pointer and size
191
 *  note: allocation may fail, in this case, start==NULL and size==0 */
192
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
193
0
{
194
0
    size_t const bSize = bufPool->bufferSize;
195
0
    DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
196
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
197
0
    if (bufPool->nbBuffers) {   /* try to use an existing buffer */
198
0
        buffer_t const buf = bufPool->buffers[--(bufPool->nbBuffers)];
199
0
        size_t const availBufferSize = buf.capacity;
200
0
        bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer;
201
0
        if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
202
            /* large enough, but not too much */
203
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
204
0
                        bufPool->nbBuffers, (U32)buf.capacity);
205
0
            ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
206
0
            return buf;
207
0
        }
208
        /* size conditions not respected : scratch this buffer, create new one */
209
0
        DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
210
0
        ZSTD_customFree(buf.start, bufPool->cMem);
211
0
    }
212
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
213
    /* create new buffer */
214
0
    DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
215
0
    {   buffer_t buffer;
216
0
        void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
217
0
        buffer.start = start;   /* note : start can be NULL if malloc fails ! */
218
0
        buffer.capacity = (start==NULL) ? 0 : bSize;
219
0
        if (start==NULL) {
220
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
221
0
        } else {
222
0
            DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
223
0
        }
224
0
        return buffer;
225
0
    }
226
0
}
227
228
#if ZSTD_RESIZE_SEQPOOL
229
/** ZSTDMT_resizeBuffer() :
230
 * assumption : bufPool must be valid
231
 * @return : a buffer that is at least the buffer pool buffer size.
232
 *           If a reallocation happens, the data in the input buffer is copied.
233
 */
234
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
235
{
236
    size_t const bSize = bufPool->bufferSize;
237
    if (buffer.capacity < bSize) {
238
        void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
239
        buffer_t newBuffer;
240
        newBuffer.start = start;
241
        newBuffer.capacity = start == NULL ? 0 : bSize;
242
        if (start != NULL) {
243
            assert(newBuffer.capacity >= buffer.capacity);
244
            ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
245
            DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
246
            return newBuffer;
247
        }
248
        DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
249
    }
250
    return buffer;
251
}
252
#endif
253
254
/* store buffer for later re-use, up to pool capacity */
255
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
256
0
{
257
0
    DEBUGLOG(5, "ZSTDMT_releaseBuffer");
258
0
    if (buf.start == NULL) return;   /* compatible with release on NULL */
259
0
    ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
260
0
    if (bufPool->nbBuffers < bufPool->totalBuffers) {
261
0
        bufPool->buffers[bufPool->nbBuffers++] = buf;  /* stored for later use */
262
0
        DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
263
0
                    (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
264
0
        ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
265
0
        return;
266
0
    }
267
0
    ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
268
    /* Reached bufferPool capacity (note: should not happen) */
269
0
    DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
270
0
    ZSTD_customFree(buf.start, bufPool->cMem);
271
0
}
272
273
/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
274
 * The 3 additional buffers are as follows:
275
 *   1 buffer for input loading
276
 *   1 buffer for "next input" when submitting current one
277
 *   1 buffer stuck in queue */
278
0
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
279
280
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
281
 * So we only need one seq buffer per worker. */
282
0
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
283
284
/* =====   Seq Pool Wrapper   ====== */
285
286
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
287
288
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
289
0
{
290
0
    return ZSTDMT_sizeof_bufferPool(seqPool);
291
0
}
292
293
static rawSeqStore_t bufferToSeq(buffer_t buffer)
294
0
{
295
0
    rawSeqStore_t seq = kNullRawSeqStore;
296
0
    seq.seq = (rawSeq*)buffer.start;
297
0
    seq.capacity = buffer.capacity / sizeof(rawSeq);
298
0
    return seq;
299
0
}
300
301
static buffer_t seqToBuffer(rawSeqStore_t seq)
302
0
{
303
0
    buffer_t buffer;
304
0
    buffer.start = seq.seq;
305
0
    buffer.capacity = seq.capacity * sizeof(rawSeq);
306
0
    return buffer;
307
0
}
308
309
static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
310
0
{
311
0
    if (seqPool->bufferSize == 0) {
312
0
        return kNullRawSeqStore;
313
0
    }
314
0
    return bufferToSeq(ZSTDMT_getBuffer(seqPool));
315
0
}
316
317
#if ZSTD_RESIZE_SEQPOOL
318
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
319
{
320
  return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
321
}
322
#endif
323
324
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
325
0
{
326
0
  ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
327
0
}
328
329
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
330
0
{
331
0
  ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
332
0
}
333
334
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
335
0
{
336
0
    ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
337
0
    if (seqPool == NULL) return NULL;
338
0
    ZSTDMT_setNbSeq(seqPool, 0);
339
0
    return seqPool;
340
0
}
341
342
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
343
0
{
344
0
    ZSTDMT_freeBufferPool(seqPool);
345
0
}
346
347
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
348
0
{
349
0
    return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
350
0
}
351
352
353
/* =====   CCtx Pool   ===== */
354
/* a single CCtx Pool can be invoked from multiple threads in parallel */
355
356
typedef struct {
357
    ZSTD_pthread_mutex_t poolMutex;
358
    int totalCCtx;
359
    int availCCtx;
360
    ZSTD_customMem cMem;
361
    ZSTD_CCtx** cctxs;
362
} ZSTDMT_CCtxPool;
363
364
/* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */
365
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
366
0
{
367
0
    if (!pool) return;
368
0
    ZSTD_pthread_mutex_destroy(&pool->poolMutex);
369
0
    if (pool->cctxs) {
370
0
        int cid;
371
0
        for (cid=0; cid<pool->totalCCtx; cid++)
372
0
            ZSTD_freeCCtx(pool->cctxs[cid]);  /* free compatible with NULL */
373
0
        ZSTD_customFree(pool->cctxs, pool->cMem);
374
0
    }
375
0
    ZSTD_customFree(pool, pool->cMem);
376
0
}
377
378
/* ZSTDMT_createCCtxPool() :
379
 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
380
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
381
                                              ZSTD_customMem cMem)
382
0
{
383
0
    ZSTDMT_CCtxPool* const cctxPool =
384
0
        (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem);
385
0
    assert(nbWorkers > 0);
386
0
    if (!cctxPool) return NULL;
387
0
    if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
388
0
        ZSTD_customFree(cctxPool, cMem);
389
0
        return NULL;
390
0
    }
391
0
    cctxPool->totalCCtx = nbWorkers;
392
0
    cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem);
393
0
    if (!cctxPool->cctxs) {
394
0
        ZSTDMT_freeCCtxPool(cctxPool);
395
0
        return NULL;
396
0
    }
397
0
    cctxPool->cMem = cMem;
398
0
    cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem);
399
0
    if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
400
0
    cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
401
0
    DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
402
0
    return cctxPool;
403
0
}
404
405
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
406
                                              int nbWorkers)
407
0
{
408
0
    if (srcPool==NULL) return NULL;
409
0
    if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
410
    /* need a larger cctx pool */
411
0
    {   ZSTD_customMem const cMem = srcPool->cMem;
412
0
        ZSTDMT_freeCCtxPool(srcPool);
413
0
        return ZSTDMT_createCCtxPool(nbWorkers, cMem);
414
0
    }
415
0
}
416
417
