
Java 23
Key Concepts in Brief

2024

2

OCTOBER 2, 2024

FIRST EDITION

Java 23: Key Concepts in Brief by Sergio Petrucci is licensed under Creative

Commons Attribution 4.0 International

©2024 Sergio Petrucci

©2024 Petrucci Books

No warranties are given. The license may not give you all of the permissions

necessary for your intended use. For example, other rights such as publicity,

privacy, or moral rights may limit how you use the material.

CONTACT INFORMATION

sergio@petrucci.dev

https://petrucci.dev

https://petrucci.dev/java23.html
https://petrucci.dev
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://petrucci.dev

3

Advertisment

Taski.Dev: The Task Management Tool
that Dares to be Different

Tired of task tools that feel like heavy lifting? Meet Taski.Dev, the purple

cow of project management — designed for solo innovators and nimble

teams who think outside the checkbox.

While others drown you in features you never use, Taski.Dev focuses on what

matters: effortless task flow. Every detail is crafted to keep distractions out

and momentum in. Simple yet powerful, it gives you total control over who

can see, create, and comment on your work — without breaking a sweat.

Create a free account now!

https://taski.dev?utm_source=book&utm_medium=ebook&utm_campaign=java23
https://taski.dev/_/signup.html?utm_source=book&utm_medium=ebook&utm_campaign=java23

Contents

1 What’s New in Java 23 8

2 Simplified Module Imports 11

2.1 The Need for Simplified Imports . 11

2.2 Understanding Java 9 Modules . 12

2.2.1 What is a Module? . 12

2.2.2 Why Modules? . 13

2.2.3 Addressing the Challenges 13

2.2.4 The Unfulfilled Promise of JPMS 14

2.3 Simplified Module Imports to the Rescue 15

2.4 Understanding the Mechanics . 16

2.5 Impact on Different Developer Groups 17

2.6 Conclusion . 18

3 Implicit Classes and Simplified Imports 19

3.1 Implicitly Declared Classes: A Gentle Introduction 19

3.2 Seamless Console Interaction: The java.io.IO Class 20

3.3 Streamlining Imports . 21

3.4 A Synergistic Relationship for Simplicity 22

3.5 Conclusion: A More Approachable Java 22

4

CONTENTS 5

4 Structured Concurrency in Java 23

4.1 The Challenges of Unstructured Concurrency 24

4.2 Introducing Structured Concurrency 24

4.3 StructuredTaskScope: The Core of Structured Concurrency 25

4.4 Benefits of Structured Concurrency 27

4.5 Conclusion . 27

5 Sharing Data Smartly in Java 28

5.1 The Need for Efficient Data Sharing 28

5.2 Limitations of Thread-Local Variables 29

5.3 Scoped Values: A More Efficient Solution 29

5.4 Practical Example . 30

5.5 Conclusion . 32

6 Flexible Constructor Bodies 33

6.1 The Motivation for Change . 33

6.2 Introducing Flexible Constructor Bodies 34

6.3 Benefits of Flexibility . 34

6.4 Rules and Restrictions . 34

6.5 Impact on Records and Enums . 35

6.6 Examples of Flexible Constructor Bodies 36

6.6.1 Validating Superclass Constructor Arguments 36

6.6.2 Preparing Superclass Constructor Arguments 37

6.6.3 Initializing Subclass Fields to Avoid Issues with Overridden

Methods . 37

6.7 Conclusion . 38

7 Markdown Documentation Comments 39

7.1 The Need for Modernization . 40

6 CONTENTS

7.2 Markdown: A More Human-Friendly Approach 40

7.3 Best of Both Worlds: Markdown and JavaDoc 40

7.4 Impact and Future Directions . 41

7.5 Examples of Markdown Documentation Comments 41

8 ZGC: Generational Mode by Default 44

8.1 Understanding ZGC and Generational Garbage Collection 45

8.2 Shifting the Default . 45

8.3 Benefits of Generational ZGC . 46

8.4 Illustrating the Impact . 46

8.5 Considerations and Potential Challenges 47

8.6 Conclusion . 47

9 Removed Features and Options 48

9.1 Aligned Access Modes for MethodHandles 48

9.2 Thread Management Methods . 49

9.3 Module jdk.random . 50

9.4 Legacy Locale Data . 50

9.5 JMX Subject Delegation . 50

9.6 JMX Management Applet (m-let) . 51

9.7 RegisterFinalizersAtInit Option . 51

9.8 -Xnoagent Option for the java Launcher 51

9.9 Obsolete Desktop Integration from Linux Installers 52

10 Deprecated Features and Options 53

10.1 java.beans.beancontext Package . 53

10.2 JVM TI GetObjectMonitorUsage Function 54

10.3 DontYieldALot Flag . 54

10.4 -XX:+UseEmptySlotsInSupers . 54

CONTENTS 7

10.5 PreserveAllAnnotations VM Option 55

10.6 UseNotificationThread VM Option 55

11 Notable Issues Fixed 56

11.1 Packaging and Deployment . 56

11.1.1 Accurate Package Listing with jpackage on Debian 56

11.2 Core Libraries and APIs . 57

11.2.1 Enhanced HTTP Server Responsiveness 57

11.2.2 DecimalFormat Pattern String Memory Usage 57

11.2.3 MessageFormat Pattern String Quoting 58

11.2.4 Lenient Date/Time Parsing and Space Separators 58

11.3 HotSpot Virtual Machine . 59

11.3.1 Standardised Naming for Filler Array Objects 59

11.3.2 Enhanced G1 Garbage Collector: Marking Stack Expansion . 59

11.3.3 Improved Startup Performance with JFR 60

11.4 JVM Tool Interface (JVMTI) . 60

11.4.1 Clarification of Contended Monitor Status 60

11.4.2 Accurate Reporting of Waiting Threads 61

11.5 Compiler and Tools . 62

11.5.1 Enclosing Instances and Local Classes 62

11.5.2 Javadoc Member Reference Validation 62

Chapter 1

What’s New in Java 23

In September 2024, Oracle announced that JDK 23 is now generally available.

Java 23 is a short-term JDK release and will be succeeded by

Java 24 in March 2025. As Java 23 is not an LTS (Long-Term Support)

version, it will receive premier support for only six months.

This release introduces twelve notable enhancements, each supported by its

own JDK Enhancement Proposals (JEPs), which include eight preview features

and one incubator feature. These enhancements encompass improvements to the

8

9

Java Language, APIs, performance, and the tools included in the JDK.

● Simplified Module Imports (Preview)

JEP 476 introduces a streamlined way to import all packages exported by a

module, making it easier to reuse modular libraries.

● Improved Beginner Friendliness (Preview)

JEP 477 aims tomake Javamore beginner-friendly by allowing simplified declarations

for single-class programs, allowing beginners to gradually learn advanced features

as their skills progress.

● Enhanced Concurrent Programming (Preview)

JEP 480 introduces structured concurrency, which treats related tasks running

in different threads as a single unit, simplifying error handling, cancellation, and

improving reliability and observability.

● Scoped Values for Efficient Data Sharing (Preview)

JEP 481 introduces scoped values, allowing methods to share immutable data

with callees and child threads more efficiently than thread-local variables.

● More Flexible Constructors (Preview)

JEP 482 allows statements before explicit constructor invocations (super() or

this()), enabling field initialization before another constructor is called, which improves

reliability when methods are overridden.

● Markdown Support in JavaDoc Comments

JEP 467 enables writing JavaDoc documentation comments inMarkdown, offering

10 CHAPTER 1. WHAT’S NEW IN JAVA 23

a more readable and user-friendly alternative to HTML and JavaDoc tags.

● ZGC Generational Mode Now Default

Z Garbage Collector (ZGC) now defaults to generational mode for improved

performance, with the non-generational mode being deprecated.

● Annotation Processing Changes

Annotation processing in javac is no longer enabled by default and requires

explicit configuration.

● Security Enhancements

JMX Subject Delegation and the JMX Management Applet (m-let) have been

removed to prepare for the removal of the Security Manager in a future release.

Additionally, keychain support is expanded in the Apple provider for Java Security

to include system root certificates.

