/src/zstd/lib/dictBuilder/cover.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | | * All rights reserved. |
4 | | * |
5 | | * This source code is licensed under both the BSD-style license (found in the |
6 | | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | | * in the COPYING file in the root directory of this source tree). |
8 | | * You may select, at your option, one of the above-listed licenses. |
9 | | */ |
10 | | |
11 | | /* ***************************************************************************** |
12 | | * Constructs a dictionary using a heuristic based on the following paper: |
13 | | * |
14 | | * Liao, Petri, Moffat, Wirth |
15 | | * Effective Construction of Relative Lempel-Ziv Dictionaries |
16 | | * Published in WWW 2016. |
17 | | * |
18 | | * Adapted from code originally written by @ot (Giuseppe Ottaviano). |
19 | | ******************************************************************************/ |
20 | | |
21 | | /*-************************************* |
22 | | * Dependencies |
23 | | ***************************************/ |
24 | | /* qsort_r is an extension. */ |
25 | | #if defined(__linux) || defined(__linux__) || defined(linux) || defined(__gnu_linux__) || \ |
26 | | defined(__CYGWIN__) || defined(__MSYS__) |
27 | | # if !defined(_GNU_SOURCE) && !defined(__ANDROID__) /* NDK doesn't ship qsort_r(). */ |
28 | | # define _GNU_SOURCE |
29 | | # endif |
30 | | #endif |
31 | | |
32 | | #define __STDC_WANT_LIB_EXT1__ 1 /* request C11 Annex K, which includes qsort_s() */ |
33 | | |
34 | | #include <stdio.h> /* fprintf */ |
35 | | #include <stdlib.h> /* malloc, free, qsort_r */ |
36 | | |
37 | | #include <string.h> /* memset */ |
38 | | #include <time.h> /* clock */ |
39 | | |
40 | | #ifndef ZDICT_STATIC_LINKING_ONLY |
41 | | # define ZDICT_STATIC_LINKING_ONLY |
42 | | #endif |
43 | | |
44 | | #include "../common/debug.h" /* DEBUG_STATIC_ASSERT */ |
45 | | #include "../common/mem.h" /* read */ |
46 | | #include "../common/pool.h" /* POOL_ctx */ |
47 | | #include "../common/threading.h" /* ZSTD_pthread_mutex_t */ |
48 | | #include "../common/zstd_internal.h" /* includes zstd.h */ |
49 | | #include "../common/bits.h" /* ZSTD_highbit32 */ |
50 | | #include "../zdict.h" |
51 | | #include "cover.h" |
52 | | |
53 | | /*-************************************* |
54 | | * Constants |
55 | | ***************************************/ |
56 | | /** |
57 | | * There are 32bit indexes used to ref samples, so limit samples size to 4GB |
58 | | * on 64bit builds. |
59 | | * For 32bit builds we choose 1 GB. |
60 | | * Most 32bit platforms have 2GB user-mode addressable space and we allocate a large |
61 | | * contiguous buffer, so 1GB is already a high limit. |
62 | | */ |
63 | 0 | #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB)) |
64 | 0 | #define COVER_DEFAULT_SPLITPOINT 1.0 |
65 | | |
66 | | /** |
67 | | * Select the qsort() variant used by cover |
68 | | */ |
69 | | #define ZDICT_QSORT_MIN 0 |
70 | | #define ZDICT_QSORT_C90 ZDICT_QSORT_MIN |
71 | | #define ZDICT_QSORT_GNU 1 |
72 | | #define ZDICT_QSORT_APPLE 2 |
73 | | #define ZDICT_QSORT_MSVC 3 |
74 | | #define ZDICT_QSORT_C11 ZDICT_QSORT_MAX |
75 | | #define ZDICT_QSORT_MAX 4 |
76 | | |
77 | | #ifndef ZDICT_QSORT |
78 | | # if defined(__APPLE__) |
79 | | # define ZDICT_QSORT ZDICT_QSORT_APPLE /* uses qsort_r() with a different order for parameters */ |
80 | | # elif defined(_GNU_SOURCE) |
81 | | # define ZDICT_QSORT ZDICT_QSORT_GNU /* uses qsort_r() */ |
82 | | # elif defined(_WIN32) && defined(_MSC_VER) |
83 | | # define ZDICT_QSORT ZDICT_QSORT_MSVC /* uses qsort_s() with a different order for parameters */ |
84 | | # elif defined(STDC_LIB_EXT1) && (STDC_LIB_EXT1 > 0) /* C11 Annex K */ |
85 | | # define ZDICT_QSORT ZDICT_QSORT_C11 /* uses qsort_s() */ |
86 | | # else |
87 | | # define ZDICT_QSORT ZDICT_QSORT_C90 /* uses standard qsort() which is not re-entrant (requires global variable) */ |
88 | | # endif |
89 | | #endif |
90 | | |
91 | | |
92 | | /*-************************************* |
93 | | * Console display |
94 | | * |
95 | | * Captures the `displayLevel` variable in the local scope. |
96 | | ***************************************/ |
97 | | #undef DISPLAY |
98 | | #define DISPLAY(...) \ |
99 | 0 | { \ |
100 | 0 | fprintf(stderr, __VA_ARGS__); \ |
101 | 0 | fflush(stderr); \ |
102 | 0 | } |
103 | | #undef DISPLAYLEVEL |
104 | | #define DISPLAYLEVEL(l, ...) \ |
105 | 0 | if (displayLevel >= l) { \ |
106 | 0 | DISPLAY(__VA_ARGS__); \ |
107 | 0 | } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ |
108 | | |
109 | | #undef DISPLAYUPDATE |
110 | | #define DISPLAYUPDATE(lastUpdateTime, l, ...) \ |
111 | 0 | if (displayLevel >= l) { \ |
112 | 0 | const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; \ |
113 | 0 | if ((clock() - lastUpdateTime > refreshRate) || (displayLevel >= 4)) { \ |
114 | 0 | lastUpdateTime = clock(); \ |
115 | 0 | DISPLAY(__VA_ARGS__); \ |
116 | 0 | } \ |
117 | 0 | } |
118 | | |
119 | | /*-************************************* |
120 | | * Hash table |
121 | | *************************************** |
122 | | * A small specialized hash map for storing activeDmers. |
123 | | * The map does not resize, so if it becomes full it will loop forever. |
124 | | * Thus, the map must be large enough to store every value. |
125 | | * The map implements linear probing and keeps its load less than 0.5. |
126 | | */ |
127 | | |
128 | 0 | #define MAP_EMPTY_VALUE ((U32)-1) |
129 | | typedef struct COVER_map_pair_t_s { |
130 | | U32 key; |
131 | | U32 value; |
132 | | } COVER_map_pair_t; |
133 | | |
134 | | typedef struct COVER_map_s { |
135 | | COVER_map_pair_t *data; |
136 | | U32 sizeLog; |
137 | | U32 size; |
138 | | U32 sizeMask; |
139 | | } COVER_map_t; |
140 | | |
141 | | /** |
142 | | * Clear the map. |
143 | | */ |
144 | 0 | static void COVER_map_clear(COVER_map_t *map) { |
145 | 0 | memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t)); |
146 | 0 | } |
147 | | |
148 | | /** |
149 | | * Initializes a map of the given size. |
150 | | * Returns 1 on success and 0 on failure. |
151 | | * The map must be destroyed with COVER_map_destroy(). |
152 | | * The map is only guaranteed to be large enough to hold size elements. |
153 | | */ |
154 | 0 | static int COVER_map_init(COVER_map_t *map, U32 size) { |
155 | 0 | map->sizeLog = ZSTD_highbit32(size) + 2; |
156 | 0 | map->size = (U32)1 << map->sizeLog; |
157 | 0 | map->sizeMask = map->size - 1; |
158 | 0 | map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t)); |
159 | 0 | if (!map->data) { |
160 | 0 | map->sizeLog = 0; |
161 | 0 | map->size = 0; |
162 | 0 | return 0; |
163 | 0 | } |
164 | 0 | COVER_map_clear(map); |
165 | 0 | return 1; |
166 | 0 | } |
167 | | |
168 | | /** |
