To appear in Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11)

Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky®, and David G. Andersen?
*Princeton University, TIntel Labs, *Carnegie Mellon University

ABSTRACT

Geo-replicated, distributed data stores that support complex online
applications, such as social networks, must provide an “always-
on” experience where operations always complete with low latency.
Today’s systems often sacrifice strong consistency to achieve these
goals, exposing inconsistencies to their clients and necessitating
complex application logic. In this paper, we identify and define
a consistency model—causal consistency with convergent conflict
handling, or causal+—that is the strongest achieved under these
constraints.

We present the design and implementation of COPS, a key-value
store that delivers this consistency model across the wide-area. A
key contribution of COPS is its scalability, which can enforce causal
dependencies between keys stored across an entire cluster, rather
than a single server like previous systems. The central approach in
COPS is tracking and explicitly checking whether causal dependen-
cies between keys are satisfied in the local cluster before exposing
writes. Further, in COPS-GT, we introduce get transactions in or-
der to obtain a consistent view of multiple keys without locking or
blocking. Our evaluation shows that COPS completes operations
in less than a millisecond, provides throughput similar to previous
systems when using one server per cluster, and scales well as we
increase the number of servers in each cluster. It also shows that
COPS-GT provides similar latency, throughput, and scaling to COPS
for common workloads.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Distributed Systems

General Terms

Design, Experimentation, Performance

Keywords

Key-value storage, causal+ consistency, scalable wide-area replica-
tion, ALPS systems, read transactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP 11, October 23-26, 2011, Cascais, Portugal.

Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . . $10.00.

1. INTRODUCTION

Distributed data stores are a fundamental building block of modern
Internet services. Ideally, these data stores would be strongly con-
sistent, always available for reads and writes, and able to continue
operating during network partitions. The CAP Theorem, unfor-
tunately, proves it impossible to create a system that achieves all
three [13, 23]. Instead, modern web services have chosen over-
whelmingly to embrace availability and partition tolerance at the
cost of strong consistency [16, 20, 30]. This is perhaps not surpris-
ing, given that this choice also enables these systems to provide low
latency for client operations and high scalability. Further, many of
the earlier high-scale Internet services, typically focusing on web
search, saw little reason for stronger consistency, although this posi-
tion is changing with the rise of interactive services such as social
networking applications [46]. We refer to systems with these four
properties—Availability, low Latency, Partition-tolerance, and high
Scalability—as ALPS systems.

Given that ALPS systems must sacrifice strong consistency (i.e.,
linearizability), we seek the strongest consistency model that is
achievable under these constraints. Stronger consistency is desirable
because it makes systems easier for a programmer to reason about. In
this paper, we consider causal consistency with convergent conflict
handling, which we refer to as causal+ consistency. Many previous
systems believed to implement the weaker causal consistency [10,
41] actually implement the more useful causal+ consistency, though
none do so in a scalable manner.

The causal component of causal+ consistency ensures that the
data store respects the causal dependencies between operations [31].
Consider a scenario where a user uploads a picture to a web site,
the picture is saved, and then a reference to it is added to that
user’s album. The reference “depends on” the picture being saved.
Under causal+ consistency, these dependencies are always satisfied.
Programmers never have to deal with the situation where they can
get the reference to the picture but not the picture itself, unlike in
systems with weaker guarantees, such as eventual consistency.

The convergent conflict handling component of causal+ consis-
tency ensures that replicas never permanently diverge and that con-
flicting updates to the same key are dealt with identically at all
sites. When combined with causal consistency, this property en-
sures that clients see only progressively newer versions of keys. In
comparison, eventually consistent systems may expose versions out
of order. By combining causal consistency and convergent conflict
handling, causal+ consistency ensures clients see a causally-correct,
conflict-free, and always-progressing data store.