/* only works during initialization phase, not during compression */
418
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
419
0
{
420
0
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421
0
    {   unsigned const nbWorkers = cctxPool->totalCCtx;
422
0
        size_t const poolSize = sizeof(*cctxPool);
423
0
        size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*);
424
0
        size_t totalCCtxSize = 0;
425
0
        unsigned u;
426
0
        for (u=0; u<nbWorkers; u++) {
427
0
            totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]);
428
0
        }
429
0
        ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
430
0
        assert(nbWorkers > 0);
431
0
        return poolSize + arraySize + totalCCtxSize;
432
0
    }
433
0
}
434
435
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
436
0
{
437
0
    DEBUGLOG(5, "ZSTDMT_getCCtx");
438
0
    ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
439
0
    if (cctxPool->availCCtx) {
440
0
        cctxPool->availCCtx--;
441
0
        {   ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx];
442
0
            ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
443
0
            return cctx;
444
0
    }   }
445
0
    ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
446
0
    DEBUGLOG(5, "create one more CCtx");
447
0
    return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
448
0
}
449
450
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
451
0
{
452
0
    if (cctx==NULL) return;   /* compatibility with release on NULL */
453
0
    ZSTD_pthread_mutex_lock(&pool->poolMutex);
454
0
    if (pool->availCCtx < pool->totalCCtx)
455
0
        pool->cctxs[pool->availCCtx++] = cctx;
456
0
    else {
457
        /* pool overflow : should not happen, since totalCCtx==nbWorkers */
458
0
        DEBUGLOG(4, "CCtx pool overflow : free cctx");
459
0
        ZSTD_freeCCtx(cctx);
460
0
    }
461
0
    ZSTD_pthread_mutex_unlock(&pool->poolMutex);
462
0
}
463
464
/* ====   Serial State   ==== */
465
466
typedef struct {
467
    void const* start;
468
    size_t size;
469
} range_t;
470
471
typedef struct {
472
    /* All variables in the struct are protected by mutex. */
473
    ZSTD_pthread_mutex_t mutex;
474
    ZSTD_pthread_cond_t cond;
475
    ZSTD_CCtx_params params;
476
    ldmState_t ldmState;
477
    XXH64_state_t xxhState;
478
    unsigned nextJobID;
479
    /* Protects ldmWindow.
480
     * Must be acquired after the main mutex when acquiring both.
481
     */
482
    ZSTD_pthread_mutex_t ldmWindowMutex;
483
    ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
484
    ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
485
} serialState_t;
486
487
static int
488
ZSTDMT_serialState_reset(serialState_t* serialState,
489
                         ZSTDMT_seqPool* seqPool,
490
                         ZSTD_CCtx_params params,
491
                         size_t jobSize,
492
                         const void* dict, size_t const dictSize,
493
                         ZSTD_dictContentType_e dictContentType)
494
0
{
495
    /* Adjust parameters */
496
0
    if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
497
0
        DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
498
0
        ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
499
0
        assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
500
0
        assert(params.ldmParams.hashRateLog < 32);
501
0
    } else {
502
0
        ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
503
0
    }
504
0
    serialState->nextJobID = 0;
505
0
    if (params.fParams.checksumFlag)
506
0
        XXH64_reset(&serialState->xxhState, 0);
507
0
    if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
508
0
        ZSTD_customMem cMem = params.customMem;
509
0
        unsigned const hashLog = params.ldmParams.hashLog;
510
0
        size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
511
0
        unsigned const bucketLog =
512
0
            params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
513
0
        unsigned const prevBucketLog =
514
0
            serialState->params.ldmParams.hashLog -
515
0
            serialState->params.ldmParams.bucketSizeLog;
516
0
        size_t const numBuckets = (size_t)1 << bucketLog;
517
        /* Size the seq pool tables */
518
0
        ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
519
        /* Reset the window */
520
0
        ZSTD_window_init(&serialState->ldmState.window);
521
        /* Resize tables and output space if necessary. */
522
0
        if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
523
0
            ZSTD_customFree(serialState->ldmState.hashTable, cMem);
524
0
            serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
525
0
        }
526
0
        if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
527
0
            ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
528
0
            serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
529
0
        }
530
0
        if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
531
0
            return 1;
532
        /* Zero the tables */
533
0
        ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
534
0
        ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
535
536
        /* Update window state and fill hash table with dict */
537
0
        serialState->ldmState.loadedDictEnd = 0;
538
0
        if (dictSize > 0) {
539
0
            if (dictContentType == ZSTD_dct_rawContent) {
540
0
                BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
541
0
                ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
542
0
                ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
543
0
                serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
544
0
            } else {
545
                /* don't even load anything */
546
0
            }
547
0
        }
548
549
        /* Initialize serialState's copy of ldmWindow. */
550
0
        serialState->ldmWindow = serialState->ldmState.window;
551
0
    }
552
553
0
    serialState->params = params;
554
0
    serialState->params.jobSize = (U32)jobSize;
555
0
    return 0;
556
0
}
557
558
static int ZSTDMT_serialState_init(serialState_t* serialState)
559
0
{
560
0
    int initError = 0;
561
0
    ZSTD_memset(serialState, 0, sizeof(*serialState));
562
0
    initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
563
0
    initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
564
0
    initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
565
0
    initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
566
0
    return initError;
567
0
}
568
569
static void ZSTDMT_serialState_free(serialState_t* serialState)
570
0
{
571
0
    ZSTD_customMem cMem = serialState->params.customMem;
572
0
    ZSTD_pthread_mutex_destroy(&serialState->mutex);
573
0
    ZSTD_pthread_cond_destroy(&serialState->cond);
574
0
    ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
575
0
    ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
576
0
    ZSTD_customFree(serialState->ldmState.hashTable, cMem);
577
0
    ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
578
0
}
579
580
static void ZSTDMT_serialState_update(serialState_t* serialState,
581
                                      ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
582
                                      range_t src, unsigned jobID)
583
0
{
584
    /* Wait for our turn */
585
0
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
586
0
    while (serialState->nextJobID < jobID) {
587
0
        DEBUGLOG(5, "wait for serialState->cond");
588
0
        ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
589
0
    }
590
    /* A future job may error and skip our job */
591
0
    if (serialState->nextJobID == jobID) {
592
        /* It is now our turn, do any processing necessary */
593
0
        if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
594
0
            size_t error;
595
0
            assert(seqStore.seq != NULL && seqStore.pos == 0 &&
596
0
                   seqStore.size == 0 && seqStore.capacity > 0);
597
0
            assert(src.size <= serialState->params.jobSize);
598
0
            ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
599
0
            error = ZSTD_ldm_generateSequences(
600
0
                &serialState->ldmState, &seqStore,
601
0
                &serialState->params.ldmParams, src.start, src.size);
602
            /* We provide a large enough buffer to never fail. */
603
0
            assert(!ZSTD_isError(error)); (void)error;
604
            /* Update ldmWindow to match the ldmState.window and signal the main
605
             * thread if it is waiting for a buffer.
