References

PCAST (2016). *Forensic science in criminal courts: Ensuring scientific validity of feature-comparison methods*. Executive Office of the President President’s Council of Advisors on Science and Technology (PCAST), Washington, DC.

Supplementary material (R codes and data) available at www.wiley.com/go/physicochemical

Index

A
Alcohol concentration, 13, 67, 70, 74, 75

B
Bayes factor, 3, 7, 9, 10
approximation, 50
computational aspects, 28–31
for continuous data, 11
for discrete data, 11
for evaluation, 13–22
feature-based, 14
for investigation, 22–27
for multiple propositions, 26, 150
interpretation, 27–28
score-based, 18, 86
verbal scale, 27
Bayesian network, 45
Bayesian thinking, 5–7
Bayes’ theorem, 3, 6, 10, 119
Belief, 3, 5
Bernoulli trials, 42, 80, 142

C
Cannabis plant type, 169, 171
Consecutive matching striations, 85, 86
Counterfeit medicines, 43, 45, 64

D
Decision
for classification, 166
consequence, 32
criterion, 33, 64, 75, 144, 145, 166
expected loss, 32, 63, 75
loss function, 32
matrix, 32
for a mean, 74–76
for a proportion, 62–65
Decision analysis, 32–34
Distribution
beta, 35, 42, 80, 142
beta-binomial, 44, 143
binomial, 35, 42, 44, 46
chi-squared, 97
conjugate, 24, 34, 35, 43, 66, 80, 83, 86, 93,
94, 100, 142, 153, 155
Dirichlet, 35, 83, 144
Dirichlet-multinomial, 144
gamma, 35, 55, 85, 88, 95
inverse chi-squared, 95, 97
inverse gamma, 35, 95, 97, 155
inverse Wishart, 118, 128
kernel, 115, 157, 171
density estimation, 115, 157
smoothing parameter, 115, 157, 159,
172
marginal, 15, 23
multinomial, 35, 83, 144
multivariate normal, 110, 115, 116, 118,
128, 131, 160, 162, 168, 171
non-informative prior, 163
multivariate Student t, 162, 163
normal, 16, 23, 35, 66, 100, 106, 153, 154,
157
known variance, 92
mean and variance unknown, 94
non-informative prior, 102
posterior mean, 16
posterior variance, 16
Distribution (cont.)
normal-gamma, 95
normal-inverse Wishart, 162
Poisson, 35, 46, 85
Poisson-gamma, 86
posterior predictive, 15
predictive, 15
normal, 16
prior choice, 34–38
prior elicitation, 44
beta, 35, 37, 38, 48
Dirichlet, 145
equivalent sample size, 36, 69, 89
gamma, 88
non-informative, 88
normal, 69
normal-gamma, 96, 155
normal-inverse Wishart, 163
Student t, 96, 102, 155, 156
uniform, 43, 69, 88, 145
Drugs on banknotes, 158

E
Ecstasy tablets, 153
Error
continuous measurements, 72
counting process, 46
Evaluation, 4
for continuous data, 91–108
normal (both parameters unknown), 94
normal (known variance), 92
score-based, 105
for discrete data, 80–91
binomial, 80
multinomial, 82
Poisson, 84
for multivariate data, 108–135
non-constant within-source variation, 118
non-normal between-source variation, 115
normal between-source variation, 109
three-level, 130
two-level, 109
Evidence, 5

F
Fingermarks, 22, 24
Firearms, 21, 84, 86
Food quality control, 46
Fourier descriptors, 120, 162

G
Gibbs sampling, 30, 120
Glass, 112, 117, 132
Gunshot residues, 144, 145, 151

H
Hamiltonian Monte Carlo, 31
Handwriting, 20, 120, 124
Hyperparameter, 35
Hypothesis, 3
alternative, 8
composite, 8
null, 8
simple, 8

I
Image analysis, 72
Image comparison, 19
Independence under the alternative proposition, 14, 127
Inference
 discrete propositions, 99
 mean, 66–68
 proportion, 42–45
Information
 background, 6
task-relevant, 6
Investigation, 4
 with continuous data, 152–160
 non-normal, 156
 normal (both parameters unknown), 154
 normal (known variance), 152
 with discrete data, 142–149
 binomial, 142
 multinomial, 144
 with multivariate data, 160–173
 non-normal between-source variation, 171
 normal between-source variation, 168
two-level, 168

J
Jaccard distance, 107

L
Likelihood
 function, 9
 marginal, 8, 17, 23, 28
 normal, 24
 scaled, 25
 ratio, 3, 10, 85, 86
Index