Our COPS system (Clusters of Order-Preserving Servers) pro-
vides causal+ consistency and is designed to support complex online
applications that are hosted from a small number of large-scale data-
centers, each of which is composed of front-end servers (clients of

COPS) and back-end key-value data stores. COPS executes all put
and get operations in the local datacenter in a linearizable fashion,
and it then replicates data across datacenters in a causal+ consistent
order in the background.

We detail two versions of our COPS system. The regular version,
COPS, provides scalable causal+ consistency between individual
items in the data store, even if their causal dependencies are spread
across many different machines in the local datacenter. These con-
sistency properties come at low cost: The performance and overhead
of COPS is similar to prior systems, such as those based on log
exchange [10, 41], even while providing much greater scalability.

We also detail an extended version of the system, COPS-GT,
which also provides get transactions that give clients a consistent
view of multiple keys. Get transactions are needed to obtain a
consistent view of multiple keys, even in a fully-linearizable system.
Our get transactions require no locks, are non-blocking, and take at
most two parallel rounds of intra-datacenter requests. To the best
of our knowledge, COPS-GT is the first ALPS system to achieve
non-blocking scalable get transactions. These transactions do come
at some cost: compared to the regular version of COPS, COPS-GT
is less efficient for certain workloads (e.g., write-heavy) and is less
robust to long network partitions and datacenter failures.

The scalability requirements for ALPS systems creates the largest
distinction between COPS and prior causal+ consistent systems.
Previous systems required that all data fit on a single machine [2,
12, 41] or that all data that potentially could be accessed together fit
on a single machine [10]. In comparison, data stored in COPS can
be spread across an arbitrary-sized datacenter, and dependencies (or
get transactions) can stretch across many servers in the datacenter.
To the best of our knowledge, COPS is the first scalable system to
implement causal+ (and thus causal) consistency.

The contributions in this paper include:

o We explicitly identify four important properties of distributed
data stores and use them to define ALPS systems.

e We name and formally define causal+ consistency.

o We present the design and implementation of COPS, a scalable
system that efficiently realizes the causal+ consistency model.

e We present a non-blocking, lock-free get transaction algorithm
in COPS-GT that provides clients with a consistent view of
multiple keys in at most two rounds of local operations.

o We show through evaluation that COPS has low latency, high
throughput, and scales well for all tested workloads; and that
COPS-GT has similar properties for common workloads.

2. ALPS SYSTEMS AND TRADE-OFFS

We are interested in infrastructure that can support many of to-
day’s largest Internet services. In contrast with classical distributed
storage systems that focused on local-area operation in the small,
these services are typically characterized by wide-area deployments
across a few to tens of datacenters, as illustrated in Figure 1. Each
datacenter includes a set of application-level clients, as well as a
back-end data store to which these clients read and write. For many
applications—and the setting considered in the paper—data written
in one datacenter is replicated to others.

Often, these clients are actually webservers that run code on behalf
of remote browsers. Although this paper considers consistency from
the perspective of the application client (i.e., the webserver), if the
browser accesses a service through a single datacenter, as we expect,
it will enjoy similar consistency guarantees.

Datacenter .
= — Wide-Area - \
ﬁ(fu\ < Replication Laser
— i
m@ .
Datacenter /
E“ O~
< %
Clients Data Store Cluster

ﬂv\/

= D

"l

Figure 1: The general architecture of modern web services.
Multiple geographically distributed datacenters each have ap-
plication clients that read and write state from a data store that
is distributed across all of the datacenters.

Such a distributed storage system has multiple, sometimes com-
peting, goals: availability, low latency, and partition tolerance to
provide an “always on” user experience [16]; scalability to adapt
to increasing load and storage demands; and a sufficiently strong
consistency model to simplify programming and provide users with
the system behavior that they expect. In slightly more depth, the
desirable properties include:

1. Availability. All operations issued to the data store complete
successfully. No operation can block indefinitely or return an error
signifying that data is unavailable.

2. Low Latency. Client operations complete “quickly.” Commer-
cial service-level objectives suggest average performance of a few
milliseconds and worse-case performance (i.e., 99.9th percentile) of
10s or 100s of milliseconds [16].