606
             */
607
0
            ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
608
0
            serialState->ldmWindow = serialState->ldmState.window;
609
0
            ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
610
0
            ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
611
0
        }
612
0
        if (serialState->params.fParams.checksumFlag && src.size > 0)
613
0
            XXH64_update(&serialState->xxhState, src.start, src.size);
614
0
    }
615
    /* Now it is the next jobs turn */
616
0
    serialState->nextJobID++;
617
0
    ZSTD_pthread_cond_broadcast(&serialState->cond);
618
0
    ZSTD_pthread_mutex_unlock(&serialState->mutex);
619
620
0
    if (seqStore.size > 0) {
621
0
        ZSTD_referenceExternalSequences(jobCCtx, seqStore.seq, seqStore.size);
622
0
        assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
623
0
    }
624
0
}
625
626
static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
627
                                              unsigned jobID, size_t cSize)
628
0
{
629
0
    ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
630
0
    if (serialState->nextJobID <= jobID) {
631
0
        assert(ZSTD_isError(cSize)); (void)cSize;
632
0
        DEBUGLOG(5, "Skipping past job %u because of error", jobID);
633
0
        serialState->nextJobID = jobID + 1;
634
0
        ZSTD_pthread_cond_broadcast(&serialState->cond);
635
636
0
        ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
637
0
        ZSTD_window_clear(&serialState->ldmWindow);
638
0
        ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
639
0
        ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
640
0
    }
641
0
    ZSTD_pthread_mutex_unlock(&serialState->mutex);
642
643
0
}
644
645
646
/* ------------------------------------------ */
647
/* =====          Worker thread         ===== */
648
/* ------------------------------------------ */
649
650
static const range_t kNullRange = { NULL, 0 };
651
652
typedef struct {
653
    size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
654
    size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
655
    ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
656
    ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
657
    ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
658
    ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
659
    ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
660
    serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
661
    buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
662
    range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
663
    range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
664
    unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
665
    unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
666
    unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
667
    ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
668
    const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
669
    unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
670
    size_t   dstFlushed;                 /* used only by mtctx */
671
    unsigned frameChecksumNeeded;        /* used only by mtctx */
672
} ZSTDMT_jobDescription;
673
674
#define JOB_ERROR(e)                                \
675
0
    do {                                            \
676
0
        ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
677
0
        job->cSize = e;                             \
678
0
        ZSTD_pthread_mutex_unlock(&job->job_mutex); \
679
0
        goto _endJob;                               \
680
0
    } while (0)
681
682
/* ZSTDMT_compressionJob() is a POOL_function type */
683
static void ZSTDMT_compressionJob(void* jobDescription)
684
0
{
685
0
    ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
686
0
    ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
687
0
    ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
688
0
    rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
689
0
    buffer_t dstBuff = job->dstBuff;
690
0
    size_t lastCBlockSize = 0;
691
692
    /* resources */
693
0
    if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
694
0
    if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
695
0
        dstBuff = ZSTDMT_getBuffer(job->bufPool);
696
0
        if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
697
0
        job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
698
0
    }
699
0
    if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
700
0
        JOB_ERROR(ERROR(memory_allocation));
701
702
    /* Don't compute the checksum for chunks, since we compute it externally,
703
     * but write it in the header.
704
     */
705
0
    if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
706
    /* Don't run LDM for the chunks, since we handle it externally */
707
0
    jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
708
    /* Correct nbWorkers to 0. */
709
0
    jobParams.nbWorkers = 0;
710
711
712
    /* init */
713
0
    if (job->cdict) {
714
0
        size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
715
0
        assert(job->firstJob);  /* only allowed for first job */
716
0
        if (ZSTD_isError(initError)) JOB_ERROR(initError);
717
0
    } else {  /* srcStart points at reloaded section */
718
0
        U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
719
0
        {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
720
0
            if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
721
0
        }
722
0
        if (!job->firstJob) {
723
0
            size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
724
0
            if (ZSTD_isError(err)) JOB_ERROR(err);
725
0
        }
726
0
        {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
727
0
                                        job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
728
0
                                        ZSTD_dtlm_fast,
729
0
                                        NULL, /*cdict*/
730
0
                                        &jobParams, pledgedSrcSize);
731
0
            if (ZSTD_isError(initError)) JOB_ERROR(initError);
732
0
    }   }
733
734
    /* Perform serial step as early as possible, but after CCtx initialization */
735
0
    ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
736
737
0
    if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
738
0
        size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
739
0
        if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
740
0
        DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
741
0
        ZSTD_invalidateRepCodes(cctx);
742
0
    }
743
744
    /* compress */
745
0
    {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
746
0
        int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
747
0
        const BYTE* ip = (const BYTE*) job->src.start;
748
0
        BYTE* const ostart = (BYTE*)dstBuff.start;
749
0
        BYTE* op = ostart;
750
0
        BYTE* oend = op + dstBuff.capacity;
751
0
        int chunkNb;
752
0
        if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
753
0
        DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
754
0
        assert(job->cSize == 0);
755
0
        for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
756
0
            size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
757
0
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
758
0
            ip += chunkSize;
759
0
            op += cSize; assert(op < oend);
760
            /* stats */
761
0
            ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
762
0
            job->cSize += cSize;
763
0
            job->consumed = chunkSize * chunkNb;
764
0
            DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
765
0
                        (U32)cSize, (U32)job->cSize);
766
0
            ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
767
0
            ZSTD_pthread_mutex_unlock(&job->job_mutex);
768
0
        }
769
        /* last block */
770
0
        assert(chunkSize > 0);
771
0
        assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
772
0
        if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
773
0
            size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
774
0
            size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
775
0
            size_t const cSize = (job->lastJob) ?
776
0
                 ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
777
0
                 ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
778
0
            if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
779
0
            lastCBlockSize = cSize;
780
0
    }   }
781
0
    if (!job->firstJob) {
782
        /* Double check that we don't have an ext-dict, because then our
783
         * repcode invalidation doesn't work.
784
         */
785
0
        assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
786
0
    }
787
0
    ZSTD_CCtx_trace(cctx, 0);
788
789
0
_endJob:
790
0
    ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
791
0
    if (job->prefix.size > 0)
792
0
        DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
793
0
    DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
794
    /* release resources */
795
0
    ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
796
0
    ZSTDMT_releaseCCtx(job->cctxPool, cctx);
797
    /* report */
798
0
    ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
799
0
    if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
800
0
    job->cSize += lastCBlockSize;
801
0
    job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
802
0
    ZSTD_pthread_cond_signal(&job->job_cond);
803
0
    ZSTD_pthread_mutex_unlock(&job->job_mutex);
804
0
}
805
806
807
/* ------------------------------------------ */
808
/* =====   Multi-threaded compression   ===== */
809
/* ------------------------------------------ */
810
811
typedef struct {
812
    range_t prefix;         /* read-only non-owned prefix buffer */
813
    buffer_t buffer;
814
    size_t filled;
815
} inBuff_t;
816
817
typedef struct {
818
  BYTE* buffer;     /* The round input buffer. All jobs get references
819
                     * to pieces of the buffer. ZSTDMT_tryGetInputRange()
820
                     * handles handing out job input buffers, and makes
821
                     * sure it doesn't overlap with any pieces still in use.
822
                     */
823
  size_t capacity;  /* The capacity of buffer. */
824
  size_t pos;       /* The position of the current inBuff in the round
825
                     * buffer. Updated past the end if the inBuff once
826
                     * the inBuff is sent to the worker thread.
827
                     * pos <= capacity.
828
                     */
829
} roundBuff_t;
830
831
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
832
833
0
#define RSYNC_LENGTH 32
834
/* Don't create chunks smaller than the zstd block size.