● Performance Optimizations

Several performance optimizations have been implemented, including a new

Parallel GCFull GC algorithm, support for duration until another instant in java.time.Instant,

and a change in the default maximum fraction digits for java.text.DecimalFormat.

● Legacy Features Removed

Several legacy features have been removed, including:

ThreadGroup.stop, Thread.suspend/resume, ThreadGroup.suspend/resume, and

the jdk.random module.

Chapter 2

Simplified Module Imports

Java 23 introduces a preview feature designed to simplify how developers import

packages from modules: Simplified Module Imports. This chapter explores this

new feature, its benefits, potential challenges, and how it integrates with other Java

language features.

2.1 The Need for Simplified Imports

Before Java 9, managing dependencies and code organization often led to challenges

like ”classpath hell.” Java 9 introduced themodule system (Project Jigsaw) to address

these issues. Modules group related packages, offering amore structured approach

to application development. However, the adoption of the module system hasn’t

been as widespread as initially anticipated.

11

12 CHAPTER 2. SIMPLIFIED MODULE IMPORTS

2.2 Understanding Java 9 Modules

2.2.1 What is a Module?

In essence, a module is a grouping of related packages, resources (like images

and XML files), and a module descriptor. This descriptor outlines:

• The module’s name.

• The module’s dependencies on other modules.

• The packages it explicitly makes available to other modules.

• The services it offers and consumes.

• The modules it grants reflective access to.

Modules provide a higher level of aggregation than packages, enhancing code

organisation and maintainability.

2.2. UNDERSTANDING JAVA 9 MODULES 13

2.2.2 Why Modules?

Before Java 9, the Java platform was essentially a monolithic entity. While there

were attempts tomodularise Java, nonewere widely adopted, and none successfully

modularised the platform itself.

The lack of a formal module system led to issues like:

• Difficulties managing dependencies and version conflicts between JAR files.

• Limited control over the accessibility of internal APIs.

• Challenges in securing critical code and preventing access to internal APIs.

These issues, prevalent in larger applications, were often difficult to resolve.

2.2.3 Addressing the Challenges

The introduction of JPMS in Java 9 aimed to tackle these challenges. By dividing

the JDK itself into modules, Java 9 facilitates various configurations. This modular

JDK offers advantages like:

• Reliable Configuration Modules declare dependencies explicitly, enabling

the JPMS to ensure all required modules are present during compilation and

runtime. Thismitigates the risk of runtime errors due tomissing dependencies.

• Strong Encapsulation Modules control which packages are accessible to

others. This fine-grained access control enhances security by restricting access

to internal APIs, promoting better code maintainability and reducing the risk

of unintended dependencies.

• Improved Security The module system enforces stricter access control to

internal APIs. While this necessitated workarounds for some projects relying

heavily on internal APIs, it ultimately enhances the platform’s security.

14 CHAPTER 2. SIMPLIFIED MODULE IMPORTS

2.2.4 The Unfulfilled Promise of JPMS

One of the most significant barriers to JPMS adoption has been its complexity.

Developers accustomed to the classpath model found the transition to a modular

system challenging. The introduction of new concepts like module descriptors

(module-info.java) and the need to explicitly declaremodule dependencies added

a layer of complexity to Java development.

module com.example.mymodule {
requires java.base;
requires com.example.anothermodule;
exports com.example.mymodule.api;

}

This additional complexity was often seen as unnecessary for smaller projects,

where the benefits of modularity were less apparent.

JPMS introduced strict encapsulation rules that broke compatibility with many

existing libraries and frameworks. Many popular Java libraries were not initially

designed with JPMS in mind, leading to conflicts when attempting to modularize

applications that depended on these libraries.

For many existing Java projects, especially those with established architectures,

the perceived benefits of adopting JPMS did not outweigh the costs of migration.

The effort required to modularize a large, existing codebase was often deemed too

high compared to the potential gains in maintainability or performance.

The Java ecosystem already had established solutions for achieving modularity,

such asOSGi andMavenmodules. Many developers and organizations had invested

in these technologies and saw little reason to switch to JPMS, which offered similar

benefits but required significant changes to their existing systems.

The Java community is now split between those who have adopted JPMS and

those who continue to use the classpath model or alternative modularity solutions.

2.3. SIMPLIFIED MODULE IMPORTS TO THE RESCUE 15

With fewer developers and projects using JPMS, the development of tools, best

practices, and patterns for modular Java has been slower than initially anticipated.

Many projects continue to rely on the classpath model, potentially missing out

on the benefits of stronger encapsulation and improved runtime optimizations.

Despite its challenges, JPMS remains an integral part of the Java platform. Its

adoption may increase gradually as:

• Tools and IDEs improve their support for modular development

• More libraries and frameworks become JPMS-compatible

• Developers gain experience and becomemore comfortable withmodular concepts

• New projects are started with JPMS in mind from the beginning

The Java Platform Module System represented a significant effort to modernize

the Java platform and address long-standing issueswith the classpathmodel. However,

its limited adoption highlights the challenges of introducing fundamental changes

to a mature ecosystem. As the Java community continues to evolve, the role of

JPMS in shaping the future of Java development remains to be seen. Whether it

will eventually gain widespread adoption or remain a niche feature used primarily

in specific scenarios is a question that only time will answer.

2.3 Simplified Module Imports to the Rescue

One contributing factor to the slow adoption is the verbosity associated with importing

multiple packages from modules. While modules aim to streamline dependency

management, importing numerous packages from a module can lead to cluttered

codewith numerous import statements. This is particularly noticeable whenworking

with modules that export many packages, such as java.base.

16 CHAPTER 2. SIMPLIFIED MODULE IMPORTS

SimplifiedModule Imports aim to address this verbosity and simplify the use of

modules. This feature enables developers to import all public packages exported by

a module using a single statement. For instance, instead of writing multiple import

statements for packages within the java.base module, developers can now use a

single statement:

import module java.base;

This concise syntax offers several advantages:

• Improved Code Readability: By reducing the number of import statements,

the code becomes cleaner and easier to read, especially when working with

modules that export many packages.

• Enhanced Developer Productivity: Writing and managing imports become

less tedious, allowing developers to focus more on application logic.

• Simplified Adoption of Modules: The simplified syntax lowers the entry

barrier for developers hesitant to adoptmodules due to the verbosity of traditional

import statements.

2.4 Understanding the Mechanics

Let’s examine how the import module statement functions within the context of

module dependencies:

• Transitive Dependencies: When a module (M1) requires another module

(M2) transitively, and a source file imports M1 using import module, it automatically

gains access to the public packages exported by both M1 and M2.

2.5. IMPACT ON DIFFERENT DEVELOPER GROUPS 17

• Resolving Ambiguous Imports: Importing multiple modules can lead to

situations where classeswith the same name exist in different imported packages,

causing name ambiguity. The Java compiler identifies these ambiguities

during compilation. Developers can resolve these ambiguities by using a

single-type-import declaration to explicitly specify the desired class.

• No ForcedModularization: A key advantage of Simplified Module Imports is

that it doesn’t force developers tomodularize their entire codebase. Developers

can use this feature to import modules even if their code resides in the unnamed

module (class path).

2.5 Impact on Different Developer Groups

This new feature caters to a wide range of Java developers:

• Simplifies the learning process for new Java developers. They no longer need

to grasp the complexities of package hierarchies early on. They can directly

access common classes frommodules like java.basewithout numerous import

statements.

• For seasoned developers working on large projects, SimplifiedModule Imports

streamlines code, improves readability, and potentially reduces errors associated

with managing multiple import statements.

• While large frameworks like Spring initially faced challenges in fully adopting

themodule system due to their reliance on reflection, the increasingmodularization

of libraries and the continuous development efforts, such as planned module

system support in Spring, signal a potential rise in adoption, further benefiting

from features like Simplified Module Imports.

18 CHAPTER 2. SIMPLIFIED MODULE IMPORTS

2.6 Conclusion

As a preview feature, Simplified Module Imports is still under development. It’s

crucial to remember that preview features might change in future Java releases

based on feedback and further development. However, given its potential to streamline

Java development and promote the adoption of modules, SimplifiedModule Imports

represents a significant step towards a more concise and developer-friendly Java

language.