3. Partition Tolerance. The data store continues to operate under
network partitions, e.g., one separating datacenters in Asia from the
United States.

4. High Scalability. The data store scales out linearly. Adding N
resources to the system increases aggregate throughput and storage
capacity by O(N).

5. Stronger Consistency. An ideal data store would provide
linearizability—sometimes informally called strong consistency—
which dictates that operations appear to take effect across the en-
tire system at a single instance in time between the invocation and
completion of the operation [26]. In a data store that provides lin-
earizability, as soon as a client completes a write operation to an
object in one datacenter, read operations to the same object in all
other datacenters will reflect its newly written state. Linearizability
simplifies programming—the distributed system provides a single,
consistent image—and users experience the storage behavior they
expect. Weaker, eventual consistency models, common in many
large distributed systems, are less intuitive: Not only might subse-
quent reads not reflect the latest value, reads across multiple objects
might reflect an incoherent mix of old and new values.

The CAP Theorem proves that a shared-data system that has
availability and partition tolerance cannot achieve linearizability [13,

Client 1 put(x,1)—> put(y,2) — put(x,3)

Client 2 get(y)=2 — put(x,4)
Client 3 get(x)=4 — put(z,5)
TiME === e e e e e e >

Figure 2: Graph showing the causal relationship between oper-
ations at a replica. An edge from a to b indicates that a ~ b, or
b depends on a.

23]. Low latency—defined as latency less than the maximum wide-
area delay between replicas—has also been proven incompatible
with linearizability [34] and sequential consistency [8]. To balance
between the requirements of ALPS systems and programmability
we define an intermediate consistency model in the next section.

3. CAUSAL+ CONSISTENCY

To define causal consistency with convergent conflict handling
(causal+ consistency), we first describe the abstract model over
which it operates. We restrict our consideration to a key-value data
store, with two basic operations: put (key,val) and get(key)=val.
These are equivalent to write and read operations in a shared-memory
system. Values are stored and retrieved from logical replicas, each
of which hosts the entire key space. In our COPS system, a single
logical replica corresponds to an entire local cluster of nodes.

An important concept in our model is the notion of potential
causality [2, 31] between operations. Three rules define potential
causality, denoted ~ :

1. Execution Thread. If a and b are two operations in a single
thread of execution, then a ~» b if operation a happens before
operation b.

2. Gets From. If a is a put operation and b is a get operation
that returns the value written by a, then a ~» b.

3. Transitivity. For operations a, b, and c, if a ~ b and b ~ c,
then a ~ c.

These rules establish potential causality between operations within
the same execution thread and between operations whose execution
threads interacted through the data store. Our model, like many,
does not allow threads to communicate directly, requiring instead
that all communication occur through the data store.

The example execution in Figure 2 demonstrates all three rules.
The execution thread rule gives get(y)=2 ~» put(x,4); the gets
from rule gives put(y,2) ~ get(y)=2; and the transitivity rule
gives put(y,2) ~ put(x,4). Even though some operations follow
put(x,3) in real time, no other operations depend on it, as none read
the value it wrote nor follow it in the same thread of execution.

3.1 Definition

We define causal+ consistency as a combination of two properties:
causal consistency and convergent conflict handling. We present
intuitive definitions here and the formal definitions in Appendix A.

Causal consistency requires that values returned from get op-
erations at a replica are consistent with the order defined by ~»
(causality) [2]. In other words, it must appear the operation that
writes a value occurs after all operations that causally precede it.

For example, in Figure 2, it must appear put (y,2) happened before
put(x,4), which in turn happened before put(z,5). If client 2 saw
get(x)=4 and then get(x)=1, causal consistency would be violated.

Causal consistency does not order concurrent operations. If a > b
and b % a, then a and b are concurrent. Normally, this allows
increased efficiency in an implementation: Two unrelated put op-
erations can be replicated in any order, avoiding the need for a
serialization point between them. If, however, a and b are both puts
to the same key, then they are in conflict.