835
 * This stops us from regressing compression ratio too much,
836
 * and ensures our output fits in ZSTD_compressBound().
837
 *
838
 * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
839
 * ZSTD_COMPRESSBOUND() will need to be updated.
840
 */
841
0
#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
842
0
#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
843
844
typedef struct {
845
  U64 hash;
846
  U64 hitMask;
847
  U64 primePower;
848
} rsyncState_t;
849
850
struct ZSTDMT_CCtx_s {
851
    POOL_ctx* factory;
852
    ZSTDMT_jobDescription* jobs;
853
    ZSTDMT_bufferPool* bufPool;
854
    ZSTDMT_CCtxPool* cctxPool;
855
    ZSTDMT_seqPool* seqPool;
856
    ZSTD_CCtx_params params;
857
    size_t targetSectionSize;
858
    size_t targetPrefixSize;
859
    int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
860
    inBuff_t inBuff;
861
    roundBuff_t roundBuff;
862
    serialState_t serial;
863
    rsyncState_t rsync;
864
    unsigned jobIDMask;
865
    unsigned doneJobID;
866
    unsigned nextJobID;
867
    unsigned frameEnded;
868
    unsigned allJobsCompleted;
869
    unsigned long long frameContentSize;
870
    unsigned long long consumed;
871
    unsigned long long produced;
872
    ZSTD_customMem cMem;
873
    ZSTD_CDict* cdictLocal;
874
    const ZSTD_CDict* cdict;
875
    unsigned providedFactory: 1;
876
};
877
878
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
879
0
{
880
0
    U32 jobNb;
881
0
    if (jobTable == NULL) return;
882
0
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
883
0
        ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
884
0
        ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
885
0
    }
886
0
    ZSTD_customFree(jobTable, cMem);
887
0
}
888
889
/* ZSTDMT_allocJobsTable()
890
 * allocate and init a job table.
891
 * update *nbJobsPtr to next power of 2 value, as size of table */
892
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
893
0
{
894
0
    U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
895
0
    U32 const nbJobs = 1 << nbJobsLog2;
896
0
    U32 jobNb;
897
0
    ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
898
0
                ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
899
0
    int initError = 0;
900
0
    if (jobTable==NULL) return NULL;
901
0
    *nbJobsPtr = nbJobs;
902
0
    for (jobNb=0; jobNb<nbJobs; jobNb++) {
903
0
        initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
904
0
        initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
905
0
    }
906
0
    if (initError != 0) {
907
0
        ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
908
0
        return NULL;
909
0
    }
910
0
    return jobTable;
911
0
}
912
913
0
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
914
0
    U32 nbJobs = nbWorkers + 2;
915
0
    if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
916
0
        ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
917
0
        mtctx->jobIDMask = 0;
918
0
        mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
919
0
        if (mtctx->jobs==NULL) return ERROR(memory_allocation);
920
0
        assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
921
0
        mtctx->jobIDMask = nbJobs - 1;
922
0
    }
923
0
    return 0;
924
0
}
925
926
927
/* ZSTDMT_CCtxParam_setNbWorkers():
928
 * Internal use only */
929
static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
930
0
{
931
0
    return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
932
0
}
933
934
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
935
0
{
936
0
    ZSTDMT_CCtx* mtctx;
937
0
    U32 nbJobs = nbWorkers + 2;
938
0
    int initError;
939
0
    DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
940
941
0
    if (nbWorkers < 1) return NULL;
942
0
    nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
943
0
    if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
944
        /* invalid custom allocator */
945
0
        return NULL;
946
947
0
    mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
948
0
    if (!mtctx) return NULL;
949
0
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
950
0
    mtctx->cMem = cMem;
951
0
    mtctx->allJobsCompleted = 1;
952
0
    if (pool != NULL) {
953
0
      mtctx->factory = pool;
954
0
      mtctx->providedFactory = 1;
955
0
    }
956
0
    else {
957
0
      mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
958
0
      mtctx->providedFactory = 0;
959
0
    }
960
0
    mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
961
0
    assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
962
0
    mtctx->jobIDMask = nbJobs - 1;
963
0
    mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
964
0
    mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
965
0
    mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
966
0
    initError = ZSTDMT_serialState_init(&mtctx->serial);
967
0
    mtctx->roundBuff = kNullRoundBuff;
968
0
    if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
969
0
        ZSTDMT_freeCCtx(mtctx);
970
0
        return NULL;
971
0
    }
972
0
    DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
973
0
    return mtctx;
974
0
}
975
976
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
977
0
{
978
0
#ifdef ZSTD_MULTITHREAD
979
0
    return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
980
#else
981
    (void)nbWorkers;
982
    (void)cMem;
983
    (void)pool;
984
    return NULL;
985
#endif
986
0
}
987
988
989
/* ZSTDMT_releaseAllJobResources() :
990
 * note : ensure all workers are killed first ! */
991
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
992
0
{
993
0
    unsigned jobID;
994
0
    DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
995
0
    for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
996
        /* Copy the mutex/cond out */
997
0
        ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
998
0
        ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
999
1000
0
        DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
1001
0
        ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
1002
1003
        /* Clear the job description, but keep the mutex/cond */
1004
0
        ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
1005
0
        mtctx->jobs[jobID].job_mutex = mutex;
1006
0
        mtctx->jobs[jobID].job_cond = cond;
1007
0
    }
1008
0
    mtctx->inBuff.buffer = g_nullBuffer;
1009
0
    mtctx->inBuff.filled = 0;
1010
0
    mtctx->allJobsCompleted = 1;
1011
0
}
1012
1013
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
1014
0
{
1015
0
    DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1016
0
    while (mtctx->doneJobID < mtctx->nextJobID) {
1017
0
        unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1018
0
        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1019
0
        while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1020
0
            DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
1021
0
            ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1022
0
        }
1023
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1024
0
        mtctx->doneJobID++;
1025
0
    }
1026
0
}
1027
1028
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1029
0
{
1030
0
    if (mtctx==NULL) return 0;   /* compatible with free on NULL */
1031
0
    if (!mtctx->providedFactory)
1032
0
        POOL_free(mtctx->factory);   /* stop and free worker threads */
1033
0
    ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
1034
0
    ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1035
0
    ZSTDMT_freeBufferPool(mtctx->bufPool);
1036
0
    ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1037
0
    ZSTDMT_freeSeqPool(mtctx->seqPool);
1038
0
    ZSTDMT_serialState_free(&mtctx->serial);
1039
0
    ZSTD_freeCDict(mtctx->cdictLocal);
1040
0
    if (mtctx->roundBuff.buffer)
1041
0
        ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1042
0
    ZSTD_customFree(mtctx, mtctx->cMem);
1043
0
    return 0;
1044
0
}
1045
1046
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1047
0
{
1048
0
    if (mtctx == NULL) return 0;   /* supports sizeof NULL */
1049
0
    return sizeof(*mtctx)
1050
0
            + POOL_sizeof(mtctx->factory)
1051
0
            + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1052
0
            + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1053
0
            + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1054
0
            + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1055
0
            + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1056
0
            + mtctx->roundBuff.capacity;
1057
0
}
1058
1059
1060
/* ZSTDMT_resize() :
1061
 * @return : error code if fails, 0 on success */
1062
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1063
0
{
1064
0
    if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1065
0
    FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1066
0
    mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1067
0
    if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1068
0
    mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1069
0
    if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1070
0
    mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1071
0
    if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1072
0
    ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1073
0
    return 0;
1074
0
}
1075
1076
1077
/*! ZSTDMT_updateCParams_whileCompressing() :
1078
 *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
1079
 *  New parameters will be applied to next compression job. */
1080
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1081
0
{
1082
0
    U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
1083
0
    int const compressionLevel = cctxParams->compressionLevel;
1084
0
    DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1085
0
                compressionLevel);
1086
0
    mtctx->params.compressionLevel = compressionLevel;
1087
0
    {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1088
0
        cParams.windowLog = saved_wlog;
1089
0
        mtctx->params.cParams = cParams;
1090
0
    }
1091
0
}
1092
1093
/* ZSTDMT_getFrameProgression():
1094
 * tells how much data has been consumed (input) and produced (output) for current frame.