Chapter 3

Implicit Classes and Simplified

Imports

Java, known for its robustness and scalability, has often been considered verbose,

particularly for beginners. To address this andmake the languagemore approachable,

Java 23 introduces two key preview features working in tandem: Implicitly Declared

Classes (JEP 477) and Module Import Declarations (JEP 476). This chapter

explores these features, highlighting how they simplify Java development, especially

for newcomers.

3.1 Implicitly DeclaredClasses: AGentle Introduction

Traditionally, even a simple ”Hello, World!” program in Java required understanding

classes, methods, and the static keyword, often leaving beginners puzzled. Implicitly

Declared Classes aim to streamline this initial learning curve by allowing developers

to omit explicit class declarations for simple programs.

Consider the classic ”Hello, World!” example:

19

20 CHAPTER 3. IMPLICIT CLASSES AND SIMPLIFIED IMPORTS

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello , World!");

}
}

With Implicitly Declared Classes, this simplifies to:

void main() {

println("Hello , World!");

}

The compiler now infers the existence of a class, removing the need for explicit

class and public static void main(String[] args) declarations. This significantly

reduces the cognitive load on beginners, allowing them to focus on core concepts

like printing output without getting bogged down by syntax.

3.2 SeamlessConsole Interaction: The java.io.IOClass

To further simplify console input and output, JEP 477 introduces the ‘java.io.IO‘

class, providing convenient static methods like println, print, and readln. These

methods are automatically imported into implicitly declared classes, making interaction

with the console intuitive and concise.

Here’s an example demonstrating the use of readln for user input:

void main() {

String name = readln("Enter your name: ");

println("Welcome , " + name + "!");

}

3.3. STREAMLINING IMPORTS 21

Beginners can now easily write interactive programs without grappling with the

complexities of System.out or System.in, fostering a smoother learning experience.

3.3 Streamlining Imports

As programs grow, they often require functionalities provided by different classes

within the Java API. JEP 476 introduces the import module statement, allowing

developers to import all public types from a module with a single line. This is

particularly beneficial when working with modules containing numerous packages,

like java.base.

For instance, to use the List interface from java.util, a traditional approach

would involve:

import java.util.List;

class MyProgram {

// ... code using the List interface

}

With JEP 476, this becomes:

import module java.base;

class MyProgram {

// ... code using the List interface

}

The import module java.base; statement provides access to all public types

within the ‘java.base‘ module, including java.util.List, eliminating the need for

individual import statements.

22 CHAPTER 3. IMPLICIT CLASSES AND SIMPLIFIED IMPORTS

3.4 A Synergistic Relationship for Simplicity

The true power of these features lies in their synergy. JEP 477 leverages JEP 476 to

provide implicitly declared classes with automatic access to all public types within

java.base. This means beginners can start using classes like List, ArrayList,

and others from java.base without any explicit import statements, further reducing

the learning curve.

Imagine a beginner wants to work with a list of names:

void main() {

var names = List.of("Alice", "Bob", "Charlie");

for (var name : names) {

println("Hello , " + name + "!");

}

}

This code works seamlessly within an implicitly declared class, showcasing how

JEP 476 and JEP 477 work together to create a streamlined and beginner-friendly

experience.

3.5 Conclusion: A More Approachable Java

Implicitly Declared Classes and Simplified Module Imports mark a significant

step towards a more approachable Java for beginners. By minimizing boilerplate

code and simplifying package access, these features allow new programmers to

focus on core programming concepts, fostering a more engaging and enjoyable

learning journey. As Java continues to evolve, these enhancements contribute to

its relevance and appeal, ensuring it remains a powerful and accessible language

for generations of developers to come.

Chapter 4

Structured Concurrency in Java

Concurrent programming, the art of making different parts of a program run seemingly

simultaneously, is essential for building responsive and efficient applications. However,

traditional approaches to concurrency, often relying on threads and locks, can be

error-prone and difficult to debug. Java 23 introduces a powerful preview feature,

Structured Concurrency (JEP 480), designed to simplify concurrent programming

and improve the reliability of concurrent applications.

23

24 CHAPTER 4. STRUCTURED CONCURRENCY IN JAVA

4.1 The Challenges of Unstructured Concurrency

Before exploring structured concurrency, let’s understand the challenges posed by

traditional or ”unstructured” concurrency. Imagine a server application handling

user requests. Each request might involve multiple tasks, such as fetching data

from a database, processing that data, and sending a response back to the user.

With unstructured concurrency using thread pools (ExecutorService), these tasks

might be executed in separate threads. While this allows for parallelism, it introduces

complexities:

• If one task encounters an error and fails to complete, other tasksmight continue

running in their threads, potentially leading to resource leaks if not managed

properly.

• Interrupting or cancelling a group of related tasks running in different threads

can be cumbersome. Ensuring that all tasks are properly stopped and resources

are cleaned up adds to the complexity.

• Debugging and understanding the flow of execution in an application with

multiple threads running independently can be challenging. Traditional debugging

tools often don’t provide a clear view of the relationships between tasks,

making troubleshooting difficult.

4.2 Introducing Structured Concurrency

Structured concurrency addresses these challenges by enforcing a simple yet powerful

principle:

The lifetime of a concurrent subtask should be confined to the

lexical scope of its parent task.

4.3. STRUCTUREDTASKSCOPE: THECOREOFSTRUCTUREDCONCURRENCY25

This means that if a task spawns subtasks to be executed concurrently, all those

subtasks must complete before the parent task can finish. This principle brings

structure to concurrency, making it easier to reason about, manage, and debug.

4.3 StructuredTaskScope: The Core of Structured

Concurrency

The core of structured concurrency in Java is the StructuredTaskScope class. It

acts like a container for a group of related tasks, ensuring their lifetimes are correctly

managed. Let’s illustrate with an example.

Assume we’re building a weather application that fetches weather data from

three different sources for a given location. Wewant to retrieve the data concurrently

to improve responsiveness. Here’s how we can do it using StructuredTaskScope:

package dev.petrucci.java23;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.StructuredTaskScope;

public class Main {

static String fetchWeather(String source ,
String location) {

// Simulate network call
try {

Thread.sleep(100);
} catch (InterruptedException e) {

throw new RuntimeException(e);
}

return " Weather data from "
+ source + " for " + location;

}

public static void main(String[] args)
throws ExecutionException , InterruptedException {

26 CHAPTER 4. STRUCTURED CONCURRENCY IN JAVA

try (var scope =
new StructuredTaskScope.ShutdownOnFailure()) {

var weatherFromSourceA = scope.fork(() ->
fetchWeather(" Source A", " London "));

var weatherFromSourceB = scope.fork(() ->
fetchWeather(" Source B", " Tokyo "));

var weatherFromSourceC = scope.fork(() ->
fetchWeather(" Source C", " New York "));

// Propagate if any task failed
scope.join().throwIfFailed();

System.out.println(weatherFromSourceA.get());
System.out.println(weatherFromSourceB.get());
System.out.println(weatherFromSourceC.get());

}
}

}

Let’s break down this example:

1. Creating the Scope: Wecreate a StructuredTaskScope using a try-with-resources

block. This ensures that the scope is automatically closed, and any running tasks

are cancelled when the block exits, even if exceptions occur.

2. Forking Subtasks: The fork() method submits a task (represented by a

Callable or Runnable) to the scope for execution in a separate thread. Each fork()

call returns a Subtask object, which represents the running subtask.

3. Joining Subtasks: The join() method waits for all subtasks to complete.

This ensures that the main thread doesn’t proceed until all weather data has been

fetched. The throwIfFailed()method will rethrow the first exception encountered

from any of the subtasks. This is a conveniencemethod offered by the ShutdownOnFailure

policy.

4. Retrieving Results: Once join() returns successfully, we can retrieve the

results of each subtask using Subtask.get().

4.4. BENEFITS OF STRUCTURED CONCURRENCY 27

4.4 Benefits of Structured Concurrency

The structured approach exemplified above provides several advantages:

• Implicit Cancellation: If any task within the StructuredTaskScope throws an

exception, the other tasks are automatically cancelled. This prevents thread

leaks and ensures a clean shutdown.