169 | | * Internal hash function |
170 | | */ |
171 | | static const U32 COVER_prime4bytes = 2654435761U; |
172 | 0 | static U32 COVER_map_hash(COVER_map_t *map, U32 key) { |
173 | 0 | return (key * COVER_prime4bytes) >> (32 - map->sizeLog); |
174 | 0 | } |
175 | | |
176 | | /** |
177 | | * Helper function that returns the index that a key should be placed into. |
178 | | */ |
179 | 0 | static U32 COVER_map_index(COVER_map_t *map, U32 key) { |
180 | 0 | const U32 hash = COVER_map_hash(map, key); |
181 | 0 | U32 i; |
182 | 0 | for (i = hash;; i = (i + 1) & map->sizeMask) { |
183 | 0 | COVER_map_pair_t *pos = &map->data[i]; |
184 | 0 | if (pos->value == MAP_EMPTY_VALUE) { |
185 | 0 | return i; |
186 | 0 | } |
187 | 0 | if (pos->key == key) { |
188 | 0 | return i; |
189 | 0 | } |
190 | 0 | } |
191 | 0 | } |
192 | | |
193 | | /** |
194 | | * Returns the pointer to the value for key. |
195 | | * If key is not in the map, it is inserted and the value is set to 0. |
196 | | * The map must not be full. |
197 | | */ |
198 | 0 | static U32 *COVER_map_at(COVER_map_t *map, U32 key) { |
199 | 0 | COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)]; |
200 | 0 | if (pos->value == MAP_EMPTY_VALUE) { |
201 | 0 | pos->key = key; |
202 | 0 | pos->value = 0; |
203 | 0 | } |
204 | 0 | return &pos->value; |
205 | 0 | } |
206 | | |
207 | | /** |
208 | | * Deletes key from the map if present. |
209 | | */ |
210 | 0 | static void COVER_map_remove(COVER_map_t *map, U32 key) { |
211 | 0 | U32 i = COVER_map_index(map, key); |
212 | 0 | COVER_map_pair_t* del = &map->data[i]; |
213 | 0 | U32 shift = 1; |
214 | 0 | if (del->value == MAP_EMPTY_VALUE) { |
215 | 0 | return; |
216 | 0 | } |
217 | 0 | for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) { |
218 | 0 | COVER_map_pair_t *const pos = &map->data[i]; |
219 | | /* If the position is empty we are done */ |
220 | 0 | if (pos->value == MAP_EMPTY_VALUE) { |
221 | 0 | del->value = MAP_EMPTY_VALUE; |
222 | 0 | return; |
223 | 0 | } |
224 | | /* If pos can be moved to del do so */ |
225 | 0 | if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) { |
226 | 0 | del->key = pos->key; |
227 | 0 | del->value = pos->value; |
228 | 0 | del = pos; |
229 | 0 | shift = 1; |
230 | 0 | } else { |
231 | 0 | ++shift; |
232 | 0 | } |
233 | 0 | } |
234 | 0 | } |
235 | | |
236 | | /** |
237 | | * Destroys a map that is inited with COVER_map_init(). |
238 | | */ |
239 | 0 | static void COVER_map_destroy(COVER_map_t *map) { |
240 | 0 | if (map->data) { |
241 | 0 | free(map->data); |
242 | 0 | } |
243 | 0 | map->data = NULL; |
244 | 0 | map->size = 0; |
245 | 0 | } |
246 | | |
247 | | /*-************************************* |
248 | | * Context |
249 | | ***************************************/ |
250 | | |
251 | | typedef struct { |
252 | | const BYTE *samples; |
253 | | size_t *offsets; |
254 | | const size_t *samplesSizes; |
255 | | size_t nbSamples; |
256 | | size_t nbTrainSamples; |
257 | | size_t nbTestSamples; |
258 | | U32 *suffix; |
259 | | size_t suffixSize; |
260 | | U32 *freqs; |
261 | | U32 *dmerAt; |
262 | | unsigned d; |
263 | | int displayLevel; |
264 | | } COVER_ctx_t; |
265 | | |
266 | | #if ZDICT_QSORT == ZDICT_QSORT_C90 |
267 | | /* Use global context for non-reentrant sort functions */ |
268 | | static COVER_ctx_t *g_coverCtx = NULL; |
269 | | #endif |
270 | | |
271 | | /*-************************************* |
272 | | * Helper functions |
273 | | ***************************************/ |
274 | | |
275 | | /** |
276 | | * Returns the sum of the sample sizes. |
277 | | */ |
278 | 0 | size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) { |
279 | 0 | size_t sum = 0; |
280 | 0 | unsigned i; |
281 | 0 | for (i = 0; i < nbSamples; ++i) { |
282 | 0 | sum += samplesSizes[i]; |
283 | 0 | } |
284 | 0 | return sum; |
285 | 0 | } |
286 | | |
287 | | /** |
288 | | * Returns -1 if the dmer at lp is less than the dmer at rp. |
289 | | * Return 0 if the dmers at lp and rp are equal. |
290 | | * Returns 1 if the dmer at lp is greater than the dmer at rp. |
291 | | */ |
292 | 0 | static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) { |
293 | 0 | U32 const lhs = *(U32 const *)lp; |
294 | 0 | U32 const rhs = *(U32 const *)rp; |
295 | 0 | return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d); |
296 | 0 | } |
297 | | /** |
298 | | * Faster version for d <= 8. |
299 | | */ |
300 | 0 | static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) { |
301 | 0 | U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1); |
302 | 0 | U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask; |
303 | 0 | U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask; |
304 | 0 | if (lhs < rhs) { |
305 | 0 | return -1; |
306 | 0 | } |
307 | 0 | return (lhs > rhs); |
308 | 0 | } |
309 | | |
310 | | /** |
311 | | * Same as COVER_cmp() except ties are broken by pointer value |
312 | | */ |
313 | | #if (ZDICT_QSORT == ZDICT_QSORT_MSVC) || (ZDICT_QSORT == ZDICT_QSORT_APPLE) |
314 | | static int WIN_CDECL COVER_strict_cmp(void* g_coverCtx, const void* lp, const void* rp) { |
315 | | #elif (ZDICT_QSORT == ZDICT_QSORT_GNU) || (ZDICT_QSORT == ZDICT_QSORT_C11) |
316 | 0 | static int COVER_strict_cmp(const void *lp, const void *rp, void *g_coverCtx) { |
317 | | #else /* C90 fallback.*/ |
318 | | static int COVER_strict_cmp(const void *lp, const void *rp) { |
319 | | #endif |
320 | 0 | int result = COVER_cmp((COVER_ctx_t*)g_coverCtx, lp, rp); |
321 | 0 | if (result == 0) { |
322 | 0 | result = lp < rp ? -1 : 1; |
323 | 0 | } |
324 | 0 | return result; |
325 | 0 | } |
326 | | /** |
327 | | * Faster version for d <= 8. |
328 | | */ |
329 | | #if (ZDICT_QSORT == ZDICT_QSORT_MSVC) || (ZDICT_QSORT == ZDICT_QSORT_APPLE) |
330 | | static int WIN_CDECL COVER_strict_cmp8(void* g_coverCtx, const void* lp, const void* rp) { |
331 | | #elif (ZDICT_QSORT == ZDICT_QSORT_GNU) || (ZDICT_QSORT == ZDICT_QSORT_C11) |
332 | 0 | static int COVER_strict_cmp8(const void *lp, const void *rp, void *g_coverCtx) { |
333 | | #else /* C90 fallback.*/ |
334 | | static int COVER_strict_cmp8(const void *lp, const void *rp) { |
335 | | #endif |
336 | 0 | int result = COVER_cmp8((COVER_ctx_t*)g_coverCtx, lp, rp); |
337 | 0 | if (result == 0) { |
338 | 0 | result = lp < rp ? -1 : 1; |
339 | 0 | } |
340 | 0 | return result; |
341 | 0 | } |
342 | | |
343 | | /** |
344 | | * Abstract away divergence of qsort_r() parameters. |
345 | | * Hopefully when C11 become the norm, we will be able |
346 | | * to clean it up. |
347 | | */ |
348 | | static void stableSort(COVER_ctx_t *ctx) |
349 | 0 | { |
350 | 0 | DEBUG_STATIC_ASSERT(ZDICT_QSORT_MIN <= ZDICT_QSORT && ZDICT_QSORT <= ZDICT_QSORT_MAX); |
351 | | #if (ZDICT_QSORT == ZDICT_QSORT_APPLE) |
