
126 November/December 2012 � PharmaVOICE

E-Solutions

Reshaping the Iron Triangle: 
BETTER SOFTWARE PROCESSES   

FOR TOMORROW’S        
LIFE- SCIENCES TECHNOLOGY
ccording to some estimates, tech-
nology is advancing at a pace of 5
million new ideas/inventions per
second. As new platforms and
terms such as SaaS, Big Data, and

cloud abound, there is exponentially increas-
ing pressure for software producers and con-
sumers to keep up with the latest use of soft-
ware applications, mobile apps, or toolsets for
mining social interaction. Staying technologi-
cally relevant in an industry that moves so fast
is often a challenge, especially in the life-sci-
ences industry, an industry that thrives on ad-
vancement but often struggles to keep pace
with available and burgeoning technology.
Software is pervasive. It drives not only

most of what we do in the life sciences but also
much of what we do in our private lives. And
although the latest apps or networked applica-
tions are all very exciting and cool, at the end
of the day, it is all about software, and the
process by which we develop, test, and deploy
software is still the most important — and un-
derappreciated — factor in successful on-time,
under budget, and quality delivery.

Is process really that important?

In the past 50 years, software development
methodology and toolsets have experienced a
paramount shift. We’ve gone from mirroring
construction efforts in highly structured phys-
ical environments — where designs are com-
mitted to before construction begins — to
multiple, malleable methodologies that are
better suited to handle evolving user require-
ments and provide the flexibility of iterative
releases. Unfortunately, while other industries
have embraced concepts such as rapid applica-
tion development, the life-sciences industry
has been sluggish in its adoption of faster-to-
market processes for software development.

To decrease development time and costs
while also increasing quality, it is imperative
that organizations implement cutting-edge
software development processes and toolsets. 
Many companies that offer technology serv-

ices face challenges on myriad levels —chal-
lenges that most often stem from a process
standpoint. For example, juggling multiple,
competing services efforts and needing to de-
velop turnkey productized solutions require
radically different management processes. In
this environment, software development ef-
forts tend to become tactical in their focus and
reactionary in execution, rushing code changes
into production where time is the primary mo-
tivator — and thereby placing quality at risk. 
In project and software development man-

agement, there is a commonly known model
called the Iron Triangle, which dictates that any
effort is grounded by three opposing factors of
cost, scope, and schedule — all of which drive
the overall quality of the product. The concept
behind the Iron Triangle model suggests that
although a manager can increase attention to
one factor, the other two will ultimately be
detrimentally impacted. The problem lies in
the fact that each one of these factors is impor-
tant to different stakeholders within an organi-
zation or customer base —customers care about
the scope, project managers care about the
schedule, and financial managers care about the
cost. The battle for top billing between these
three factors is constant, but it must be recog-
nized and dealt with, otherwise project failure is
imminent. Identifying and implementing effec-
tive processes is the solution to managing the
challenge of the Iron Triangle.
Enhanced processes allow an organization

to scale back and grant less weight to the
schedule and scope factors of the Iron Triangle,
allowing more direct focus on controlling the
cost of a software development effort (cost can

CHRIS MIDDLETON, Vice President, 
Technology, MMG

Contributed by

be measured by a variety of factors including
resource costs and budget). An organization’s
ability to do this is dictated by which software
development process methodology it follows.
A software development process methodol-

ogy is nothing more than a framework that
dictates the process of constructing and deliv-
ering software. The process will typically in-
clude phases for design, construction, testing,
and deployment. Many years ago, the most ac-
cepted waterfall methodologies dictated a fin-
ish-to-start order of events. For example, an or-
ganization would define software
requirements to completion upfront, then con-
struct the software, and finally deliver the soft-
ware. Software development often takes a sig-
nificant amount of time, and it was often only
during the later phases of the waterfall
methodology that stakeholders would realize
that the laid out requirements would not
work, were unneeded, or were implemented

A



127PharmaVOICE � November/December 2012

MMG is a full-service global health commu-
nications group that specializes in patient
recruitment and retention. 
{  For more information, visit mmgct.com.

E-Solutions

incorrectly — but it was too late to change
them. In more recent years, organizations have
developed and adopted newer development
methodologies, whereby the focus is on faster
construction and immediate stakeholder feed-
back and less on “big design up front” or
BDUF. 