• Error Handling: Exceptions thrown within subtasks are propagated and can

be handled by the parent task. This allows for centralised error handling and

improves the robustness of the code.

• EnhancedObservability: The StructuredTaskScopemaintains a hierarchical

relationship between the parent task and its subtasks. This relationship can

be observed through thread dumps and other debugging tools, making it

easier to understand the flow of execution in concurrent code.

4.5 Conclusion

Structured concurrency in Java, represented by StructuredTaskScope, introduces

a powerful mechanism formanaging concurrency within well-defined lexical scopes.

This approach simplifies error handling, cancellation, and debugging, making concurrent

programmingmore manageable and less error-prone. As Java continues to evolve,

structured concurrency is likely to become a cornerstone for building robust and

efficient concurrent applications.

Chapter 5

Sharing Data Smartly in Java

Scoped Values (JEP 481), a feature introduced in Java 23, provides a safer and

more efficient way to share data across different parts of a program, especially

when working with concurrent threads. Scoped values are designed to address the

limitations of traditional methods like thread-local variables, making data sharing

more manageable, robust, and performant.

5.1 The Need for Efficient Data Sharing

Java applications and libraries are structured as collections of classes andmethods.

Methods communicate by passing data through method calls, which often involves

passing the data as parameters. However, sometimes it becomes impractical to

pass all the necessary data as parameters, especially when dealing with complex

call chains or when the data is meant for internal framework use and irrelevant to

application code.

For instance, imagine aweb framework handling anHTTP request. The framework

might need to access internal context data, like the authenticated user ID or transaction

ID, across different methods in the call chain. Passing this context data as a

28

5.2. LIMITATIONS OF THREAD-LOCAL VARIABLES 29

parameter to every method would be cumbersome and could introduce potential

errors.

5.2 Limitations of Thread-Local Variables

Traditionally, developers have relied on thread-local variables to share data without

resorting to method parameters. Thread-local variables maintain a separate value

for each thread, avoiding the need to pass data explicitly. However, thread-local

variables come with inherent limitations:

• Thread-local variables can be modified by any code that can access them,

making data flow difficult to track and control.

• The values stored in thread-local variables persist until the thread exits or the

value is explicitly removed, potentially leading to resource leaks and security

vulnerabilities if not managed carefully.

• When a thread creates child threads, the child threads inherit the thread-local

variables of the parent thread, potentially leading to significant memory overhead,

especially with large numbers of virtual threads.

5.3 Scoped Values: A More Efficient Solution

Scoped values address the drawbacks of thread-local variables by providing a

more controlled and efficient mechanism for sharing data. They are essentially

containers that allow amethod to share data with its direct and indirect callees within

the same thread and with child threads, without relying on method parameters.

Scoped values offer these advantages:

30 CHAPTER 5. SHARING DATA SMARTLY IN JAVA

• Bounded Lifetime: The data associated with a scoped value is only accessible

within the scope of the method that bound it. This ensures that the data is not

accessible outside its intended context, preventing unintended modifications

or leaks.

• Immutability: The values stored in scoped values are typically immutable,

ensuring that the data shared is consistent and reliable.

• Efficient Inheritance: Scoped values can be inherited by child threadswithout

copying the data from the parent thread, minimizing memory overhead.

• Easy toUse: The ScopedValueAPI providesmethods for creating andmanaging

scoped values, with options for binding multiple values at a call site.

5.4 Practical Example

Let’s illustrate the use of scoped values with an example:

package dev.petrucci.java23;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.StructuredTaskScope;

public class WeatherApp {

private static final ScopedValue <String > Location =
ScopedValue.newInstance();

static String fetchWeather(String source) {

// Simulate network call
try {

Thread.sleep(100);
} catch (InterruptedException e) {

throw new RuntimeException(e);
}

return "Weather data from " + source + " for " +
Location.get();

5.4. PRACTICAL EXAMPLE 31

}

public static void main(String[] args) throws
ExecutionException , InterruptedException {

ScopedValue.runWhere(Location , "London", () -> {

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

var weatherFromSourceA = scope.fork(() ->
fetchWeather("Source A"));

var weatherFromSourceB = scope.fork(() ->
fetchWeather("Source B"));

var weatherFromSourceC = scope.fork(() ->
fetchWeather("Source C"));

try {
scope.join().throwIfFailed();

} catch (Exception e) {
System.err.println("Failed to fetch weather data");
throw new RuntimeException(e);

}

System.out.println(weatherFromSourceA.get());
System.out.println(weatherFromSourceB.get());
System.out.println(weatherFromSourceC.get());

}
});

}
}

In this example:

1. Declaring a Scoped Value: We declare a scoped value named Location

using ScopedValue.newInstance().

2. Binding the Scoped Value: We use ScopedValue.runWhere() to bind the

Location scoped value to the ”London” string. This creates a scope where

all methods called within this scope can access the bound value of ”London”

32 CHAPTER 5. SHARING DATA SMARTLY IN JAVA

using Location.get().

3. Using the Scoped Value: The fetchWeather() method retrieves weather

data from different sources. Each call to fetchWeather() uses Location.get()

to access the value bound to the Location scoped value, which is ”London”

in this case.

4. Structured Concurrency: We use a StructuredTaskScope to execute the

fetchWeather() calls concurrently.

5. Automatic Cleanup: Once the runWhere() block finishes, the binding for the

Location scoped value is automatically removed.

5.5 Conclusion

Scoped values provide a valuable addition to Java’s concurrency features. They

offer a safer, more efficient, and easier-to-use mechanism for sharing data across

threads and different parts of a program. As Java continues to evolve, scoped

values are likely to become a crucial tool for building robust, efficient, and reliable

concurrent applications.

Chapter 6

Flexible Constructor Bodies

Java 23 introduces a significant shift in how constructors are structured, offering

developers more flexibility in writing code within a constructor body. This chapter

explores the concept of Flexible Constructor Bodies, explaining its purpose, benefits,

and the specific rules governing its use.

6.1 The Motivation for Change

Prior to Java 23, the language imposed a strict requirement: if a constructor explicitly

invoked another constructor (using this(...) or super(...)), that invocation had

to be the very first statement within the constructor body. This constraint, while

ensuring a predictable constructor execution order, often led to less readable and

maintainable code. Developers were forced to employ workarounds like auxiliary

methods or constructors to perform tasks that logically should reside within the

constructor itself.

33

34 CHAPTER 6. FLEXIBLE CONSTRUCTOR BODIES

6.2 Introducing Flexible Constructor Bodies

JEP 482, Flexible Constructor Bodies, directly addresses this limitation. It allows

developers to include statements before an explicit constructor invocation (super(...)

or this(...)) within a constructor body. These statements, referred to as the

”prologue” of the constructor, expand the possibilities for what can be achieved

before control is passed to another constructor.

6.3 Benefits of Flexibility

This newfound flexibility brings several advantages:

• Code that logically belongs within a constructor can now be placed there

directly, improving readability and maintainability.

• Validation, preparation, and sharing of arguments passed to other constructors

can be done more cleanly within the constructor itself, reducing the need for

auxiliary methods or constructors.

• Subclasses gain the ability to initialize their fields before invoking superclass

constructors, mitigating potential issueswhere superclass codemight encounter

uninitialized subclass fields.

6.4 Rules and Restrictions

While offering greater flexibility, JEP 482 introduces a new concept – the early

construction context. This context encompasses both the argument list of an

explicit constructor invocation and any statements within the prologue.

Here are the key rules governing code within an early construction context:

6.5. IMPACT ON RECORDS AND ENUMS 35

• Code in the prologue cannot use this to refer to the current instance, access

its fields, or invoke its methods. This restriction ensures that superclass

constructors operate on a consistently initialized object.

• A key exception to the previous rule is that fields declared within the same

class as the constructor, and lacking explicit initializers, can be assigned

values within the prologue. This enables subclasses to initialize their fields

before a superclass constructor might access them.

• Calling instance methods (including those inherited from superclasses) is

prohibited within the prologue. This restriction prevents scenarios where

instance methods might rely on object state that hasn’t been fully initialized.

• In the case of nested classes, code within the prologue of an inner class

constructor can access the enclosing instance and its members. This is

permitted because the enclosing instance is created before the inner class

instance.