352 | | qsort_r(ctx->suffix, ctx->suffixSize, sizeof(U32), |
353 | | ctx, |
354 | | (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); |
355 | | #elif (ZDICT_QSORT == ZDICT_QSORT_GNU) |
356 | | qsort_r(ctx->suffix, ctx->suffixSize, sizeof(U32), |
357 | 0 | (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp), |
358 | 0 | ctx); |
359 | | #elif (ZDICT_QSORT == ZDICT_QSORT_MSVC) |
360 | | qsort_s(ctx->suffix, ctx->suffixSize, sizeof(U32), |
361 | | (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp), |
362 | | ctx); |
363 | | #elif (ZDICT_QSORT == ZDICT_QSORT_C11) |
364 | | qsort_s(ctx->suffix, ctx->suffixSize, sizeof(U32), |
365 | | (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp), |
366 | | ctx); |
367 | | #else /* C90 fallback.*/ |
368 | | g_coverCtx = ctx; |
369 | | /* TODO(cavalcanti): implement a reentrant qsort() when _r is not available. */ |
370 | | qsort(ctx->suffix, ctx->suffixSize, sizeof(U32), |
371 | | (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); |
372 | | #endif |
373 | 0 | } |
374 | | |
375 | | /** |
376 | | * Returns the first pointer in [first, last) whose element does not compare |
377 | | * less than value. If no such element exists it returns last. |
378 | | */ |
379 | | static const size_t *COVER_lower_bound(const size_t* first, const size_t* last, |
380 | 0 | size_t value) { |
381 | 0 | size_t count = (size_t)(last - first); |
382 | 0 | assert(last >= first); |
383 | 0 | while (count != 0) { |
384 | 0 | size_t step = count / 2; |
385 | 0 | const size_t *ptr = first; |
386 | 0 | ptr += step; |
387 | 0 | if (*ptr < value) { |
388 | 0 | first = ++ptr; |
389 | 0 | count -= step + 1; |
390 | 0 | } else { |
391 | 0 | count = step; |
392 | 0 | } |
393 | 0 | } |
394 | 0 | return first; |
395 | 0 | } |
396 | | |
397 | | /** |
398 | | * Generic groupBy function. |
399 | | * Groups an array sorted by cmp into groups with equivalent values. |
400 | | * Calls grp for each group. |
401 | | */ |
402 | | static void |
403 | | COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx, |
404 | | int (*cmp)(COVER_ctx_t *, const void *, const void *), |
405 | 0 | void (*grp)(COVER_ctx_t *, const void *, const void *)) { |
406 | 0 | const BYTE *ptr = (const BYTE *)data; |
407 | 0 | size_t num = 0; |
408 | 0 | while (num < count) { |
409 | 0 | const BYTE *grpEnd = ptr + size; |
410 | 0 | ++num; |
411 | 0 | while (num < count && cmp(ctx, ptr, grpEnd) == 0) { |
412 | 0 | grpEnd += size; |
413 | 0 | ++num; |
414 | 0 | } |
415 | 0 | grp(ctx, ptr, grpEnd); |
416 | 0 | ptr = grpEnd; |
417 | 0 | } |
418 | 0 | } |
419 | | |
420 | | /*-************************************* |
421 | | * Cover functions |
422 | | ***************************************/ |
423 | | |
424 | | /** |
425 | | * Called on each group of positions with the same dmer. |
426 | | * Counts the frequency of each dmer and saves it in the suffix array. |
427 | | * Fills `ctx->dmerAt`. |
428 | | */ |
429 | | static void COVER_group(COVER_ctx_t *ctx, const void *group, |
430 | 0 | const void *groupEnd) { |
431 | | /* The group consists of all the positions with the same first d bytes. */ |
432 | 0 | const U32 *grpPtr = (const U32 *)group; |
433 | 0 | const U32 *grpEnd = (const U32 *)groupEnd; |
434 | | /* The dmerId is how we will reference this dmer. |
435 | | * This allows us to map the whole dmer space to a much smaller space, the |
436 | | * size of the suffix array. |
437 | | */ |
438 | 0 | const U32 dmerId = (U32)(grpPtr - ctx->suffix); |
439 | | /* Count the number of samples this dmer shows up in */ |
440 | 0 | U32 freq = 0; |
441 | | /* Details */ |
442 | 0 | const size_t *curOffsetPtr = ctx->offsets; |
443 | 0 | const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples; |
444 | | /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a |
445 | | * different sample than the last. |
446 | | */ |
447 | 0 | size_t curSampleEnd = ctx->offsets[0]; |
448 | 0 | for (; grpPtr != grpEnd; ++grpPtr) { |
449 | | /* Save the dmerId for this position so we can get back to it. */ |
450 | 0 | ctx->dmerAt[*grpPtr] = dmerId; |
451 | | /* Dictionaries only help for the first reference to the dmer. |
452 | | * After that zstd can reference the match from the previous reference. |
453 | | * So only count each dmer once for each sample it is in. |
454 | | */ |
455 | 0 | if (*grpPtr < curSampleEnd) { |
456 | 0 | continue; |
457 | 0 | } |
458 | 0 | freq += 1; |
459 | | /* Binary search to find the end of the sample *grpPtr is in. |
460 | | * In the common case that grpPtr + 1 == grpEnd we can skip the binary |
461 | | * search because the loop is over. |
462 | | */ |
463 | 0 | if (grpPtr + 1 != grpEnd) { |
464 | 0 | const size_t *sampleEndPtr = |
465 | 0 | COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr); |
466 | 0 | curSampleEnd = *sampleEndPtr; |
467 | 0 | curOffsetPtr = sampleEndPtr + 1; |
468 | 0 | } |
469 | 0 | } |
470 | | /* At this point we are never going to look at this segment of the suffix |
471 | | * array again. We take advantage of this fact to save memory. |
472 | | * We store the frequency of the dmer in the first position of the group, |
473 | | * which is dmerId. |
474 | | */ |
475 | 0 | ctx->suffix[dmerId] = freq; |
476 | 0 | } |
477 | | |
478 | | |
479 | | /** |
480 | | * Selects the best segment in an epoch. |
481 | | * Segments of are scored according to the function: |
482 | | * |
483 | | * Let F(d) be the frequency of dmer d. |
484 | | * Let S_i be the dmer at position i of segment S which has length k. |
485 | | * |
486 | | * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1}) |
487 | | * |
488 | | * Once the dmer d is in the dictionary we set F(d) = 0. |
489 | | */ |
490 | | static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs, |
491 | | COVER_map_t *activeDmers, U32 begin, |
492 | | U32 end, |
493 | 0 | ZDICT_cover_params_t parameters) { |
494 | | /* Constants */ |
495 | 0 | const U32 k = parameters.k; |
496 | 0 | const U32 d = parameters.d; |
497 | 0 | const U32 dmersInK = k - d + 1; |
498 | | /* Try each segment (activeSegment) and save the best (bestSegment) */ |
499 | 0 | COVER_segment_t bestSegment = {0, 0, 0}; |
500 | 0 | COVER_segment_t activeSegment; |
501 | | /* Reset the activeDmers in the segment */ |
502 | 0 | COVER_map_clear(activeDmers); |
503 | | /* The activeSegment starts at the beginning of the epoch. */ |
504 | 0 | activeSegment.begin = begin; |
505 | 0 | activeSegment.end = begin; |
506 | 0 | activeSegment.score = 0; |
507 | | /* Slide the activeSegment through the whole epoch. |
508 | | * Save the best segment in bestSegment. |
509 | | */ |
510 | 0 | while (activeSegment.end < end) { |
511 | | /* The dmerId for the dmer at the next position */ |
512 | 0 | U32 newDmer = ctx->dmerAt[activeSegment.end]; |