1095
 * able to count progression inside worker threads.
1096
 * Note : mutex will be acquired during statistics collection inside workers. */
1097
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1098
0
{
1099
0
    ZSTD_frameProgression fps;
1100
0
    DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1101
0
    fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1102
0
    fps.consumed = mtctx->consumed;
1103
0
    fps.produced = fps.flushed = mtctx->produced;
1104
0
    fps.currentJobID = mtctx->nextJobID;
1105
0
    fps.nbActiveWorkers = 0;
1106
0
    {   unsigned jobNb;
1107
0
        unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1108
0
        DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1109
0
                    mtctx->doneJobID, lastJobNb, mtctx->jobReady);
1110
0
        for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1111
0
            unsigned const wJobID = jobNb & mtctx->jobIDMask;
1112
0
            ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1113
0
            ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1114
0
            {   size_t const cResult = jobPtr->cSize;
1115
0
                size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1116
0
                size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1117
0
                assert(flushed <= produced);
1118
0
                fps.ingested += jobPtr->src.size;
1119
0
                fps.consumed += jobPtr->consumed;
1120
0
                fps.produced += produced;
1121
0
                fps.flushed  += flushed;
1122
0
                fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1123
0
            }
1124
0
            ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1125
0
        }
1126
0
    }
1127
0
    return fps;
1128
0
}
1129
1130
1131
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1132
0
{
1133
0
    size_t toFlush;
1134
0
    unsigned const jobID = mtctx->doneJobID;
1135
0
    assert(jobID <= mtctx->nextJobID);
1136
0
    if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
1137
1138
    /* look into oldest non-fully-flushed job */
1139
0
    {   unsigned const wJobID = jobID & mtctx->jobIDMask;
1140
0
        ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1141
0
        ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1142
0
        {   size_t const cResult = jobPtr->cSize;
1143
0
            size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1144
0
            size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1145
0
            assert(flushed <= produced);
1146
0
            assert(jobPtr->consumed <= jobPtr->src.size);
1147
0
            toFlush = produced - flushed;
1148
            /* if toFlush==0, nothing is available to flush.
1149
             * However, jobID is expected to still be active:
1150
             * if jobID was already completed and fully flushed,
1151
             * ZSTDMT_flushProduced() should have already moved onto next job.
1152
             * Therefore, some input has not yet been consumed. */
1153
0
            if (toFlush==0) {
1154
0
                assert(jobPtr->consumed < jobPtr->src.size);
1155
0
            }
1156
0
        }
1157
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1158
0
    }
1159
1160
0
    return toFlush;
1161
0
}
1162
1163
1164
/* ------------------------------------------ */
1165
/* =====   Multi-threaded compression   ===== */
1166
/* ------------------------------------------ */
1167
1168
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1169
0
{
1170
0
    unsigned jobLog;
1171
0
    if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1172
        /* In Long Range Mode, the windowLog is typically oversized.
1173
         * In which case, it's preferable to determine the jobSize
1174
         * based on cycleLog instead. */
1175
0
        jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1176
0
    } else {
1177
0
        jobLog = MAX(20, params->cParams.windowLog + 2);
1178
0
    }
1179
0
    return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1180
0
}
1181
1182
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1183
0
{
1184
0
    switch(strat)
1185
0
    {
1186
0
        case ZSTD_btultra2:
1187
0
            return 9;
1188
0
        case ZSTD_btultra:
1189
0
        case ZSTD_btopt:
1190
0
            return 8;
1191
0
        case ZSTD_btlazy2:
1192
0
        case ZSTD_lazy2:
1193
0
            return 7;
1194
0
        case ZSTD_lazy:
1195
0
        case ZSTD_greedy:
1196
0
        case ZSTD_dfast:
1197
0
        case ZSTD_fast:
1198
0
        default:;
1199
0
    }
1200
0
    return 6;
1201
0
}
1202
1203
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1204
0
{
1205
0
    assert(0 <= ovlog && ovlog <= 9);
1206
0
    if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1207
0
    return ovlog;
1208
0
}
1209
1210
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1211
0
{
1212
0
    int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1213
0
    int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1214
0
    assert(0 <= overlapRLog && overlapRLog <= 8);
1215
0
    if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1216
        /* In Long Range Mode, the windowLog is typically oversized.
1217
         * In which case, it's preferable to determine the jobSize
1218
         * based on chainLog instead.
1219
         * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1220
0
        ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1221
0
                - overlapRLog;
1222
0
    }
1223
0
    assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1224
0
    DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1225
0
    DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1226
0
    return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1227
0
}
1228
1229
/* ====================================== */
1230
/* =======      Streaming API     ======= */
1231
/* ====================================== */
1232
1233
size_t ZSTDMT_initCStream_internal(
1234
        ZSTDMT_CCtx* mtctx,
1235
        const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1236
        const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1237
        unsigned long long pledgedSrcSize)
1238
0
{
1239
0
    DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1240
0
                (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1241
1242
    /* params supposed partially fully validated at this point */
1243
0
    assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1244
0
    assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
1245
1246
    /* init */
1247
0
    if (params.nbWorkers != mtctx->params.nbWorkers)
1248
0
        FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
1249
1250
0
    if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1251
0
    if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1252
1253
0
    DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
1254
1255
0
    if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
1256
0
        ZSTDMT_waitForAllJobsCompleted(mtctx);
1257
0
        ZSTDMT_releaseAllJobResources(mtctx);
1258
0
        mtctx->allJobsCompleted = 1;
1259
0
    }
1260
1261
0
    mtctx->params = params;
1262
0
    mtctx->frameContentSize = pledgedSrcSize;
1263
0
    if (dict) {
1264
0
        ZSTD_freeCDict(mtctx->cdictLocal);
1265
0
        mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1266
0
                                                    ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1267
0
                                                    params.cParams, mtctx->cMem);
1268
0
        mtctx->cdict = mtctx->cdictLocal;
1269
0
        if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1270
0
    } else {
1271
0
        ZSTD_freeCDict(mtctx->cdictLocal);
1272
0
        mtctx->cdictLocal = NULL;
1273
0
        mtctx->cdict = cdict;
1274
0
    }
1275
1276
0
    mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1277
0
    DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1278
0
    mtctx->targetSectionSize = params.jobSize;
1279
0
    if (mtctx->targetSectionSize == 0) {
1280
0
        mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1281
0
    }
1282
0
    assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1283
1284
0
    if (params.rsyncable) {
1285
        /* Aim for the targetsectionSize as the average job size. */
1286
0
        U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1287
0
        U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1288
        /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1289
         * expected job size is at least 4x larger. */
1290
0
        assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1291
0
        DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1292
0
        mtctx->rsync.hash = 0;
1293
0
        mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1294
0
        mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1295
0
    }
1296
0
    if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
1297
0
    DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1298
0
    DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1299
0
    ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1300
0
    {
1301
        /* If ldm is enabled we need windowSize space. */
1302
0
        size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1303
        /* Two buffers of slack, plus extra space for the overlap
1304
         * This is the minimum slack that LDM works with. One extra because
1305
         * flush might waste up to targetSectionSize-1 bytes. Another extra
1306
         * for the overlap (if > 0), then one to fill which doesn't overlap
1307
         * with the LDM window.