Conflicts are undesirable for two reasons. First, because they are
unordered by causal consistency, conflicts allow replicas to diverge
forever [2]. For instance, if a is put(x,1) and b is put(x,2), then
causal consistency allows one replica to forever return 1 for x and
another replica to forever return 2 for x. Second, conflicts may
represent an exceptional condition that requires special handling.
For example, in a shopping cart application, if two people logged in
to the same account concurrently add items to their cart, the desired
result is to end up with both items in the cart.

Convergent conflict handling requires that all conflicting puts be
handled in the same manner at all replicas, using a handler function
h. This handler function 4 must be associative and commutative, so
that replicas can handle conflicting writes in the order they receive
them and that the results of these handlings will converge (e.g., one
replica’s h(a, h(b, ¢)) and another’s h(c, h(b, a)) agree).

One common way to handle conflicting writes in a convergent
fashion is the last-writer-wins rule (also called Thomas’s write
rule [50]), which declares one of the conflicting writes as having
occurred later and has it overwrite the “earlier” write. Another com-
mon way to handle conflicting writes is to mark them as conflicting
and require their resolution by some other means, e.g., through di-
rect user intervention as in Coda [28], or through a programmed
procedure as in Bayou [41] and Dynamo [16].

All potential forms of convergent conflict handling avoid the
first issue—conflicting updates may continually diverge—by ensur-
ing that replicas reach the same result after exchanging operations.
On the other hand, the second issue with conflicts—applications
may want special handling of conflicts—is only avoided by the
use of more explicit conflict resolution procedures. These explicit
procedures provide greater flexibility for applications, but require
additional programmer complexity and/or performance overhead.
Although COPS can be configured to detect conflicting updates ex-
plicitly and apply some application-defined resolution, the default
version of COPS uses the last-writer-wins rule.

3.2 Causal+ vs. Other Consistency Models

The distributed systems literature defines several popular consis-
tency models. In decreasing strength, they include: linearizability
(or strong consistency) [26], which maintains a global, real-time
ordering; sequential consistency [32], which ensures at least a global
ordering; causal consistency [2], which ensures partial orderings be-
tween dependent operations; FIFO (PRAM) consistency [34], which
only preserves the partial ordering of an execution thread, not be-
tween threads; per-key sequential consistency [15], which ensures
that, for each individual key, all operations have a global order;
and eventual consistency, a “catch-all” term used today suggesting
eventual convergence to some type of agreement.

The causal+ consistency we introduce falls between sequential
and causal consistency, as shown in Figure 3. It is weaker than
sequential consistency, but sequential consistency is provably not
achievable in an ALPS system. It is stronger than causal consistency

> Causal > FIFO

Linearizability > Sequential > Causal+ > Per-Key Sequential > Eventual

Figure 3: A spectrum of consistency models, with stronger mod-
els on the left. Bolded models are provably incompatible with
ALPS systems.

and per-key sequential consistency, however, and it is achievable
for ALPS systems. Mahajan et al. [35] have concurrently defined a
similar strengthening of causal consistency; see Section 7 for details.

To illustrate the utility of the causal+ model, consider two exam-
ples. First, let Alice try to share a photo with Bob. Alice uploads
the photo and then adds the photo to her album. Bob then checks
Alice’s album expecting to see her photo. Under causal and thus
causal+ consistency, if the album has a reference to the photo, then
Bob must be able to view the photo. Under per-key sequential and
eventual consistency, it is possible for the album to have a reference
to a photo that has not been written yet.

Second, consider an example where Carol and Dan both update
the starting time for an event. The time was originally set for 9pm,
Carol changed it to 8pm, and Dan concurrently changed it to 10pm.
Regular causal consistency would allow two different replicas to for-
ever return different times, even after receiving both put operations.
Causal+ consistency requires that replicas handle this conflict in a
convergent manner. If a last-writer-wins policy is used, then either
Dan’s 10pm or Carol’s 8pm would win. If a more explicit conflict
resolution policy is used, the key could be marked as in conflict and
future gets on it could return both 8pm and 10pm with instructions
to resolve the conflict.