<table>
<thead>
<tr>
<th>Page 187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss function, 32</td>
</tr>
<tr>
<td>$0 - 1$, 149</td>
</tr>
<tr>
<td>$0 - l_i$, 32, 65, 101, 144, 149, 166</td>
</tr>
<tr>
<td>asymmetric, 145, 167</td>
</tr>
<tr>
<td>linear, 63, 74</td>
</tr>
<tr>
<td>symmetric, 64, 149, 167</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Markov chain Monte Carlo, 29</td>
</tr>
<tr>
<td>autocorrelation plot, 60</td>
</tr>
<tr>
<td>Gibbs sampling algorithm, 30, 120</td>
</tr>
<tr>
<td>Hamiltonian Monte Carlo, 31</td>
</tr>
<tr>
<td>Metropolis–Hastings algorithm, 30</td>
</tr>
<tr>
<td>Metropolis-Hastings algorithm two-block, 55</td>
</tr>
<tr>
<td>trace-plot, 60</td>
</tr>
<tr>
<td>Maximum likelihood, 85</td>
</tr>
<tr>
<td>Measurements</td>
</tr>
<tr>
<td>continuous, 5</td>
</tr>
<tr>
<td>discrete, 5</td>
</tr>
<tr>
<td>Metropolis–Hastings algorithm, 30</td>
</tr>
<tr>
<td>Metropolis-Hastings algorithm two-block, 55</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>comparison, 7–13</td>
</tr>
<tr>
<td>feature-based, 14–17</td>
</tr>
<tr>
<td>parametric, 15</td>
</tr>
<tr>
<td>performance, 123, 173</td>
</tr>
<tr>
<td>score-based, 14, 17–22</td>
</tr>
<tr>
<td>non-anchored, 19, 21, 88</td>
</tr>
<tr>
<td>source-anchored, 19</td>
</tr>
<tr>
<td>trace-anchored, 19, 20</td>
</tr>
<tr>
<td>statistical, 6</td>
</tr>
<tr>
<td>three-level, 130–135</td>
</tr>
<tr>
<td>two-level, 109–130, 168–173</td>
</tr>
<tr>
<td>Monte Carlo</td>
</tr>
<tr>
<td>error, 29, 54</td>
</tr>
<tr>
<td>estimate, 29, 47, 49</td>
</tr>
<tr>
<td>Hamiltonian Monte Carlo, 31</td>
</tr>
<tr>
<td>importance sampling, 29, 53</td>
</tr>
<tr>
<td>method, 28</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>Odds</td>
</tr>
<tr>
<td>posterior, 9, 11, 90</td>
</tr>
<tr>
<td>prior, 8, 90</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>Parameter, 7</td>
</tr>
<tr>
<td>space, 7</td>
</tr>
<tr>
<td>continuous, 9</td>
</tr>
<tr>
<td>discrete, 9</td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td>relevant, 15</td>
</tr>
<tr>
<td>Prior assumptions, 10</td>
</tr>
<tr>
<td>Probability, 5</td>
</tr>
<tr>
<td>density, 8, 10</td>
</tr>
<tr>
<td>law of total, 5</td>
</tr>
<tr>
<td>marginal, 8</td>
</tr>
<tr>
<td>model, 7</td>
</tr>
<tr>
<td>posterior, 5</td>
</tr>
<tr>
<td>predictive, 8</td>
</tr>
<tr>
<td>prior, 5</td>
</tr>
<tr>
<td>Proposition, 3</td>
</tr>
<tr>
<td>common-source, 21, 106</td>
</tr>
<tr>
<td>hierarchy of, 13</td>
</tr>
<tr>
<td>multiple, 25, 103</td>
</tr>
<tr>
<td>specific-source, 21</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>Questioned documents, 24, 26, 81, 84, 92, 93, 98, 100, 102, 103</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R, 39</td>
</tr>
<tr>
<td>functions, 76, 78, 136, 139, 173, 176</td>
</tr>
<tr>
<td>Reporting</td>
</tr>
<tr>
<td>evaluative, 4</td>
</tr>
<tr>
<td>Rice quality, 47, 57, 62, 143</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Saliva, 107</td>
</tr>
<tr>
<td>Score, 18, 85</td>
</tr>
<tr>
<td>Scoring rule, 33</td>
</tr>
<tr>
<td>Sensitivity analysis, 38–39</td>
</tr>
<tr>
<td>loss function, 167</td>
</tr>
<tr>
<td>Markov chain Monte Carlo, 122</td>
</tr>
<tr>
<td>Monte Carlo, 51</td>
</tr>
<tr>
<td>prior distribution, 70</td>
</tr>
<tr>
<td>prior odds, 90</td>
</tr>
<tr>
<td>smoothing parameter, 160</td>
</tr>
<tr>
<td>Sex discrimination, 155, 163, 167</td>
</tr>
<tr>
<td>Signatures, 129</td>
</tr>
<tr>
<td>Significance testing, 8</td>
</tr>
<tr>
<td>Stan, 31</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Threshold, 42, 63, 74</td>
</tr>
<tr>
<td>Toner</td>
</tr>
<tr>
<td>on printed documents, 16, 80</td>
</tr>
</tbody>
</table>