1308
         */
1309
0
        size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1310
0
        size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1311
        /* Compute the total size, and always have enough slack */
1312
0
        size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1313
0
        size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1314
0
        size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1315
0
        if (mtctx->roundBuff.capacity < capacity) {
1316
0
            if (mtctx->roundBuff.buffer)
1317
0
                ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1318
0
            mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1319
0
            if (mtctx->roundBuff.buffer == NULL) {
1320
0
                mtctx->roundBuff.capacity = 0;
1321
0
                return ERROR(memory_allocation);
1322
0
            }
1323
0
            mtctx->roundBuff.capacity = capacity;
1324
0
        }
1325
0
    }
1326
0
    DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1327
0
    mtctx->roundBuff.pos = 0;
1328
0
    mtctx->inBuff.buffer = g_nullBuffer;
1329
0
    mtctx->inBuff.filled = 0;
1330
0
    mtctx->inBuff.prefix = kNullRange;
1331
0
    mtctx->doneJobID = 0;
1332
0
    mtctx->nextJobID = 0;
1333
0
    mtctx->frameEnded = 0;
1334
0
    mtctx->allJobsCompleted = 0;
1335
0
    mtctx->consumed = 0;
1336
0
    mtctx->produced = 0;
1337
0
    if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1338
0
                                 dict, dictSize, dictContentType))
1339
0
        return ERROR(memory_allocation);
1340
0
    return 0;
1341
0
}
1342
1343
1344
/* ZSTDMT_writeLastEmptyBlock()
1345
 * Write a single empty block with an end-of-frame to finish a frame.
1346
 * Job must be created from streaming variant.
1347
 * This function is always successful if expected conditions are fulfilled.
1348
 */
1349
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1350
0
{
1351
0
    assert(job->lastJob == 1);
1352
0
    assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
1353
0
    assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
1354
0
    assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1355
0
    job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1356
0
    if (job->dstBuff.start == NULL) {
1357
0
      job->cSize = ERROR(memory_allocation);
1358
0
      return;
1359
0
    }
1360
0
    assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
1361
0
    job->src = kNullRange;
1362
0
    job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1363
0
    assert(!ZSTD_isError(job->cSize));
1364
0
    assert(job->consumed == 0);
1365
0
}
1366
1367
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1368
0
{
1369
0
    unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1370
0
    int const endFrame = (endOp == ZSTD_e_end);
1371
1372
0
    if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1373
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1374
0
        assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1375
0
        return 0;
1376
0
    }
1377
1378
0
    if (!mtctx->jobReady) {
1379
0
        BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1380
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1381
0
                    mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1382
0
        mtctx->jobs[jobID].src.start = src;
1383
0
        mtctx->jobs[jobID].src.size = srcSize;
1384
0
        assert(mtctx->inBuff.filled >= srcSize);
1385
0
        mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1386
0
        mtctx->jobs[jobID].consumed = 0;
1387
0
        mtctx->jobs[jobID].cSize = 0;
1388
0
        mtctx->jobs[jobID].params = mtctx->params;
1389
0
        mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1390
0
        mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1391
0
        mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1392
0
        mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1393
0
        mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1394
0
        mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1395
0
        mtctx->jobs[jobID].serial = &mtctx->serial;
1396
0
        mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1397
0
        mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1398
0
        mtctx->jobs[jobID].lastJob = endFrame;
1399
0
        mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1400
0
        mtctx->jobs[jobID].dstFlushed = 0;
1401
1402
        /* Update the round buffer pos and clear the input buffer to be reset */
1403
0
        mtctx->roundBuff.pos += srcSize;
1404
0
        mtctx->inBuff.buffer = g_nullBuffer;
1405
0
        mtctx->inBuff.filled = 0;
1406
        /* Set the prefix */
1407
0
        if (!endFrame) {
1408
0
            size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1409
0
            mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1410
0
            mtctx->inBuff.prefix.size = newPrefixSize;
1411
0
        } else {   /* endFrame==1 => no need for another input buffer */
1412
0
            mtctx->inBuff.prefix = kNullRange;
1413
0
            mtctx->frameEnded = endFrame;
1414
0
            if (mtctx->nextJobID == 0) {
1415
                /* single job exception : checksum is already calculated directly within worker thread */
1416
0
                mtctx->params.fParams.checksumFlag = 0;
1417
0
        }   }
1418
1419
0
        if ( (srcSize == 0)
1420
0
          && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1421
0
            DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1422
0
            assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
1423
0
            ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1424
0
            mtctx->nextJobID++;
1425
0
            return 0;
1426
0
        }
1427
0
    }
1428
1429
0
    DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
1430
0
                mtctx->nextJobID,
1431
0
                (U32)mtctx->jobs[jobID].src.size,
1432
0
                mtctx->jobs[jobID].lastJob,
1433
0
                mtctx->nextJobID,
1434
0
                jobID);
1435
0
    if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1436
0
        mtctx->nextJobID++;
1437
0
        mtctx->jobReady = 0;
1438
0
    } else {
1439
0
        DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1440
0
        mtctx->jobReady = 1;
1441
0
    }
1442
0
    return 0;
1443
0
}
1444
1445
1446
/*! ZSTDMT_flushProduced() :
1447
 *  flush whatever data has been produced but not yet flushed in current job.
1448
 *  move to next job if current one is fully flushed.
1449
 * `output` : `pos` will be updated with amount of data flushed .