6.5 Impact on Records and Enums

The changes introduced by JEP 482 also benefit constructors of record classes and

enum classes. Non-canonical record constructors, which use this(...) to invoke

alternative constructors, can now contain statements in their prologue. Similarly,

enum constructors, which might use this(...) to call other enum constructors,

gain the same flexibility.

36 CHAPTER 6. FLEXIBLE CONSTRUCTOR BODIES

6.6 Examples of Flexible Constructor Bodies

6.6.1 Validating Superclass Constructor Arguments

Before Java 23, validating an argument passed to a superclass constructor had to

be done after invoking super(...), potentially leading to unnecessary work if the

validation failed.

public class PositiveBigInteger extends BigInteger {

public PositiveBigInteger(long value) {

// Could be unnecessary if validation fails
super(value);

if (value <= 0) {
throw new IllegalArgumentException

("Value must be positive");
}

}
}

With Flexible Constructor Bodies, validation can be performed in the prologue,

leading to a more efficient ”fail-fast” behaviour:

public class PositiveBigInteger extends BigInteger {

public PositiveBigInteger(long value) {

if (value <= 0) {
throw new IllegalArgumentException

("Value must be positive");
}

super(value);

}
}

6.6. EXAMPLES OF FLEXIBLE CONSTRUCTOR BODIES 37

6.6.2 Preparing Superclass Constructor Arguments

Previously, complex calculations for superclass constructor arguments often involved

auxiliary methods. Flexible Constructor Bodies allow for this preparation within the

constructor itself.

public class Sub extends Super {

public Sub(Certificate certificate) {

var publicKey = certificate.getPublicKey();

if (publicKey == null) {
throw new IllegalArgumentException

("Certificate missing public key");
}

byte[] certBytes = switch (publicKey) {
case RSAKey rsaKey -> ...
case DSAPublicKey dsaKey -> ...
default -> ...

};

super(certBytes);

}
}

6.6.3 Initializing Subclass Fields toAvoid IssueswithOverridden

Methods

Although discouraged, superclass constructorsmight call methods that are overridden

in subclasses. This can lead to unexpected behaviour if the overridden method

in the subclass relies on fields not yet initialized at the time of the superclass

constructor call.

class Super {

Super() { overriddenMethod(); }

38 CHAPTER 6. FLEXIBLE CONSTRUCTOR BODIES

void overriddenMethod() {
System.out.println("Super: hello");

}

}

class Sub extends Super {

final int x;

Sub(int x) {
// Initialize before superclass constructor
this.x = x;
super();

}

@Override
void overriddenMethod() {

System.out.println("Sub: " + x);
}

}

In this example, initializing this.x before super() ensures that the overridden

overriddenMethod in the subclass accesses the correct value of x.

These examples showcase how Flexible Constructor Bodies enhance code

clarity andmaintainability, allowing formore intuitive and efficient constructor implementations.

6.7 Conclusion

Flexible constructor bodies in Java 23mark a significant evolution in how constructors

are designed. The ability to write code before explicit constructor invocations empowers

developers to write clearer, more maintainable, and robust code, particularly in

scenarios involving subclassing and complex constructor logic. Understanding the

concept of the ”early construction context” and its associated rules is crucial to

harnessing the full potential of this new feature.

Chapter 7

Markdown Documentation

Comments

Java 23 introduces a significant enhancement to how developers write documentation

comments within their code: the ability to useMarkdown syntax. JEP 467,Markdown

Documentation Comments, brings the simplicity and readability of Markdown

to Java documentation, making it easier for developers to create and maintain

high-quality API documentation.

39

40 CHAPTER 7. MARKDOWN DOCUMENTATION COMMENTS

7.1 The Need for Modernization

Since the inception of Java, documentation comments have relied on a combination

of HTML tags and custom JavaDoc tags (e.g., @param, @return). While HTML was

a reasonable choice in 1995, its complexity as a manually written markup language

has become increasingly apparent over time.

Modern developers often find HTML tedious to write and read, hindering the

creation of well-formatted documentation. Moreover, the extensive use of JavaDoc

tags, while powerful, can be cumbersome and less intuitive, especially for those

new to the language.

7.2 Markdown: A More Human-Friendly Approach

Markdown has emerged as a popular alternative for creating simple, yet well-structured

documents. Its lightweight syntax focuses on readability and ease of writing, making

it a natural fit for documentation comments, which are typically less complex than

full-fledged web pages.

The key benefit of Markdown is its ability to express common formatting elements,

like headings, lists, and links, using simple, intuitive characters. This simplicity

reduces the visual clutter of HTML tags, making the documentation easier to read

directly in the source code.

7.3 Best of Both Worlds: Markdown and JavaDoc

JEP 467 is designed to leverage the strengths of both Markdown and the existing

JavaDoc system. It introduces a new documentation comment style using /// at

the beginning of each line, signaling the use of Markdownwithin the comment block.

7.4. IMPACT AND FUTURE DIRECTIONS 41

The goal is not to replace HTML and JavaDoc tags entirely, but to provide a

more streamlined approach for common formatting tasks. Developers can still use

HTML tags for elements not directly supported by Markdown, and JavaDoc tags

remain essential for generating API documentation structure and linking.

7.4 Impact and Future Directions

JEP 467 represents a significant step towards making Java documentation more

approachable and maintainable. By adopting Markdown, Java embraces a widely

used standard, potentially encouragingmore developers to contribute to documentation

efforts.

While the initial release focuses on incorporating basic Markdown elements,

there are opportunities for future enhancements. These might include support

for more advanced Markdown features or tools to help migrate existing JavaDoc

comments to the Markdown format.

It’s important to note that JEP 467 doesn’t mandate the conversion of existing

documentation; it provides an alternative that developers can adopt at their own

pace.

7.5 Examples ofMarkdownDocumentationComments

Let’s provide concrete examples to solidify our understanding.

Basic Formatting with Markdown

Imagine a simple utility class with a method for calculating the factorial of a number:

/// This class provides utility methods for
/// mathematical operations.

42 CHAPTER 7. MARKDOWN DOCUMENTATION COMMENTS

public class MathUtils {

/// Calculates the factorial of a non-negative integer.
///
/// For example:
/// - `factorial(0)` returns `1`
/// - `factorial(5)` returns `120`
///
/// @param n The non-negative integer for which to
/// calculate the factorial.
/// @return The factorial of `n`.
/// @throws IllegalArgumentException if `n` is negative.
public static long factorial(int n) {

if (n < 0) {
throw new IllegalArgumentException

("Input must be non-negative.");
}

if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);

}

}
}

In this example:

• We use ‘///‘ to denote Markdown documentation comments.

• Paragraphs are separated by a blank line.

• A code snippet (factorial(0)) is enclosed in backticks.

• An unordered list is created using the ‘-‘ character.

• JavaDoc tags like @param, @return, and @throws are used alongsideMarkdown.

Linking to Other Classes and Methods

Consider a scenario where you want to reference another class or method within

your documentation:

7.5. EXAMPLES OF MARKDOWN DOCUMENTATION COMMENTS 43

/// Represents a connection to a remote server.
///
/// This class utilizes the [NetworkManager]
/// for establishing and managing network connections.
///
/// See also: [NetworkManager#connect(String)]
public class ServerConnection {

// ... class implementation ...
}

Here:

• NetworkManager creates a link to the NetworkManager class documentation.

• NetworkManager.connect(String) creates a link to the connect(String)method

within the NetworkManager class.

These examples highlight how JEP 467 integrates Markdown’s simplicity with

the existing JavaDoc infrastructure, resulting in cleaner, more readable documentation

comments directly within the Java source code.

Chapter 8

ZGC: Generational Mode by Default

Java 23 solidifies the role of the ZGarbageCollector (ZGC) as a high-performance,

low-latency option bymaking its generational mode the default. This chapter explores

JEP 474, which ushers in this change, and discusses its implications for Java

developers.

44

8.1. UNDERSTANDINGZGCANDGENERATIONALGARBAGECOLLECTION45

8.1 Understanding ZGC and Generational Garbage

Collection

ZGC, introduced in earlier Java versions, addresses the increasing demand for

predictable low latency in garbage collection, particularly for applications with large

heaps. Its design aims to minimize pauses caused by garbage collection, making

it suitable for latency-sensitive workloads.