513 | | /* The entry in activeDmers for this dmerId */ |
514 | 0 | U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer); |
515 | | /* If the dmer isn't already present in the segment add its score. */ |
516 | 0 | if (*newDmerOcc == 0) { |
517 | | /* The paper suggest using the L-0.5 norm, but experiments show that it |
518 | | * doesn't help. |
519 | | */ |
520 | 0 | activeSegment.score += freqs[newDmer]; |
521 | 0 | } |
522 | | /* Add the dmer to the segment */ |
523 | 0 | activeSegment.end += 1; |
524 | 0 | *newDmerOcc += 1; |
525 | | |
526 | | /* If the window is now too large, drop the first position */ |
527 | 0 | if (activeSegment.end - activeSegment.begin == dmersInK + 1) { |
528 | 0 | U32 delDmer = ctx->dmerAt[activeSegment.begin]; |
529 | 0 | U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer); |
530 | 0 | activeSegment.begin += 1; |
531 | 0 | *delDmerOcc -= 1; |
532 | | /* If this is the last occurrence of the dmer, subtract its score */ |
533 | 0 | if (*delDmerOcc == 0) { |
534 | 0 | COVER_map_remove(activeDmers, delDmer); |
535 | 0 | activeSegment.score -= freqs[delDmer]; |
536 | 0 | } |
537 | 0 | } |
538 | | |
539 | | /* If this segment is the best so far save it */ |
540 | 0 | if (activeSegment.score > bestSegment.score) { |
541 | 0 | bestSegment = activeSegment; |
542 | 0 | } |
543 | 0 | } |
544 | 0 | { |
545 | | /* Trim off the zero frequency head and tail from the segment. */ |
546 | 0 | U32 newBegin = bestSegment.end; |
547 | 0 | U32 newEnd = bestSegment.begin; |
548 | 0 | U32 pos; |
549 | 0 | for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { |
550 | 0 | U32 freq = freqs[ctx->dmerAt[pos]]; |
551 | 0 | if (freq != 0) { |
552 | 0 | newBegin = MIN(newBegin, pos); |
553 | 0 | newEnd = pos + 1; |
554 | 0 | } |
555 | 0 | } |
556 | 0 | bestSegment.begin = newBegin; |
557 | 0 | bestSegment.end = newEnd; |
558 | 0 | } |
559 | 0 | { |
560 | | /* Zero out the frequency of each dmer covered by the chosen segment. */ |
561 | 0 | U32 pos; |
562 | 0 | for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { |
563 | 0 | freqs[ctx->dmerAt[pos]] = 0; |
564 | 0 | } |
565 | 0 | } |
566 | 0 | return bestSegment; |
567 | 0 | } |
568 | | |
569 | | /** |
570 | | * Check the validity of the parameters. |
571 | | * Returns non-zero if the parameters are valid and 0 otherwise. |
572 | | */ |
573 | | static int COVER_checkParameters(ZDICT_cover_params_t parameters, |
574 | 0 | size_t maxDictSize) { |
575 | | /* k and d are required parameters */ |
576 | 0 | if (parameters.d == 0 || parameters.k == 0) { |
577 | 0 | return 0; |
578 | 0 | } |
579 | | /* k <= maxDictSize */ |
580 | 0 | if (parameters.k > maxDictSize) { |
581 | 0 | return 0; |
582 | 0 | } |
583 | | /* d <= k */ |
584 | 0 | if (parameters.d > parameters.k) { |
585 | 0 | return 0; |
586 | 0 | } |
587 | | /* 0 < splitPoint <= 1 */ |
588 | 0 | if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){ |
589 | 0 | return 0; |
590 | 0 | } |
591 | 0 | return 1; |
592 | 0 | } |
593 | | |
594 | | /** |
595 | | * Clean up a context initialized with `COVER_ctx_init()`. |
596 | | */ |
597 | 0 | static void COVER_ctx_destroy(COVER_ctx_t *ctx) { |
598 | 0 | if (!ctx) { |
599 | 0 | return; |
600 | 0 | } |
601 | 0 | if (ctx->suffix) { |
602 | 0 | free(ctx->suffix); |
603 | 0 | ctx->suffix = NULL; |
604 | 0 | } |
605 | 0 | if (ctx->freqs) { |
606 | 0 | free(ctx->freqs); |
607 | 0 | ctx->freqs = NULL; |
608 | 0 | } |
609 | 0 | if (ctx->dmerAt) { |
610 | 0 | free(ctx->dmerAt); |
611 | 0 | ctx->dmerAt = NULL; |
612 | 0 | } |
613 | 0 | if (ctx->offsets) { |
614 | 0 | free(ctx->offsets); |
615 | 0 | ctx->offsets = NULL; |
616 | 0 | } |
617 | 0 | } |
618 | | |
619 | | /** |
620 | | * Prepare a context for dictionary building. |
621 | | * The context is only dependent on the parameter `d` and can be used multiple |
622 | | * times. |
623 | | * Returns 0 on success or error code on error. |
624 | | * The context must be destroyed with `COVER_ctx_destroy()`. |
625 | | */ |
626 | | static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer, |
627 | | const size_t *samplesSizes, unsigned nbSamples, |
628 | | unsigned d, double splitPoint, int displayLevel) |
629 | 0 | { |
630 | 0 | const BYTE *const samples = (const BYTE *)samplesBuffer; |
631 | 0 | const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples); |
632 | | /* Split samples into testing and training sets */ |
633 | 0 | const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples; |
634 | 0 | const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples; |
635 | 0 | const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize; |
636 | 0 | const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize; |
637 | 0 | ctx->displayLevel = displayLevel; |
638 | | /* Checks */ |
639 | 0 | if (totalSamplesSize < MAX(d, sizeof(U64)) || |
640 | 0 | totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) { |
641 | 0 | DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n", |
642 | 0 | (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20)); |
643 | 0 | return ERROR(srcSize_wrong); |
644 | 0 | } |
645 | | /* Check if there are at least 5 training samples */ |
646 | 0 | if (nbTrainSamples < 5) { |
647 | 0 | DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples); |
648 | 0 | return ERROR(srcSize_wrong); |
649 | 0 | } |
650 | | /* Check if there's testing sample */ |
651 | 0 | if (nbTestSamples < 1) { |
652 | 0 | DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples); |
653 | 0 | return ERROR(srcSize_wrong); |
654 | 0 | } |
655 | | /* Zero the context */ |
656 | 0 | memset(ctx, 0, sizeof(*ctx)); |
657 | 0 | DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples, |
658 | 0 | (unsigned)trainingSamplesSize); |
659 | 0 | DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples, |
660 | 0 | (unsigned)testSamplesSize); |
661 | 0 | ctx->samples = samples; |
662 | 0 | ctx->samplesSizes = samplesSizes; |
663 | 0 | ctx->nbSamples = nbSamples; |
664 | 0 | ctx->nbTrainSamples = nbTrainSamples; |
665 | 0 | ctx->nbTestSamples = nbTestSamples; |
666 | | /* Partial suffix array */ |
667 | 0 | ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1; |
668 | 0 | ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); |
669 | | /* Maps index to the dmerID */ |
670 | 0 | ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); |
671 | | /* The offsets of each file */ |
672 | 0 | ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t)); |
673 | 0 | if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) { |
674 | 0 | DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n"); |
675 | 0 | COVER_ctx_destroy(ctx); |
676 | 0 | return ERROR(memory_allocation); |
677 | 0 | } |
678 | 0 | ctx->freqs = NULL; |