1450
 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1451
 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1452
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1453
0
{
1454
0
    unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1455
0
    DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1456
0
                blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1457
0
    assert(output->size >= output->pos);
1458
1459
0
    ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1460
0
    if (  blockToFlush
1461
0
      && (mtctx->doneJobID < mtctx->nextJobID) ) {
1462
0
        assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1463
0
        while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
1464
0
            if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1465
0
                DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1466
0
                            mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1467
0
                break;
1468
0
            }
1469
0
            DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1470
0
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1471
0
            ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
1472
0
    }   }
1473
1474
    /* try to flush something */
1475
0
    {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
1476
0
        size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
1477
0
        size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1478
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1479
0
        if (ZSTD_isError(cSize)) {
1480
0
            DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1481
0
                        mtctx->doneJobID, ZSTD_getErrorName(cSize));
1482
0
            ZSTDMT_waitForAllJobsCompleted(mtctx);
1483
0
            ZSTDMT_releaseAllJobResources(mtctx);
1484
0
            return cSize;
1485
0
        }
1486
        /* add frame checksum if necessary (can only happen once) */
1487
0
        assert(srcConsumed <= srcSize);
1488
0
        if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
1489
0
          && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1490
0
            U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1491
0
            DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1492
0
            MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1493
0
            cSize += 4;
1494
0
            mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
1495
0
            mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1496
0
        }
1497
1498
0
        if (cSize > 0) {   /* compression is ongoing or completed */
1499
0
            size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1500
0
            DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1501
0
                        (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1502
0
            assert(mtctx->doneJobID < mtctx->nextJobID);
1503
0
            assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1504
0
            assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1505
0
            if (toFlush > 0) {
1506
0
                ZSTD_memcpy((char*)output->dst + output->pos,
1507
0
                    (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1508
0
                    toFlush);
1509
0
            }
1510
0
            output->pos += toFlush;
1511
0
            mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
1512
1513
0
            if ( (srcConsumed == srcSize)    /* job is completed */
1514
0
              && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
1515
0
                DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1516
0
                        mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1517
0
                ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1518
0
                DEBUGLOG(5, "dstBuffer released");
1519
0
                mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1520
0
                mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
1521
0
                mtctx->consumed += srcSize;
1522
0
                mtctx->produced += cSize;
1523
0
                mtctx->doneJobID++;
1524
0
        }   }
1525
1526
        /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1527
0
        if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1528
0
        if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
1529
0
    }
1530
0
    if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
1531
0
    if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
1532
0
    if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
1533
0
    mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
1534
0
    if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1535
0
    return 0;   /* internal buffers fully flushed */
1536
0
}
1537
1538
/**
1539
 * Returns the range of data used by the earliest job that is not yet complete.
1540
 * If the data of the first job is broken up into two segments, we cover both
1541
 * sections.
1542
 */
1543
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1544
0
{
1545
0
    unsigned const firstJobID = mtctx->doneJobID;
1546
0
    unsigned const lastJobID = mtctx->nextJobID;
1547
0
    unsigned jobID;
1548
1549
0
    for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1550
0
        unsigned const wJobID = jobID & mtctx->jobIDMask;
1551
0
        size_t consumed;
1552
1553
0
        ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1554
0
        consumed = mtctx->jobs[wJobID].consumed;
1555
0
        ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1556
1557
0
        if (consumed < mtctx->jobs[wJobID].src.size) {
1558
0
            range_t range = mtctx->jobs[wJobID].prefix;
1559
0
            if (range.size == 0) {
1560
                /* Empty prefix */
1561
0
                range = mtctx->jobs[wJobID].src;
1562
0
            }
1563
            /* Job source in multiple segments not supported yet */
1564
0
            assert(range.start <= mtctx->jobs[wJobID].src.start);
1565
0
            return range;
1566
0
        }
1567
0
    }
1568
0
    return kNullRange;
1569
0
}
1570
1571
/**
1572
 * Returns non-zero iff buffer and range overlap.
1573
 */
1574
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
1575
0
{
1576
0
    BYTE const* const bufferStart = (BYTE const*)buffer.start;
1577
0
    BYTE const* const rangeStart = (BYTE const*)range.start;
1578
1579
0
    if (rangeStart == NULL || bufferStart == NULL)
1580
0
        return 0;
1581
1582
0
    {
1583
0
        BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1584
0
        BYTE const* const rangeEnd = rangeStart + range.size;
1585
1586
        /* Empty ranges cannot overlap */
1587
0
        if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1588
0
            return 0;
1589
1590
0
        return bufferStart < rangeEnd && rangeStart < bufferEnd;
1591
0
    }
1592
0
}
1593
1594
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
1595
0
{
1596
0
    range_t extDict;
1597
0
    range_t prefix;
1598
1599
0
    DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1600
0
    extDict.start = window.dictBase + window.lowLimit;
1601
0
    extDict.size = window.dictLimit - window.lowLimit;
1602
1603
0
    prefix.start = window.base + window.dictLimit;
1604
0
    prefix.size = window.nextSrc - (window.base + window.dictLimit);
1605
0
    DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1606
0
                (size_t)extDict.start,
1607
0
                (size_t)extDict.start + extDict.size);
1608
0
    DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
1609
0
                (size_t)prefix.start,
1610
0
                (size_t)prefix.start + prefix.size);
1611
1612
0
    return ZSTDMT_isOverlapped(buffer, extDict)
1613
0
        || ZSTDMT_isOverlapped(buffer, prefix);
1614
0
}
1615
1616
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
1617
0
{
1618
0
    if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1619
0
        ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1620
0
        DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1621
0
        DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
1622
0
                    (size_t)buffer.start,
1623
0
                    (size_t)buffer.start + buffer.capacity);
1624
0
        ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1625
0
        while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1626
0
            DEBUGLOG(5, "Waiting for LDM to finish...");
1627
0
            ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1628
0
        }
1629
0
        DEBUGLOG(6, "Done waiting for LDM to finish");
1630
0
        ZSTD_pthread_mutex_unlock(mutex);
1631
0
    }
1632
0
}
1633
1634
/**
1635
 * Attempts to set the inBuff to the next section to fill.
1636
 * If any part of the new section is still in use we give up.
1637
 * Returns non-zero if the buffer is filled.
1638
 */
1639
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1640
0
{
1641
0
    range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
1642
0
    size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1643
0
    size_t const target = mtctx->targetSectionSize;
1644
0
    buffer_t buffer;
1645
1646
0
    DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1647
0
    assert(mtctx->inBuff.buffer.start == NULL);
1648
0
    assert(mtctx->roundBuff.capacity >= target);
1649
1650
0
    if (spaceLeft < target) {
1651
        /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1652
         * Simply copy the prefix to the beginning in that case.
1653
         */
1654
0
        BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1655
0
        size_t const prefixSize = mtctx->inBuff.prefix.size;
1656
1657
0
        buffer.start = start;
1658
0
        buffer.capacity = prefixSize;
1659
0
        if (ZSTDMT_isOverlapped(buffer, inUse)) {
1660
0
            DEBUGLOG(5, "Waiting for buffer...");
1661
0
            return 0;
1662
0
        }
1663
0
        ZSTDMT_waitForLdmComplete(mtctx, buffer);
1664
0
        ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1665
0
        mtctx->inBuff.prefix.start = start;
1666
0
        mtctx->roundBuff.pos = prefixSize;
1667
0
    }
1668
0
    buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1669
0
    buffer.capacity = target;
1670
1671
0
    if (ZSTDMT_isOverlapped(buffer, inUse)) {
1672
0
        DEBUGLOG(5, "Waiting for buffer...");
1673
0
        return 0;
1674
0
    }
1675
0
    assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1676
1677
0
    ZSTDMT_waitForLdmComplete(mtctx, buffer);
1678
1679
0
    DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1680
0
                (size_t)mtctx->inBuff.prefix.start,
1681
0
                (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1682
0
    DEBUGLOG(5, "Using source range [%zx, %zx)",
1683
0
                (size_t)buffer.start,
1684
0
                (size_t)buffer.start + buffer.capacity);
1685
1686
1687
0
    mtctx->inBuff.buffer = buffer;
1688
0
    mtctx->inBuff.filled = 0;
1689
0
    assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1690
0
    return 1;
1691
0
}
1692
1693
typedef struct {
1694
  size_t toLoad;  /* The number of bytes to load from the input. */
1695
  int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
1696
} syncPoint_t;
1697
1698
/**
1699
 * Searches through the input for a synchronization point. If one is found, we
1700
 * will instruct the caller to flush, and return the number of bytes to load.