If the data store was sequentially consistent or linearizable, it
would still be possible for there to be two simultaneous updates to a
key. In these stronger models, however, it is possible to implement
mutual exclusion algorithms—such as the one suggested by Lamport
in the original sequential consistency paper [32]—that can be used
to avoid creating a conflict altogether.

3.3 Causal+ in COPS

We use two abstractions in the COPS system, versions and depen-
dencies, to help us reason about causal+ consistency. We refer to the
different values a key has as the versions of a key, which we denote
keyyersion- In COPS, versions are assigned in a manner that ensures
that if x; ~» y; then i < j. Once a replica in COPS returns version
i of a key, x;, causal+ consistency ensures it will then only return
that version or a causally later version (note that the handling of a
conflict is causally later than the conflicting puts it resolves).! Thus,
each replica in COPS always returns non-decreasing versions of a
key. We refer to this as causal+ consistency’s progressing property.

Causal consistency dictates that all operations that causally pre-
cede a given operations must appear to take effect before it. In other
words, if x; ~» y;, then x; must be written before y;. We call these
preceding values dependencies. More formally, we say y; depends
on x; if and only if put(x;) ~ put(y;). These dependencies are in
essence the reverse of the causal ordering of writes. COPS provides
causal+ consistency during replication by writing a version only
after writing all of its dependencies.

!To see this, consider by contradiction the following scenario: assume
a replica first returns x; and then xi, where i # k and x; #»x;. Causal
consistency ensures that if xi is returned after x;, then x; 7>x;, and so x;
and x; conflict. But, if x; and x; conflict, then convergent conflict handling
ensures that as soon as both are present at a replica, their handling A(x;,xy),
which is causally after both, will be returned instead of either x; or x, which
contradicts our assumption.

3.4 Scalable Causality

To our knowledge, this paper is the first to name and formally define
causal+ consistency. Interestingly, several previous systems [10, 41]
believed to achieve causal consistency in fact achieved the stronger
guarantees of causal+ consistency.

These systems were not designed to and do not provide scalable
causal (or causal+) consistency, however, as they all use a form of
log serialization and exchange. All operations at a logical replica
are written to a single log in serialized order, commonly marked
with a version vector [40]. Different replicas then exchange these
logs, using version vectors to establish potential causality and detect
concurrency between operations at different replicas.

Log-exchange-based serialization inhibits replica scalability, as
it relies on a single serialization point in each replica to establish
ordering. Thus, either causal dependencies between keys are limited
to the set of keys that can be stored on one node [10, 15, 30, 41], or
a single node (or replicated state machine) must provide a commit
ordering and log for all operations across a cluster.

As we show below, COPS achieves scalability by taking a differ-
ent approach. Nodes in each datacenter are responsible for different
partitions of the keyspace, but the system can track and enforce
dependencies between keys stored on different nodes. COPS explic-
itly encodes dependencies in metadata associated with each key’s
version. When keys are replicated remotely, the receiving datacen-
ter performs dependency checks before committing the incoming
version.

4. SYSTEM DESIGN OF COPS

COPS is a distributed storage system that realizes causal+ consis-
tency and possesses the desired ALPS properties. There are two
distinct versions of the system. The first, which we refer to simply as
COPS, provides a data store that is causal+ consistent. The second,
called COPS-GT, provides a superset of this functionality by also in-
troducing support for get transactions. With get transactions, clients
request a set of keys and the data store replies with a consistent snap-
shot of corresponding values. Because of the additional metadata
needed to enforce the consistency properties of get transactions, a
given deployment must run exclusively as COPS or COPS-GT.