Generational garbage collection, a concept well-established in Java, is based

on the observation that most objects in a program have a short lifespan. This

”generational hypothesis” is exploited by dividing the heap into generations:

• Where new objects are allocated (Young Generation).

• Where long-lived objects that survive young generation collections are promoted

(Old Generation).

By focusing collection efforts primarily on the young generation, where most

garbage is generated, generational garbage collectors can achieve higher efficiency

and reduce pause times.

8.2 Shifting the Default

Prior to Java 23, ZGC operated in a non-generational mode by default. While

this mode provided the core benefits of ZGC’s low-latency design, it didn’t fully

leverage the advantages of generational garbage collection. JEP 474 changes this

by making generational ZGC the default mode.

This shift signals a clear direction for ZGC’s future development. By prioritizing

the generational mode, Oracle aims to streamline development efforts and optimize

ZGC’s performance for a broader range of applications.

46 CHAPTER 8. ZGC: GENERATIONAL MODE BY DEFAULT

8.3 Benefits of Generational ZGC

The transition to generational ZGC as the default offers several benefits.

Focusing collection efforts on the young generation typically results in less overall

work for the garbage collector, leading to lower CPU usage. With reduced CPU

overhead and shorter pause times, applications can processmore requests, leading

to increased throughput. Generational ZGC relies more heavily on automatic tuning

mechanisms, reducing the need for manual configuration and making it easier for

developers to adopt.

8.4 Illustrating the Impact

We can illustrate the potential impact of this feature through a few scenarios:

Example 1: A Caching Service

Imagine a caching service that frequently creates short-lived objects to store cached

data. In a non-generational ZGC environment, these objects, even with their short

lifespan, would be subject to the full garbage collection cycle.

With generational ZGC, these short-lived objects would be allocated in the young

generation and quickly reclaimed, minimizing their impact on garbage collection

pause times and overall CPU usage.

Example 2: A High-Frequency Trading Application

In a high-frequency trading application, where microsecond latency can be critical,

minimizing garbage collection pauses is paramount. Generational ZGC, by efficiently

collecting short-lived objects, can contribute to maintaining consistently low latency

for trade processing.

8.5. CONSIDERATIONS AND POTENTIAL CHALLENGES 47

8.5 Considerations and Potential Challenges

While generational ZGC is expected to be beneficial for most applications, there

are a few considerations:

• WorkloadCharacteristics: Applications with unusual object lifecycles, where

objects don’t strictly adhere to the generational hypothesis, might require

careful tuning.

• LegacyConfigurations: Existing applications with ZGC configurations tuned

for the non-generational mode might need adjustments to fully leverage the

generational mode.

8.6 Conclusion

JEP 474marks a significant milestone in ZGC’s evolution, establishing its generational

mode as the default and paving the way for future optimizations. By embracing

generational garbage collection, ZGC becomes an even more compelling option for

a wider range of Java applications, particularly those demanding high performance

and low latency.

Chapter 9

Removed Features and Options

This chapter details the features and options removed in Java 23.

9.1 Aligned Access Modes for MethodHandles

The atomic access modes for MethodHandles::byteArrayViewVarHandle and

MethodHandles::byteBufferViewVarHandle (when accessing heap buffers) have

been removed. This change is based on the fact that the removed functionality

relied on an implementation detail in the reference JVM implementation that wasn’t

part of the JVM specification.

The following methods are affected by this change:

• MethodHandles::byteArrayViewVarHandle

• MethodHandles::byteBufferViewVarHandle

• ByteBuffer::alignedSlice

• ByteBuffer::alignmentOffset

The ByteBuffer::alignedSlice and ByteBuffer::alignmentOffset methods

48

9.2. THREAD MANAGEMENT METHODS 49

will now throw an UnsupportedOperationException for heap byte buffers when

unitSize is greater than 1.

Recommended Alternatives:

• Utilise direct (off-heap) byte buffers for reliable aligned access.

• Store data in a long[] array, which offers stronger alignment guarantees

compared to byte[].

• Use a MemorySegment backed by a long[] array for atomic access with any

primitive type via the Foreign Function and Memory API:

long[] arr = new long;

MemorySegment arrSeg = MemorySegment.ofArray(arr);

// accessing aligned ints
VarHandle vh = ValueLayout.JAVA_INT.varHandle();

// 0L is offset in bytes
vh.setVolatile(arrSeg , 0L, 42);

long result = vh.getVolatile(arrSeg , 0L); // 42

9.2 Thread Management Methods

Several thread management methods, known for potential deadlocks, have been

removed in this release:

• java.lang.ThreadGroup.stop()

• java.lang.Thread.suspend()

• java.lang.Thread.resume()

• java.lang.ThreadGroup.suspend()

50 CHAPTER 9. REMOVED FEATURES AND OPTIONS

• java.lang.ThreadGroup.resume()

These methods were deprecated in earlier Java versions and now result in a

NoSuchMethodError if code compiled against older releases is executed on JDK 23

or newer.

9.3 Module jdk.random

The jdk.randommodule, containing implementations of java.util.random.RandomGenerator

algorithms, has been removed. These implementations are now part of the java.base

module.

Applications referencing jdk.random in build scripts or module dependencies

should remove these references.

9.4 Legacy Locale Data

The legacy JRE locale data (including its alias, COMPAT) has been removed. This

legacy data was superseded by CLDR (Common Locale Data Registry) locale data,

which became the default in JDK 9.

Applications using JRE/COMPAT locale data should migrate to CLDR locale

data or consider workarounds described in JEP 252.

9.5 JMX Subject Delegation

In preparation for the removal of the Security Manager, JMX Subject Delegation has

been removed. Calling javax.management.remote.JMXConnector.getMBeanServerConnection

(Subject delegationSubject) with a non-null delegation subject will throw an

UnsupportedOperationException.

9.6. JMX MANAGEMENT APPLET (M-LET) 51

To operate with multiple identities, client applications now need multiple calls to

JMXConnectorFactory.connect() and the getMBeanServerConnection() method

on the returned JMXConnector.

Refer to the Security in JavaManagement ExtensionsGuide formore information.

9.6 JMX Management Applet (m-let)

The m-let feature, part of the effort to prepare for the removal of the Security

Manager, has been removed. This removal doesn’t affect the JMX agent for local/remote

monitoring, JVM instrumentation, or JMX-based tooling.

The following API classes are removed:

• javax.management.loading.MLet

• javax.management.loading.MLetContent

• javax.management.loading.PrivateMLet

• javax.management.loading.MLetMBean

9.7 RegisterFinalizersAtInit Option

The HotSpot VM option -XX:[+-]RegisterFinalizersAtInit, deprecated in JDK

22, is now obsolete.

9.8 -Xnoagent Option for the java Launcher

The -Xnoagent option for the java launcher, deprecated in a previous release, has

been removed. Using this option will now result in an error, preventing the process

launch. Applications using this option should remove it.

https://docs.oracle.com/en/java/javase/23/jmx/security.html#GUID-EFC2A37D-307F-4001-9D2F-6F0A2A3BC51D

52 CHAPTER 9. REMOVED FEATURES AND OPTIONS

9.9 Obsolete Desktop Integration fromLinux Installers

Linux installers will no longer deposit files in /usr/share/icons, /usr/share/mime,

and /usr/share/applications subtrees.

Chapter 10

Deprecated Features and Options

This chapter details the features and options deprecated in Java 23.

10.1 java.beans.beancontext Package

The java.beans.beancontext.* package, introduced in JDK 1.2, has been deprecated

for removal in a future release. This package, based on concepts from Apple

Computer’s OpenDoc, aimed to provide mechanisms for assembling JavaBeans

components into hierarchies, enabling them to interact through services expressed

as interfaces.

However, with advancements in the Java language, including annotations, lambdas,

modules, and programming paradigms like ”Declarative Configuration”, ”Dependency

Injection”, and ”Inversion of Control”, the APIs within the java.beans.beancontext.*

package have become obsolete and represent an outdated approach to component

assembly.