Creating Agility

One of the more recent methodologies that
many software organizations have embraced is
Agile/Scrum — a process framework that is
characterized by quicker delivery of smaller
features. On a regular basis, an Agile/Scrum
team determines what software will be built
during a cycle of development known as a
sprint, which lasts anywhere from one week to
one month. During this timeboxed period, all
planning development, testing, and deploy-
ment of the software takes place. At the end of
the sprint, a review is held, and planning be-
gins for the next period.
We have found great success in developing

and executing a custom Agile software devel-
opment process and coupling it with toolsets
for continuous integration (CI). Combined,
the two processes can drop the time to market
for software deliverables considerably and pro-
vided a strong mechanism for managing stake-
holder expectations. At the same time, in-
creasing the level of code quality and
procedural confidence.
The custom Agile/Scrum process differs

from traditional Agile/Scrum models, which
more commonly focus on a single product
through its development lifetime, because of
its applicability across mutliple product- and
services-based engagements per month, all
running concurrently. With a staff of fewer
than 20 people dedicated to mobile apps, Web
applications, Web services, and database serv-
ices, the custom Scrum process supports
roughly 300 work items, including new appli-
cations, features, or change requests, during a
typical three-week sprint cycle. During this
catch-all sprint period, a full release of an iOS
mobile app may be tracked alongside Web-
based API enhancements.
We shifted the Scrum product from a sin-

gle focus to encompass every technology asset
produced by the company, which is likely an
offense to most Agile purists. However, the
process has repeatedly proven its value by
timeboxing a massive workload that is not
only a mix of product and services, but also one
that spans across industry segments. As a re-
sult, untenable tactical focus has been elimi-
nated and the team has been elevated to more
valuable strategic concerns such as product
planning and innovation initiatives. In addi-
tion, through Agile/Scrum, the scope is better

defined, monitored, and controlled through
multiple, quick-to-market releases, which de-
creases the weight of the scope factor of the
Iron Triangle.

How to Meet the Challenge of
Delivering Validated Systems in
an Agile Environment?

CFR 21 Part 11 validation is a very well in-
tentioned assurance mechanism to ensure that
healthcare software is created and delivered as
intended. However, the validation development
lifecycle was designed nearly 15 years ago, and
adheres more to an older, less reactive processes
than is advocated by Agile. Organizations have
had modest success creating many of the arti-
facts necessary for a validation through automa-
tion, and when coordinated properly with an
Agile approach, faster time to market can be
achieved. Modularized systems,
with proper planning and au-
tomation under CI can also aid
in developing validated systems
through multiple independent
paths, reducing some of the
lengthy phased finish-to-start
process interpreted under the
validated software development
life cycle.
A major time component to

software development is fixing
bugs and resolving conflicting
code contributed by different
developers. The CI process is a
high-quality practice that reduces delivery
time and increases software reliability.
Through the use of CI, it is possible to mini-
mize the time spent on tasks, such as build
construction, testing, and deployment, and
improve a technology organization’s efficiency;
this directly drives the ability to meet shorter
timelines, letting an organization scale back
the schedule component of the Iron Triangle. 

What are the Real Benefits to CI?

CI enables the delivery of more reliable
software, on a regular basis, in less time. A CI
environment delivers considerable time sav-
ings, as once manual processes become auto-
mated. Automated testing reduces the num-
ber of software bugs and, downstream, lowers
the amount of manual quality assurance test-
ing that we need to apply. Also, by establish-
ing automated deployment, software products
are more quickly available for review or
demonstration. 
CI forces frequently integrating changes

into an existing software base from multiple
software developers and couples that with soft-

ware build automation and automated testing.
CI is currently a far cry from 15 years ago,
when the ability for a team of developers to re-
liably share and update the same code base was
sometimes a novel practice. Now, software can
be edited by multiple people, changes can be
integrated, tests against the changes can be au-
tomatically executed, and a build can be auto-
matically deployed for review by a quality as-
surance team.
Unfortunately, many organizations inside

and outside the life-sciences industry, fail to im-
plement automated software testing or deploy-
ment automation and, as a result, are less likely
to meet delivery timelines and run an increased
risk of delivering broken software. When soft-
ware is developed by a group, there is always a
risk of not getting all of the individual contri-
butions to work correctly and collaboratively as
a whole. Traditionally, software contributions
would be integrated (built) toward the end of an

internal or external deployment
release date — often resulting in
a plethora of late nights and ag-
gravation. CI forces code inte-
gration more often, spreading
the aggravation of the build
process across the entire devel-
opment process, reducing over-
all risk of non-functioning inte-
grated code.
According to ZDNet,

global failures in information
technology (of which software
is a portion) is estimated at
around $3 trillion in 2012 —

out of an estimated $5.6 trillion total spent in
2011. Setting up a strong environment for
controlling Agile development and CI takes
considerable effort investment —something
many organizations are not willing to under-
take. However, when the benefits of reducing
the scale behind the Iron Triangle’s factors of
schedule and scope, establishing an efficient
process certainly becomes a worthwhile invest-
ment consideration. 
Software development is a complicated

practice. It requires extensive creativity but at
the same time is grounded in hard math and
engineering. An Agile development process,
when mixed with CI, drives reduced software
development costs and increased quality, while
increasing strategic capacity — giving every-
one more time to keep pace with the new tech-
nologies and their real impact on software in
life sciences. PV

TO DECREASE 

DEVELOPMENT TIME 

AND COSTS WHILE

 INCREASING QUALITY, 

ORGANIZATIONS 

NEED TO IMPLEMENT 

CUTTING-EDGE

SOFTWARE AND

TOOLSETS. 