679 | 0 | ctx->d = d; |
680 | | |
681 | | /* Fill offsets from the samplesSizes */ |
682 | 0 | { |
683 | 0 | U32 i; |
684 | 0 | ctx->offsets[0] = 0; |
685 | 0 | for (i = 1; i <= nbSamples; ++i) { |
686 | 0 | ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1]; |
687 | 0 | } |
688 | 0 | } |
689 | 0 | DISPLAYLEVEL(2, "Constructing partial suffix array\n"); |
690 | 0 | { |
691 | | /* suffix is a partial suffix array. |
692 | | * It only sorts suffixes by their first parameters.d bytes. |
693 | | * The sort is stable, so each dmer group is sorted by position in input. |
694 | | */ |
695 | 0 | U32 i; |
696 | 0 | for (i = 0; i < ctx->suffixSize; ++i) { |
697 | 0 | ctx->suffix[i] = i; |
698 | 0 | } |
699 | 0 | stableSort(ctx); |
700 | 0 | } |
701 | 0 | DISPLAYLEVEL(2, "Computing frequencies\n"); |
702 | | /* For each dmer group (group of positions with the same first d bytes): |
703 | | * 1. For each position we set dmerAt[position] = dmerID. The dmerID is |
704 | | * (groupBeginPtr - suffix). This allows us to go from position to |
705 | | * dmerID so we can look up values in freq. |
706 | | * 2. We calculate how many samples the dmer occurs in and save it in |
707 | | * freqs[dmerId]. |
708 | | */ |
709 | 0 | COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx, |
710 | 0 | (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group); |
711 | 0 | ctx->freqs = ctx->suffix; |
712 | 0 | ctx->suffix = NULL; |
713 | 0 | return 0; |
714 | 0 | } |
715 | | |
716 | | void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel) |
717 | 0 | { |
718 | 0 | const double ratio = (double)nbDmers / (double)maxDictSize; |
719 | 0 | if (ratio >= 10) { |
720 | 0 | return; |
721 | 0 | } |
722 | 0 | DISPLAYLEVEL(1, |
723 | 0 | "WARNING: The maximum dictionary size %u is too large " |
724 | 0 | "compared to the source size %u! " |
725 | 0 | "size(source)/size(dictionary) = %f, but it should be >= " |
726 | 0 | "10! This may lead to a subpar dictionary! We recommend " |
727 | 0 | "training on sources at least 10x, and preferably 100x " |
728 | 0 | "the size of the dictionary! \n", (U32)maxDictSize, |
729 | 0 | (U32)nbDmers, ratio); |
730 | 0 | } |
731 | | |
732 | | COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, |
733 | | U32 nbDmers, U32 k, U32 passes) |
734 | 0 | { |
735 | 0 | const U32 minEpochSize = k * 10; |
736 | 0 | COVER_epoch_info_t epochs; |
737 | 0 | epochs.num = MAX(1, maxDictSize / k / passes); |
738 | 0 | epochs.size = nbDmers / epochs.num; |
739 | 0 | if (epochs.size >= minEpochSize) { |
740 | 0 | assert(epochs.size * epochs.num <= nbDmers); |
741 | 0 | return epochs; |
742 | 0 | } |
743 | 0 | epochs.size = MIN(minEpochSize, nbDmers); |
744 | 0 | epochs.num = nbDmers / epochs.size; |
745 | 0 | assert(epochs.size * epochs.num <= nbDmers); |
746 | 0 | return epochs; |
747 | 0 | } |
748 | | |
749 | | /** |
750 | | * Given the prepared context build the dictionary. |
751 | | */ |
752 | | static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs, |
753 | | COVER_map_t *activeDmers, void *dictBuffer, |
754 | | size_t dictBufferCapacity, |
755 | 0 | ZDICT_cover_params_t parameters) { |
756 | 0 | BYTE *const dict = (BYTE *)dictBuffer; |
757 | 0 | size_t tail = dictBufferCapacity; |
758 | | /* Divide the data into epochs. We will select one segment from each epoch. */ |
759 | 0 | const COVER_epoch_info_t epochs = COVER_computeEpochs( |
760 | 0 | (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4); |
761 | 0 | const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3)); |
762 | 0 | size_t zeroScoreRun = 0; |
763 | 0 | size_t epoch; |
764 | 0 | clock_t lastUpdateTime = 0; |
765 | 0 | const int displayLevel = ctx->displayLevel; |
766 | 0 | DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", |
767 | 0 | (U32)epochs.num, (U32)epochs.size); |
768 | | /* Loop through the epochs until there are no more segments or the dictionary |
769 | | * is full. |
770 | | */ |
771 | 0 | for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) { |
772 | 0 | const U32 epochBegin = (U32)(epoch * epochs.size); |
773 | 0 | const U32 epochEnd = epochBegin + epochs.size; |
774 | 0 | size_t segmentSize; |
775 | | /* Select a segment */ |
776 | 0 | COVER_segment_t segment = COVER_selectSegment( |
777 | 0 | ctx, freqs, activeDmers, epochBegin, epochEnd, parameters); |
778 | | /* If the segment covers no dmers, then we are out of content. |
779 | | * There may be new content in other epochs, for continue for some time. |
780 | | */ |
781 | 0 | if (segment.score == 0) { |
782 | 0 | if (++zeroScoreRun >= maxZeroScoreRun) { |
783 | 0 | break; |
784 | 0 | } |
785 | 0 | continue; |
786 | 0 | } |
787 | 0 | zeroScoreRun = 0; |
788 | | /* Trim the segment if necessary and if it is too small then we are done */ |
789 | 0 | segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail); |
790 | 0 | if (segmentSize < parameters.d) { |
791 | 0 | break; |
792 | 0 | } |
793 | | /* We fill the dictionary from the back to allow the best segments to be |
794 | | * referenced with the smallest offsets. |
795 | | */ |
796 | 0 | tail -= segmentSize; |
797 | 0 | memcpy(dict + tail, ctx->samples + segment.begin, segmentSize); |
798 | 0 | DISPLAYUPDATE( |
799 | 0 | lastUpdateTime, |
800 | 0 | 2, "\r%u%% ", |
801 | 0 | (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity)); |
802 | 0 | } |
803 | 0 | DISPLAYLEVEL(2, "\r%79s\r", ""); |
804 | 0 | return tail; |
805 | 0 | } |
806 | | |
807 | | ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover( |
808 | | void *dictBuffer, size_t dictBufferCapacity, |
809 | | const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, |
810 | | ZDICT_cover_params_t parameters) |
811 | 0 | { |
812 | 0 | BYTE* const dict = (BYTE*)dictBuffer; |
813 | 0 | COVER_ctx_t ctx; |
814 | 0 | COVER_map_t activeDmers; |
815 | 0 | const int displayLevel = (int)parameters.zParams.notificationLevel; |
816 | 0 | parameters.splitPoint = 1.0; |
817 | | /* Checks */ |
818 | 0 | if (!COVER_checkParameters(parameters, dictBufferCapacity)) { |
819 | 0 | DISPLAYLEVEL(1, "Cover parameters incorrect\n"); |
820 | 0 | return ERROR(parameter_outOfBound); |
821 | 0 | } |
822 | 0 | if (nbSamples == 0) { |
823 | 0 | DISPLAYLEVEL(1, "Cover must have at least one input file\n"); |
824 | 0 | return ERROR(srcSize_wrong); |
825 | 0 | } |
826 | 0 | if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { |
827 | 0 | DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", |
828 | 0 | ZDICT_DICTSIZE_MIN); |
829 | 0 | return ERROR(dstSize_tooSmall); |
830 | 0 | } |
831 | | /* Initialize context and activeDmers */ |
832 | 0 | { |
833 | 0 | size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, |
834 | 0 | parameters.d, parameters.splitPoint, displayLevel); |