Developers are strongly advised against using these APIs and should plan to

migrate existing code reliant on this package to alternative solutions in anticipation

of its removal.

53

54 CHAPTER 10. DEPRECATED FEATURES AND OPTIONS

10.2 JVM TI GetObjectMonitorUsage Function

The JVMTool Interface (JVMTI) function GetObjectMonitorUsage has beenmodified

and no longer returns monitor information for virtual threads. This function now only

provides monitor owner details when the monitor is owned by a platform thread.

The arrays returned by this function, representing threads waiting to own the

monitor and threads waiting for notification, are now also restricted to platform

threads.

This change also affects the corresponding JDWP command

ObjectReference.MonitorInfo, and themethods owningThread(), waitingThreads(),

and entryCount() defined in the com.sun.jdi.ObjectReference class.

10.3 DontYieldALot Flag

The undocumented DontYieldALot product flag, initially introduced to address a

scheduling issue specific to the Solaris operating system, has been deprecated.

This flag has been unnecessary for an extended period and hasn’t functioned as

intended for many years.

Marked as deprecated, the flag is scheduled for obsolescence and subsequent

removal in future releases.

10.4 -XX:+UseEmptySlotsInSupers

The -XX:+UseEmptySlotsInSupers option, which controls the allocation of fields

in superclasses during field layout, has been deprecated in JDK 23 and is set to

become obsolete in JDK 24. The default value remains ”true,” signifying that the

HotSpot JVM will consistently allocate fields in a superclass if aligned space is

available.

10.5. PRESERVEALLANNOTATIONS VM OPTION 55

Developers are advised to note that code relying on the specific positioning of

instance fields should consider this detail of instance field layout. It is essential to

remember that the JVM field layout format is not part of the JVM Specification and

may be subject to change.

10.5 PreserveAllAnnotations VM Option

The VM option PreserveAllAnnotations has been deprecated and will produce

a warning message when used. Introduced primarily for testing Java Annotation

code, this option, always disabled by default, is slated for obsolescence and eventual

removal in future releases.

10.6 UseNotificationThread VM Option

TheVMoption UseNotificationThread, responsible for switching debug notification

delivery from the hidden ”Service Thread” to the non-hidden ”Notification Thread”,

has been deprecated.

With this option (defaulting to true) intended to address potential issues arising

from the use of the ”Notification Thread,” the absence of reported problems has

led to the decision to make the ”Notification Thread” the sole method for sending

notifications in the future. Consequently, the UseNotificationThread option will

be obsoleted and eventually removed.

Chapter 11

Notable Issues Fixed

This chapter details notable issues addressed in Java 23, enhancing the platform’s

stability, security, and performance.

11.1 Packaging and Deployment

11.1.1 Accurate Package Listing with jpackage on Debian

Previous versions of jpackage encountered difficulties when determining the complete

set of required packages on Debian-based Linux distributions. Specifically, issues

arose when shared libraries referenced through symbolic links were involved. This

led to incomplete package lists during the creation of installation packages, ultimately

causing installations to fail due to missing shared library dependencies.

Java 23 rectifies this problem, ensuring that jpackage now accurately identifies

and includes all necessary packages, even when symbolic links are part of the

shared library paths. This enhancement improves the reliability of jpackage on

Debian-based systems.

56

11.2. CORE LIBRARIES AND APIS 57

11.2 Core Libraries and APIs

11.2.1 Enhanced HTTP Server Responsiveness

The behaviour of the built-in HTTP server within Java’s core libraries has been

adjusted to improve response times. Previously, when chunked transfer encoding

was used or when a response bodywas present, the HTTP server would immediately

send response headers. This behaviour, however, could lead to delays in certain

operating systems due to delayed acknowledgments.

In Java 23, the HTTP server now buffers the response headers and transmits

them along with the response body if one is expected. This modification is designed

to bring about performance improvements, particularly for responses with bodies

or those employing chunked transfer encoding. It’s important to note that it is now

recommended to consistently close the HTTP exchange or response body stream

to explicitly trigger the sending of response headers, especially in cases where no

response body is present.

11.2.2 DecimalFormat Pattern String Memory Usage

Addressing a potential memory exhaustion issue, Java 23 modifies the behaviour

of java.text.DecimalFormat when dealing with empty pattern strings. Prior to this

change, invoking DecimalFormat.getMaximumFractionDigits() on a DecimalFormat

instance initialised with an empty pattern string would return Integer.MAX_VALUE.

This could lead to an OutOfMemoryError when DecimalFormat.toPattern() was

subsequently called.

To mitigate this risk, Java 23 adjusts the return value of

DecimalFormat.getMaximumFractionDigits() in this specific scenario to 340. This

alteration prevents excessive memory allocation while still accommodating a wide

58 CHAPTER 11. NOTABLE ISSUES FIXED

range of practical use cases. For situations demanding a higher maximum fraction

digit count exceeding 340, developers are advised to explicitly set this value using

the DecimalFormat.setMaximumFractionDigits() method.

11.2.3 MessageFormat Pattern String Quoting

This release fixes an issue in java.text.MessageFormat concerning the accurate

representation of quoted curly braces within nested subformat patterns. Previously,

the MessageFormat.toPattern()method, responsible for generating a pattern string

equivalent to the original, might have incorrectly omitted quoting for opening or

closing curly braces intended as literal text within nested subformats.

This omission could lead to parsing errors when creating a new MessageFormat

from the generated pattern string, potentially throwing an exception or resulting in a

different interpretation of the pattern. Java 23 rectifies this behaviour, ensuring that

quoted curly braces in nested subformat patterns are correctly preserved during the

pattern string generation by MessageFormat.toPattern(). This correctionmaintains

the consistency and predictability of MessageFormat patterns.

11.2.4 Lenient Date/Time Parsing and Space Separators

Java 23 brings enhancements to the parsing of date and time strings, particularly

in addressing compatibility concerns stemming from changes introduced in JDK

20 with the adoption of CLDR version 42. The update in CLDR replaced standard

ASCII spaces (U+0020) with NarrowNo-Break Spaces (NNBSP, U+202F) in specific

locales, causing potential parsing discrepancies.

To accommodate this, Java 23 introduces a ”loose matching” behaviour for

space characters during date and time string parsing. This lenient approach treats

different space characters, including ASCII spaces and NNBSP, interchangeably.

11.3. HOTSPOT VIRTUAL MACHINE 59

It’s important to note that this ”loosematching” is active only when using the ”lenient”

parsing style, available in both java.time.format and java.text packages.

In java.time.format, developers need to explicitly enable lenient parsing using

DateTimeFormatterBuilder.parseLenient() because the default mode remains

strict. Conversely, in java.text, lenient parsing is the default; developers requiring

strict parsing need to explicitly disable leniency by setting DateFormat.setLenient(false).

This enhancement provides flexibility in handling space characters during date and

time parsing, improving compatibility and reducing potential parsing errors.

11.3 HotSpot Virtual Machine

11.3.1 Standardised Naming for Filler Array Objects

In previous releases, the HotSpot JVM used an internal class named

jdk.vm.internal.FillerArray to represent areas of unreachable memory within

the heap. This naming convention, however, posed problems for external tools like

jmap -histo that parsed heap histograms. The non-array-like name contradicted

the object’s actual behaviour, which represented a range of memory, leading to

confusion when calculating instance sizes.

Java 23 addresses this by renaming the class to [Ljdk/internal/vm/FillerElement;,

aligning it with the standard Java class naming convention for arrays. This change

makes the output of tools like jmap -histomore consistent and easier to parse for

external applications analysing heap information.

11.3.2 EnhancedG1GarbageCollector: Marking Stack Expansion

The G1 garbage collector in Java 23 benefits from an enhancement allowing for the

expansion of the marking stack during the Reference Processing phase of garbage

60 CHAPTER 11. NOTABLE ISSUES FIXED

collection. Previously, themarking stack size could only grow during the Concurrent

Mark phase. This limitation could lead to premature StackOverflowError exceptions

during Reference Processing if the stack reached its limit before fully processing

all references.

With this enhancement, G1 can now expand themarking stack during Reference

Processing, preventing these premature overflows and allowing the garbage collector

to fully complete its tasks. This improvement contributes to the robustness and

efficiency of the G1 garbage collector, especially in scenarios with a large number

of object references.