1701
 * Otherwise, we will load as many bytes as possible and instruct the caller
1702
 * to continue as normal.
1703
 */
1704
static syncPoint_t
1705
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1706
0
{
1707
0
    BYTE const* const istart = (BYTE const*)input.src + input.pos;
1708
0
    U64 const primePower = mtctx->rsync.primePower;
1709
0
    U64 const hitMask = mtctx->rsync.hitMask;
1710
1711
0
    syncPoint_t syncPoint;
1712
0
    U64 hash;
1713
0
    BYTE const* prev;
1714
0
    size_t pos;
1715
1716
0
    syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1717
0
    syncPoint.flush = 0;
1718
0
    if (!mtctx->params.rsyncable)
1719
        /* Rsync is disabled. */
1720
0
        return syncPoint;
1721
0
    if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1722
        /* We don't emit synchronization points if it would produce too small blocks.
1723
         * We don't have enough input to find a synchronization point, so don't look.
1724
         */
1725
0
        return syncPoint;
1726
0
    if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1727
        /* Not enough to compute the hash.
1728
         * We will miss any synchronization points in this RSYNC_LENGTH byte
1729
         * window. However, since it depends only in the internal buffers, if the
1730
         * state is already synchronized, we will remain synchronized.
1731
         * Additionally, the probability that we miss a synchronization point is
1732
         * low: RSYNC_LENGTH / targetSectionSize.
1733
         */
1734
0
        return syncPoint;
1735
    /* Initialize the loop variables. */
1736
0
    if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1737
        /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1738
         * because they can't possibly be a sync point. So we can start
1739
         * part way through the input buffer.
1740
         */
1741
0
        pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1742
0
        if (pos >= RSYNC_LENGTH) {
1743
0
            prev = istart + pos - RSYNC_LENGTH;
1744
0
            hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1745
0
        } else {
1746
0
            assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1747
0
            prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1748
0
            hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1749
0
            hash = ZSTD_rollingHash_append(hash, istart, pos);
1750
0
        }
1751
0
    } else {
1752
        /* We have enough bytes buffered to initialize the hash,
1753
         * and have processed enough bytes to find a sync point.
1754
         * Start scanning at the beginning of the input.
1755
         */
1756
0
        assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1757
0
        assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1758
0
        pos = 0;
1759
0
        prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1760
0
        hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1761
0
        if ((hash & hitMask) == hitMask) {
1762
            /* We're already at a sync point so don't load any more until
1763
             * we're able to flush this sync point.
1764
             * This likely happened because the job table was full so we
1765
             * couldn't add our job.
1766
             */
1767
0
            syncPoint.toLoad = 0;
1768
0
            syncPoint.flush = 1;
1769
0
            return syncPoint;
1770
0
        }
1771
0
    }
1772
    /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1773
     * through the input. If we hit a synchronization point, then cut the
1774
     * job off, and tell the compressor to flush the job. Otherwise, load
1775
     * all the bytes and continue as normal.
1776
     * If we go too long without a synchronization point (targetSectionSize)
1777
     * then a block will be emitted anyways, but this is okay, since if we
1778
     * are already synchronized we will remain synchronized.
1779
     */
1780
0
    assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1781
0
    for (; pos < syncPoint.toLoad; ++pos) {
1782
0
        BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1783
        /* This assert is very expensive, and Debian compiles with asserts enabled.
1784
         * So disable it for now. We can get similar coverage by checking it at the
1785
         * beginning & end of the loop.
1786
         * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1787
         */
1788
0
        hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1789
0
        assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1790
0
        if ((hash & hitMask) == hitMask) {
1791
0
            syncPoint.toLoad = pos + 1;
1792
0
            syncPoint.flush = 1;
1793
0
            ++pos; /* for assert */
1794
0
            break;
1795
0
        }
1796
0
    }
1797
0
    assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1798
0
    return syncPoint;
1799
0
}
1800
1801
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1802
0
{
1803
0
    size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1804
0
    if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1805
0
    return hintInSize;
1806
0
}
1807
1808
/** ZSTDMT_compressStream_generic() :
1809
 *  internal use only - exposed to be invoked from zstd_compress.c
1810
 *  assumption : output and input are valid (pos <= size)
1811
 * @return : minimum amount of data remaining to flush, 0 if none */
1812
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1813
                                     ZSTD_outBuffer* output,
1814
                                     ZSTD_inBuffer* input,
1815
                                     ZSTD_EndDirective endOp)
1816
0
{
1817
0
    unsigned forwardInputProgress = 0;
1818
0
    DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1819
0
                (U32)endOp, (U32)(input->size - input->pos));
1820
0
    assert(output->pos <= output->size);
1821
0
    assert(input->pos  <= input->size);
1822
1823
0
    if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1824
        /* current frame being ended. Only flush/end are allowed */
1825
0
        return ERROR(stage_wrong);
1826
0
    }
1827
1828
    /* fill input buffer */
1829
0
    if ( (!mtctx->jobReady)
1830
0
      && (input->size > input->pos) ) {   /* support NULL input */
1831
0
        if (mtctx->inBuff.buffer.start == NULL) {
1832
0
            assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1833
0
            if (!ZSTDMT_tryGetInputRange(mtctx)) {
1834
                /* It is only possible for this operation to fail if there are
1835
                 * still compression jobs ongoing.
1836
                 */
1837
0
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1838
0
                assert(mtctx->doneJobID != mtctx->nextJobID);
1839
0
            } else
1840
0
                DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1841
0
        }
1842
0
        if (mtctx->inBuff.buffer.start != NULL) {
1843
0
            syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
1844
0
            if (syncPoint.flush && endOp == ZSTD_e_continue) {
1845
0
                endOp = ZSTD_e_flush;
1846
0
            }
1847
0
            assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1848
0
            DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1849
0
                        (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1850
0
            ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1851
0
            input->pos += syncPoint.toLoad;
1852
0
            mtctx->inBuff.filled += syncPoint.toLoad;
1853
0
            forwardInputProgress = syncPoint.toLoad>0;
1854
0
        }
1855
0
    }
1856
0
    if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1857
        /* Can't end yet because the input is not fully consumed.
1858
            * We are in one of these cases:
1859
            * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1860
            * - We filled the input buffer: flush this job but don't end the frame.
1861
            * - We hit a synchronization point: flush this job but don't end the frame.
1862
            */
1863
0
        assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1864
0
        endOp = ZSTD_e_flush;
1865
0
    }
1866
1867
0
    if ( (mtctx->jobReady)
1868
0
      || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
1869
0
      || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
1870
0
      || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
1871
0
        size_t const jobSize = mtctx->inBuff.filled;
1872
0
        assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1873
0
        FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1874
0
    }
1875
1876
    /* check for potential compressed data ready to be flushed */
1877
0
    {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1878
0
        if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
1879
0
        DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1880
0
        return remainingToFlush;
1881
0
    }
1882
0
}