835 | 0 | if (ZSTD_isError(initVal)) { |
836 | 0 | return initVal; |
837 | 0 | } |
838 | 0 | } |
839 | 0 | COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel); |
840 | 0 | if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { |
841 | 0 | DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); |
842 | 0 | COVER_ctx_destroy(&ctx); |
843 | 0 | return ERROR(memory_allocation); |
844 | 0 | } |
845 | | |
846 | 0 | DISPLAYLEVEL(2, "Building dictionary\n"); |
847 | 0 | { |
848 | 0 | const size_t tail = |
849 | 0 | COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer, |
850 | 0 | dictBufferCapacity, parameters); |
851 | 0 | const size_t dictionarySize = ZDICT_finalizeDictionary( |
852 | 0 | dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, |
853 | 0 | samplesBuffer, samplesSizes, nbSamples, parameters.zParams); |
854 | 0 | if (!ZSTD_isError(dictionarySize)) { |
855 | 0 | DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", |
856 | 0 | (unsigned)dictionarySize); |
857 | 0 | } |
858 | 0 | COVER_ctx_destroy(&ctx); |
859 | 0 | COVER_map_destroy(&activeDmers); |
860 | 0 | return dictionarySize; |
861 | 0 | } |
862 | 0 | } |
863 | | |
864 | | |
865 | | |
866 | | size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters, |
867 | | const size_t *samplesSizes, const BYTE *samples, |
868 | | size_t *offsets, |
869 | | size_t nbTrainSamples, size_t nbSamples, |
870 | 0 | BYTE *const dict, size_t dictBufferCapacity) { |
871 | 0 | size_t totalCompressedSize = ERROR(GENERIC); |
872 | | /* Pointers */ |
873 | 0 | ZSTD_CCtx *cctx; |
874 | 0 | ZSTD_CDict *cdict; |
875 | 0 | void *dst; |
876 | | /* Local variables */ |
877 | 0 | size_t dstCapacity; |
878 | 0 | size_t i; |
879 | | /* Allocate dst with enough space to compress the maximum sized sample */ |
880 | 0 | { |
881 | 0 | size_t maxSampleSize = 0; |
882 | 0 | i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; |
883 | 0 | for (; i < nbSamples; ++i) { |
884 | 0 | maxSampleSize = MAX(samplesSizes[i], maxSampleSize); |
885 | 0 | } |
886 | 0 | dstCapacity = ZSTD_compressBound(maxSampleSize); |
887 | 0 | dst = malloc(dstCapacity); |
888 | 0 | } |
889 | | /* Create the cctx and cdict */ |
890 | 0 | cctx = ZSTD_createCCtx(); |
891 | 0 | cdict = ZSTD_createCDict(dict, dictBufferCapacity, |
892 | 0 | parameters.zParams.compressionLevel); |
893 | 0 | if (!dst || !cctx || !cdict) { |
894 | 0 | goto _compressCleanup; |
895 | 0 | } |
896 | | /* Compress each sample and sum their sizes (or error) */ |
897 | 0 | totalCompressedSize = dictBufferCapacity; |
898 | 0 | i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; |
899 | 0 | for (; i < nbSamples; ++i) { |
900 | 0 | const size_t size = ZSTD_compress_usingCDict( |
901 | 0 | cctx, dst, dstCapacity, samples + offsets[i], |
902 | 0 | samplesSizes[i], cdict); |
903 | 0 | if (ZSTD_isError(size)) { |
904 | 0 | totalCompressedSize = size; |
905 | 0 | goto _compressCleanup; |
906 | 0 | } |
907 | 0 | totalCompressedSize += size; |
908 | 0 | } |
909 | 0 | _compressCleanup: |
910 | 0 | ZSTD_freeCCtx(cctx); |
911 | 0 | ZSTD_freeCDict(cdict); |
912 | 0 | if (dst) { |
913 | 0 | free(dst); |
914 | 0 | } |
915 | 0 | return totalCompressedSize; |
916 | 0 | } |
917 | | |
918 | | |
919 | | /** |
920 | | * Initialize the `COVER_best_t`. |
921 | | */ |
922 | 0 | void COVER_best_init(COVER_best_t *best) { |
923 | 0 | if (best==NULL) return; /* compatible with init on NULL */ |
924 | 0 | (void)ZSTD_pthread_mutex_init(&best->mutex, NULL); |
925 | 0 | (void)ZSTD_pthread_cond_init(&best->cond, NULL); |
926 | 0 | best->liveJobs = 0; |
927 | 0 | best->dict = NULL; |
928 | 0 | best->dictSize = 0; |
929 | 0 | best->compressedSize = (size_t)-1; |
930 | 0 | memset(&best->parameters, 0, sizeof(best->parameters)); |
931 | 0 | } |
932 | | |
933 | | /** |
934 | | * Wait until liveJobs == 0. |
935 | | */ |
936 | 0 | void COVER_best_wait(COVER_best_t *best) { |
937 | 0 | if (!best) { |
938 | 0 | return; |
939 | 0 | } |
940 | 0 | ZSTD_pthread_mutex_lock(&best->mutex); |
941 | 0 | while (best->liveJobs != 0) { |
942 | 0 | ZSTD_pthread_cond_wait(&best->cond, &best->mutex); |
943 | 0 | } |
944 | 0 | ZSTD_pthread_mutex_unlock(&best->mutex); |
945 | 0 | } |
946 | | |
947 | | /** |
948 | | * Call COVER_best_wait() and then destroy the COVER_best_t. |
949 | | */ |
950 | 0 | void COVER_best_destroy(COVER_best_t *best) { |
951 | 0 | if (!best) { |
952 | 0 | return; |
953 | 0 | } |
954 | 0 | COVER_best_wait(best); |
955 | 0 | if (best->dict) { |
956 | 0 | free(best->dict); |
957 | 0 | } |
958 | 0 | ZSTD_pthread_mutex_destroy(&best->mutex); |
959 | 0 | ZSTD_pthread_cond_destroy(&best->cond); |
960 | 0 | } |
961 | | |
962 | | /** |
963 | | * Called when a thread is about to be launched. |
964 | | * Increments liveJobs. |
965 | | */ |
966 | 0 | void COVER_best_start(COVER_best_t *best) { |
967 | 0 | if (!best) { |
968 | 0 | return; |
969 | 0 | } |
970 | 0 | ZSTD_pthread_mutex_lock(&best->mutex); |
971 | 0 | ++best->liveJobs; |
972 | 0 | ZSTD_pthread_mutex_unlock(&best->mutex); |
973 | 0 | } |
974 | | |
975 | | /** |
976 | | * Called when a thread finishes executing, both on error or success. |
977 | | * Decrements liveJobs and signals any waiting threads if liveJobs == 0. |
978 | | * If this dictionary is the best so far save it and its parameters. |
979 | | */ |
980 | | void COVER_best_finish(COVER_best_t* best, |
981 | | ZDICT_cover_params_t parameters, |
982 | | COVER_dictSelection_t selection) |
983 | 0 | { |
984 | 0 | void* dict = selection.dictContent; |
985 | 0 | size_t compressedSize = selection.totalCompressedSize; |
986 | 0 | size_t dictSize = selection.dictSize; |
987 | 0 | if (!best) { |
988 | 0 | return; |
989 | 0 | } |
990 | 0 | { |
991 | 0 | size_t liveJobs; |
992 | 0 | ZSTD_pthread_mutex_lock(&best->mutex); |
993 | 0 | --best->liveJobs; |
994 | 0 | liveJobs = best->liveJobs; |
995 | | /* If the new dictionary is better */ |
996 | 0 | if (compressedSize < best->compressedSize) { |
997 | | /* Allocate space if necessary */ |
998 | 0 | if (!best->dict || best->dictSize < dictSize) { |
999 | 0 | if (best->dict) { |
1000 | 0 | free(best->dict); |
1001 | 0 | } |
1002 | 0 | best->dict = malloc(dictSize); |
1003 | 0 | if (!best->dict) { |
1004 | 0 | best->compressedSize = ERROR(GENERIC); |
1005 | 0 | best->dictSize = 0; |
1006 | 0 | ZSTD_pthread_cond_signal(&best->cond); |
1007 | 0 | ZSTD_pthread_mutex_unlock(&best->mutex); |
1008 | 0 | return; |
1009 | 0 | } |
1010 | 0 | } |
1011 | | /* Save the dictionary, parameters, and size */ |
1012 | 0 | if (dict) { |
1013 | 0 | memcpy(best->dict, dict, dictSize); |
1014 | 0 | best->dictSize = dictSize; |
1015 | 0 | best->parameters = parameters; |
1016 | 0 | best->compressedSize = compressedSize; |
1017 | 0 | } |
1018 | 0 | } |