11.3.3 Improved Startup Performance with JFR

Java 23 addresses a performance regression observed in earlier versions when

using the Java Flight Recorder (JFR) with the -XX:StartFlightRecording option.

The regression, noticeable in smaller applications, was attributed to technical debt

in the JFR bytecode instrumentation, leading to increased startup times compared

to JDK 21.

This release resolves the underlying issues, bringing startup times back to levels

comparable to JDK 21. This improvement is particularly beneficial for short-lived

applications where startup time is a significant performance factor.

11.4 JVM Tool Interface (JVMTI)

11.4.1 Clarification of Contended Monitor Status

Java 23 brings important clarifications and consistency improvements to how ”contended

monitor” status is reported through the JVM Tool Interface (JVMTI), the Java Debug

Wire Protocol (JDWP), and the Java Debug Interface (JDI).

11.4. JVM TOOL INTERFACE (JVMTI) 61

Previously, inconsistencies existed in the specification and implementation of

GetCurrentContendedMonitor in JVMTI and its corresponding counterparts in JDWP

and JDI. These inconsistencies centred around whether a thread waiting in

java.lang.Object.wait() should be considered as contending for the monitor.

Java 23 aligns the behaviour across JVMTI, JDWP, and JDI, adhering more

strictly to the specification. A monitor is now considered contended only if a thread

is actively waiting to enter or re-enter amonitor (for example, waiting on a synchronized

block or method). A thread in Object.wait(), while technically associated with the

monitor, is not considered actively contending for it.

This clarification ensures consistent reporting of monitor contention status across

different debugging andmonitoring tools, providing developers with amore accurate

view of thread synchronization and potential bottlenecks.

11.4.2 Accurate Reporting of Waiting Threads

This release corrects an inaccuracy in the JVMTI function GetObjectMonitorUsage,

specifically related to the reporting of threads waiting on a monitor. Previously,

this function, designed to provide information about a monitor’s usage, incorrectly

included threads waiting in java.lang.Object.wait() within the list of threads

waiting to acquire the monitor.

Java 23 addresses this issue, ensuring that GetObjectMonitorUsage now accurately

reports only those threads that are actively waiting to enter or re-enter the monitor,

excluding threads in the Object.wait() state.

A similar clarification has been applied to the corresponding JDWP command,

ObjectReference.MonitorInfo. Although the command’s behaviour remains unchanged

(still including waiting threads from Object.wait()), the specification now explicitly

clarifies what constitutes ”waiting threads,” making it clear that this count includes

threads both actively contending for themonitor and those parked in Object.wait().

62 CHAPTER 11. NOTABLE ISSUES FIXED

This change promotes consistency between the specification and behaviour of

these diagnostic tools.

11.5 Compiler and Tools

11.5.1 Enclosing Instances and Local Classes

Java 23 enforces stricter adherence to the Java Language Specification (JLS)

regarding local classes declared within specific contexts. According to JLS 21

§15.9.2, local and anonymous classes definedwithin a static context, which includes

parameters of superclass or this-class constructor invocations, are not permitted

to have immediately enclosing istances. However, there was an inconsistency

where the compiler allowed local classes, but not anonymous classes, to reference

the enclosing instance within superclass/this-class constructor parameters, even

though such references would invariably lead to errors during instantiation.

In Java 23, the compiler correctly prohibits local classes from containing references

to the enclosing instance when declared within superclass or this-class constructor

parameters, aligning the behaviour with anonymous classes and adhering to the

JLS specification. While this scenario might not be common, the change eliminates

a source of potential confusion and ensures consistent behaviour across different

class declaration types.

11.5.2 Javadoc Member Reference Validation

The javadoc tool in this release includes a fix to enhance the validation of member

references within documentation comments. Previously, @see and {@link...}

tags permitted using a nested class to qualify the name of a member belonging

to its enclosing class. This behaviour, however, was incorrect and could lead to

11.5. COMPILER AND TOOLS 63

inaccurate or misleading documentation links.

Java 23 corrects this behaviour, ensuring that @see and {@link...} tags now

require the correct class name when referencing members. Using a nested class

to qualify a member of its enclosing class will now result in a warning or error

during javadoc processing. This change improves the accuracy and reliability of

javadoc-generated documentation.

Index

COMPAT, 53

Concurrency, 23

Console, 20

DontYieldALot, 58

Executor Service, 24

G1, 64

JEP 467, 8, 41

JEP 474, 47

JEP 476, 7, 11, 19, 21, 22

JEP 477, 7, 19, 22

JEP 480, 7, 23

JEP 481, 8, 29

JEP 482, 8, 35

JMX, 53, 54

LTS, 7

Markdown, 41

NetworkManager, 45

Scope values, 30

StructuredTaskScope, 25

Thread-local variables, 30

ZFC, 8

ZGC, 48

64

	What's New in Java 23
	Simplified Module Imports
	The Need for Simplified Imports
	Understanding Java 9 Modules
	What is a Module?
	Why Modules?
	Addressing the Challenges
	The Unfulfilled Promise of JPMS

	Simplified Module Imports to the Rescue
	Understanding the Mechanics
	Impact on Different Developer Groups
	Conclusion

	Implicit Classes and Simplified Imports
	Implicitly Declared Classes: A Gentle Introduction
	Seamless Console Interaction: The java.io.IO Class
	Streamlining Imports
	A Synergistic Relationship for Simplicity
	Conclusion: A More Approachable Java

	Structured Concurrency in Java
	The Challenges of Unstructured Concurrency
	Introducing Structured Concurrency
	StructuredTaskScope: The Core of Structured Concurrency
	Benefits of Structured Concurrency
	Conclusion

	Sharing Data Smartly in Java
	The Need for Efficient Data Sharing
	Limitations of Thread-Local Variables
	Scoped Values: A More Efficient Solution
	Practical Example
	Conclusion

	Flexible Constructor Bodies
	The Motivation for Change
	Introducing Flexible Constructor Bodies
	Benefits of Flexibility
	Rules and Restrictions
	Impact on Records and Enums
	Examples of Flexible Constructor Bodies
	Validating Superclass Constructor Arguments
	Preparing Superclass Constructor Arguments
	Initializing Subclass Fields to Avoid Issues with Overridden Methods

	Conclusion

	Markdown Documentation Comments
	The Need for Modernization
	Markdown: A More Human-Friendly Approach
	Best of Both Worlds: Markdown and JavaDoc
	Impact and Future Directions
	Examples of Markdown Documentation Comments

	ZGC: Generational Mode by Default
	Understanding ZGC and Generational Garbage Collection
	Shifting the Default
	Benefits of Generational ZGC
	Illustrating the Impact
	Considerations and Potential Challenges
	Conclusion

	Removed Features and Options
	Aligned Access Modes for MethodHandles
	Thread Management Methods
	Module jdk.random
	Legacy Locale Data
	JMX Subject Delegation
	JMX Management Applet (m-let)
	RegisterFinalizersAtInit Option
	 -Xnoagent Option for the java Launcher
	Obsolete Desktop Integration from Linux Installers

	Deprecated Features and Options
	java.beans.beancontext Package
	JVM TI GetObjectMonitorUsage Function
	DontYieldALot Flag
	-XX:+UseEmptySlotsInSupers
	PreserveAllAnnotations VM Option
	UseNotificationThread VM Option

	Notable Issues Fixed
	Packaging and Deployment
	Accurate Package Listing with jpackage on Debian

	Core Libraries and APIs
	Enhanced HTTP Server Responsiveness
	DecimalFormat Pattern String Memory Usage
	MessageFormat Pattern String Quoting
	Lenient Date/Time Parsing and Space Separators

	HotSpot Virtual Machine
	Standardised Naming for Filler Array Objects
	Enhanced G1 Garbage Collector: Marking Stack Expansion
	Improved Startup Performance with JFR

	JVM Tool Interface (JVMTI)
	Clarification of Contended Monitor Status
	Accurate Reporting of Waiting Threads

	Compiler and Tools
	Enclosing Instances and Local Classes
	Javadoc Member Reference Validation