1019 | 0 | if (liveJobs == 0) { |
1020 | 0 | ZSTD_pthread_cond_broadcast(&best->cond); |
1021 | 0 | } |
1022 | 0 | ZSTD_pthread_mutex_unlock(&best->mutex); |
1023 | 0 | } |
1024 | 0 | } |
1025 | | |
1026 | | static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz) |
1027 | 0 | { |
1028 | 0 | COVER_dictSelection_t ds; |
1029 | 0 | ds.dictContent = buf; |
1030 | 0 | ds.dictSize = s; |
1031 | 0 | ds.totalCompressedSize = csz; |
1032 | 0 | return ds; |
1033 | 0 | } |
1034 | | |
1035 | 0 | COVER_dictSelection_t COVER_dictSelectionError(size_t error) { |
1036 | 0 | return setDictSelection(NULL, 0, error); |
1037 | 0 | } |
1038 | | |
1039 | 0 | unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) { |
1040 | 0 | return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent); |
1041 | 0 | } |
1042 | | |
1043 | 0 | void COVER_dictSelectionFree(COVER_dictSelection_t selection){ |
1044 | 0 | free(selection.dictContent); |
1045 | 0 | } |
1046 | | |
1047 | | COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity, |
1048 | | size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples, |
1049 | 0 | size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) { |
1050 | |
|
1051 | 0 | size_t largestDict = 0; |
1052 | 0 | size_t largestCompressed = 0; |
1053 | 0 | BYTE* customDictContentEnd = customDictContent + dictContentSize; |
1054 | |
|
1055 | 0 | BYTE* largestDictbuffer = (BYTE*)malloc(dictBufferCapacity); |
1056 | 0 | BYTE* candidateDictBuffer = (BYTE*)malloc(dictBufferCapacity); |
1057 | 0 | double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00; |
1058 | |
|
1059 | 0 | if (!largestDictbuffer || !candidateDictBuffer) { |
1060 | 0 | free(largestDictbuffer); |
1061 | 0 | free(candidateDictBuffer); |
1062 | 0 | return COVER_dictSelectionError(dictContentSize); |
1063 | 0 | } |
1064 | | |
1065 | | /* Initial dictionary size and compressed size */ |
1066 | 0 | memcpy(largestDictbuffer, customDictContent, dictContentSize); |
1067 | 0 | dictContentSize = ZDICT_finalizeDictionary( |
1068 | 0 | largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize, |
1069 | 0 | samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams); |
1070 | |
|
1071 | 0 | if (ZDICT_isError(dictContentSize)) { |
1072 | 0 | free(largestDictbuffer); |
1073 | 0 | free(candidateDictBuffer); |
1074 | 0 | return COVER_dictSelectionError(dictContentSize); |
1075 | 0 | } |
1076 | | |
1077 | 0 | totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes, |
1078 | 0 | samplesBuffer, offsets, |
1079 | 0 | nbCheckSamples, nbSamples, |
1080 | 0 | largestDictbuffer, dictContentSize); |
1081 | |
|
1082 | 0 | if (ZSTD_isError(totalCompressedSize)) { |
1083 | 0 | free(largestDictbuffer); |
1084 | 0 | free(candidateDictBuffer); |
1085 | 0 | return COVER_dictSelectionError(totalCompressedSize); |
1086 | 0 | } |
1087 | | |
1088 | 0 | if (params.shrinkDict == 0) { |
1089 | 0 | free(candidateDictBuffer); |
1090 | 0 | return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize); |
1091 | 0 | } |
1092 | | |
1093 | 0 | largestDict = dictContentSize; |
1094 | 0 | largestCompressed = totalCompressedSize; |
1095 | 0 | dictContentSize = ZDICT_DICTSIZE_MIN; |
1096 | | |
1097 | | /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */ |
1098 | 0 | while (dictContentSize < largestDict) { |
1099 | 0 | memcpy(candidateDictBuffer, largestDictbuffer, largestDict); |
1100 | 0 | dictContentSize = ZDICT_finalizeDictionary( |
1101 | 0 | candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize, |
1102 | 0 | samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams); |
1103 | |
|
1104 | 0 | if (ZDICT_isError(dictContentSize)) { |
1105 | 0 | free(largestDictbuffer); |
1106 | 0 | free(candidateDictBuffer); |
1107 | 0 | return COVER_dictSelectionError(dictContentSize); |
1108 | |
|
1109 | 0 | } |
1110 | | |
1111 | 0 | totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes, |
1112 | 0 | samplesBuffer, offsets, |
1113 | 0 | nbCheckSamples, nbSamples, |
1114 | 0 | candidateDictBuffer, dictContentSize); |
1115 | |
|
1116 | 0 | if (ZSTD_isError(totalCompressedSize)) { |
1117 | 0 | free(largestDictbuffer); |
1118 | 0 | free(candidateDictBuffer); |
1119 | 0 | return COVER_dictSelectionError(totalCompressedSize); |
1120 | 0 | } |
1121 | | |
1122 | 0 | if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) { |
1123 | 0 | free(largestDictbuffer); |
1124 | 0 | return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize ); |
1125 | 0 | } |
1126 | 0 | dictContentSize *= 2; |
1127 | 0 | } |
1128 | 0 | dictContentSize = largestDict; |
1129 | 0 | totalCompressedSize = largestCompressed; |
1130 | 0 | free(candidateDictBuffer); |
1131 | 0 | return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize ); |
1132 | 0 | } |
1133 | | |
1134 | | /** |
1135 | | * Parameters for COVER_tryParameters(). |
1136 | | */ |
1137 | | typedef struct COVER_tryParameters_data_s { |
1138 | | const COVER_ctx_t *ctx; |
1139 | | COVER_best_t *best; |
1140 | | size_t dictBufferCapacity; |
1141 | | ZDICT_cover_params_t parameters; |
1142 | | } COVER_tryParameters_data_t; |
1143 | | |
1144 | | /** |
1145 | | * Tries a set of parameters and updates the COVER_best_t with the results. |
1146 | | * This function is thread safe if zstd is compiled with multithreaded support. |
1147 | | * It takes its parameters as an *OWNING* opaque pointer to support threading. |
1148 | | */ |
1149 | | static void COVER_tryParameters(void *opaque) |
1150 | 0 | { |
1151 | | /* Save parameters as local variables */ |
1152 | 0 | COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque; |
1153 | 0 | const COVER_ctx_t *const ctx = data->ctx; |
1154 | 0 | const ZDICT_cover_params_t parameters = data->parameters; |
1155 | 0 | size_t dictBufferCapacity = data->dictBufferCapacity; |
1156 | 0 | size_t totalCompressedSize = ERROR(GENERIC); |
1157 | | /* Allocate space for hash table, dict, and freqs */ |
1158 | 0 | COVER_map_t activeDmers; |
1159 | 0 | BYTE* const dict = (BYTE*)malloc(dictBufferCapacity); |
1160 | 0 | COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC)); |
1161 | 0 | U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32)); |
1162 | 0 | const int displayLevel = ctx->displayLevel; |
1163 | 0 | if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { |
1164 | 0 | DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); |
1165 | 0 | goto _cleanup; |
1166 | 0 | } |
1167 | 0 | if (!dict || !freqs) { |
1168 | 0 | DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n"); |
1169 | 0 | goto _cleanup; |
1170 | 0 | } |
1171 | | /* Copy the frequencies because we need to modify them */ |
1172 | 0 | memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32)); |
1173 | | /* Build the dictionary */ |
1174 | 0 | { |
1175 | 0 | const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict, |
1176 | 0 | dictBufferCapacity, parameters); |
1177 | 0 | selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail, |
1178 | 0 | ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets, |
1179 | 0 | totalCompressedSize); |
1180 | |
|
1181 | 0 | if (COVER_dictSelectionIsError(selection)) { |
1182 | 0 | DISPLAYLEVEL(1, "Failed to select dictionary\n"); |
1183 | 0 | goto _cleanup; |
1184 | 0 | } |
1185 | 0 | } |
1186 | 0 | _cleanup: |
1187 | 0 | free(dict); |
1188 | 0 | COVER_best_finish(data->best, parameters, selection); |
1189 | 0 | free(data); |
1190 | 0 | COVER_map_destroy(&activeDmers); |
1191 | 0 | COVER_dictSelectionFree(selection); |
1192 | 0 | free(freqs); |
1193 | 0 | } |
1194 | | |
1195 | | ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover( |
1196 | | void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer, |
1197 | | const size_t* samplesSizes, unsigned nbSamples, |
1198 | | ZDICT_cover_params_t* parameters) |
1199 | 0 | { |
1200 | | /* constants */ |
1201 | 0 | const unsigned nbThreads = parameters->nbThreads; |
1202 | 0 | const double splitPoint = |
1203 | 0 | parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint; |
1204 | 0 | const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d; |
1205 | 0 | const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d; |
1206 | 0 | const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k; |
1207 | 0 | const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k; |
1208 | 0 | const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps; |
1209 | 0 | const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1); |
1210 | 0 | const unsigned kIterations = |
1211 | 0 | (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize); |
1212 | 0 | const unsigned shrinkDict = 0; |
1213 | | /* Local variables */ |
1214 | 0 | int displayLevel = (int)parameters->zParams.notificationLevel; |
1215 | 0 | unsigned iteration = 1; |
1216 | 0 | unsigned d; |
1217 | 0 | unsigned k; |
1218 | 0 | COVER_best_t best; |
1219 | 0 | POOL_ctx *pool = NULL; |
1220 | 0 | int warned = 0; |
1221 | 0 | clock_t lastUpdateTime = 0; |
1222 | | |
1223 | | /* Checks */ |
1224 | 0 | if (splitPoint <= 0 || splitPoint > 1) { |
1225 | 0 | DISPLAYLEVEL(1, "Incorrect parameters\n"); |
1226 | 0 | return ERROR(parameter_outOfBound); |
1227 | 0 | } |
1228 | 0 | if (kMinK < kMaxD || kMaxK < kMinK) { |
1229 | 0 | DISPLAYLEVEL(1, "Incorrect parameters\n"); |
1230 | 0 | return ERROR(parameter_outOfBound); |
1231 | 0 | } |
1232 | 0 | if (nbSamples == 0) { |
1233 | 0 | DISPLAYLEVEL(1, "Cover must have at least one input file\n"); |
1234 | 0 | return ERROR(srcSize_wrong); |
1235 | 0 | } |
1236 | 0 | if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { |
1237 | 0 | DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", |
1238 | 0 | ZDICT_DICTSIZE_MIN); |
1239 | 0 | return ERROR(dstSize_tooSmall); |
1240 | 0 | } |
1241 | 0 | if (nbThreads > 1) { |
1242 | 0 | pool = POOL_create(nbThreads, 1); |
1243 | 0 | if (!pool) { |
1244 | 0 | return ERROR(memory_allocation); |
1245 | 0 | } |
1246 | 0 | } |
1247 | | /* Initialization */ |
1248 | 0 | COVER_best_init(&best); |
1249 | | /* Loop through d first because each new value needs a new context */ |
1250 | 0 | DISPLAYLEVEL(2, "Trying %u different sets of parameters\n", |
1251 | 0 | kIterations); |
1252 | 0 | for (d = kMinD; d <= kMaxD; d += 2) { |
1253 | | /* Initialize the context for this value of d */ |
1254 | 0 | COVER_ctx_t ctx; |
1255 | 0 | DISPLAYLEVEL(3, "d=%u\n", d); |
1256 | 0 | { |
1257 | | /* Turn down global display level to clean up display at level 2 and below */ |
1258 | 0 | const int childDisplayLevel = (displayLevel == 0) ? 0 : displayLevel - 1; |
1259 | 0 | const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, childDisplayLevel); |
1260 | 0 | if (ZSTD_isError(initVal)) { |
1261 | 0 | DISPLAYLEVEL(1, "Failed to initialize context\n"); |
1262 | 0 | COVER_best_destroy(&best); |
1263 | 0 | POOL_free(pool); |
1264 | 0 | return initVal; |
1265 | 0 | } |
1266 | 0 | } |
1267 | 0 | if (!warned) { |
1268 | 0 | COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel); |
1269 | 0 | warned = 1; |
1270 | 0 | } |
1271 | | /* Loop through k reusing the same context */ |
1272 | 0 | for (k = kMinK; k <= kMaxK; k += kStepSize) { |
1273 | | /* Prepare the arguments */ |
1274 | 0 | COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc( |
1275 | 0 | sizeof(COVER_tryParameters_data_t)); |
1276 | 0 | DISPLAYLEVEL(3, "k=%u\n", k); |
1277 | 0 | if (!data) { |
1278 | 0 | DISPLAYLEVEL(1, "Failed to allocate parameters\n"); |
1279 | 0 | COVER_best_destroy(&best); |
1280 | 0 | COVER_ctx_destroy(&ctx); |
1281 | 0 | POOL_free(pool); |
1282 | 0 | return ERROR(memory_allocation); |
1283 | 0 | } |
1284 | 0 | data->ctx = &ctx; |
1285 | 0 | data->best = &best; |
1286 | 0 | data->dictBufferCapacity = dictBufferCapacity; |
1287 | 0 | data->parameters = *parameters; |
1288 | 0 | data->parameters.k = k; |
1289 | 0 | data->parameters.d = d; |
1290 | 0 | data->parameters.splitPoint = splitPoint; |
1291 | 0 | data->parameters.steps = kSteps; |
1292 | 0 | data->parameters.shrinkDict = shrinkDict; |
1293 | 0 | data->parameters.zParams.notificationLevel = (unsigned)ctx.displayLevel; |
1294 | | /* Check the parameters */ |
1295 | 0 | if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) { |
1296 | 0 | DISPLAYLEVEL(1, "Cover parameters incorrect\n"); |
1297 | 0 | free(data); |
1298 | 0 | continue; |
1299 | 0 | } |
1300 | | /* Call the function and pass ownership of data to it */ |
1301 | 0 | COVER_best_start(&best); |
1302 | 0 | if (pool) { |
1303 | 0 | POOL_add(pool, &COVER_tryParameters, data); |
1304 | 0 | } else { |
1305 | 0 | COVER_tryParameters(data); |
1306 | 0 | } |
1307 | | /* Print status */ |
1308 | 0 | DISPLAYUPDATE(lastUpdateTime, 2, "\r%u%% ", |
1309 | 0 | (unsigned)((iteration * 100) / kIterations)); |
1310 | 0 | ++iteration; |
1311 | 0 | } |
1312 | 0 | COVER_best_wait(&best); |
1313 | 0 | COVER_ctx_destroy(&ctx); |
1314 | 0 | } |
1315 | 0 | DISPLAYLEVEL(2, "\r%79s\r", ""); |
1316 | | /* Fill the output buffer and parameters with output of the best parameters */ |
1317 | 0 | { |
1318 | 0 | const size_t dictSize = best.dictSize; |
1319 | 0 | if (ZSTD_isError(best.compressedSize)) { |
1320 | 0 | const size_t compressedSize = best.compressedSize; |
1321 | 0 | COVER_best_destroy(&best); |
1322 | 0 | POOL_free(pool); |
1323 | 0 | return compressedSize; |
1324 | 0 | } |
1325 | 0 | *parameters = best.parameters; |
1326 | 0 | memcpy(dictBuffer, best.dict, dictSize); |
1327 | 0 | COVER_best_destroy(&best); |
1328 | 0 | POOL_free(pool); |
1329 | 0 | return dictSize; |
1330 | 0 | } |
1331 | 0 | } |