4.1 Overview of COPS

COPS is a key-value storage system designed to run across a small
number of datacenters, as illustrated in Figure 4. Each datacenter
has a local COPS cluster with a complete replica of the stored data.?
A client of COPS is an application that uses the COPS client library
to call directly into the COPS key-value store. Clients communicate
only with their local COPS cluster running in the same datacenter.
Each local COPS cluster is set up as a linearizable (strongly
consistent) key-value store [5, 48]. Linearizable systems can be im-
plemented scalably by partitioning the keyspace into N linearizable
partitions (each of which can reside on a single node or a single
chain of nodes) and having clients access each partition indepen-
dently. The composability of linearizability [26] ensures that the
resulting system as a whole remains linearizable. Linearizability
is acceptable locally because we expect very low latency and no

2The assumption of full replication simplifies our presentation, though
one could imagine clusters that replicate only part of the total data store and
sacrifice low latency for the rest (according to configuration rules).

N ep cnean_ (i)
\] \-—/\v/v/

Data Store Node v

Client Library

Repl Queue
put_after

Clients Keyl = [<1,V,D>,<2,V,D>]
@ €——> | | Algorithms | | €——m—v-> Key2 =[<2,V,D>]
T Key3 = [<1,V,D>,<3,V,D>]
put [put_after =
1 .
3! Client 1
@ get OR et _by vers i
. get_trans Context || 9=_BY_ =__->

A - A N L
_______________ i Wide-Area o Ta o
. . @ W
Repication
|

Figure 4: The COPS architecture. A client library exposes a put/get interface to its clients and ensures operations are properly labeled
with causal dependencies. A key-value store replicates data between clusters, ensures writes are committed in their local cluster only
after their dependencies have been satisfied, and in COPS-GT, stores multiple versions of each key along with dependency metadata.

partitions within a cluster—especially with the trend towards redun-
dant paths in modern datacenter networks [3, 24]—unlike in the
wide-area. On the other hand, replication berween COPS clusters
happens asynchronously to ensure low latency for client operations
and availability in the face of external partitions.

System Components. COPS is composed of two main software
components:

o Key-value store. The basic building block in COPS is a standard
key-value store that provides linearizable operations on keys.
COPS extends the standard key-value store in two ways, and
COPS-GT adds a third extension.

1. Each key-value pair has associated metadata. In COPS,
this metadata is a version number. In COPS-GT, it is both
a version number and a list of dependencies (other keys
and their respective versions).

2. The key-value store exports three additional operations
as part of its key-value interface: get_by_version,
put_after, and dep_check, each described below.
These operations enable the COPS client library and an
asynchronous replication process that supports causal+
consistency and get transactions.

3. For COPS-GT, the system keeps around old versions of
key-value pairs, not just the most recent put, to ensure
that it can provide get transactions. Maintaining old ver-
sions is discussed further in Section 4.3.

o Client library. The client library exports two main operations
to applications: reads via get (in COPS) or get_trans (in
COPS-GT), and writes via put.? The client library also main-
tains state about a client’s current dependencies through a con-
text parameter in the client library APL

Goals. The COPS design strives to provide causal+ consistency
with resource and performance overhead similar to existing eventu-
ally consistent systems. COPS and COPS-GT must therefore:

e Minimize overhead of consistency-preserving replication.
COPS must ensure that values are replicated between clus-
ters in a causal+ consistent manner. A naive implementation,
however, would require checks on all of a value’s dependencies.
We present a mechanism that requires only a small number
of such checks by leveraging the graph structure inherent to
causal dependencies.

3This paper uses different fixed-width fonts for client-facing API calls
(e.g., get) and data store API calls (e.g., get_by_version).

e (COPS-GT) Minimize space requirements. COPS-GT stores
(potentially) multiple versions of each key, along with their
associated dependency metadata. COPS-GT uses aggressive
garbage collection to prune old state (see Section 5.1).

o (COPS-GT) Ensure fast get_t rans operations. The get trans-
actions in COPS-GT ensure that the set of returned values are
causal+ consistent (all dependencies are satisfied). A naive
algorithm could block and/or take an unbounded number of get
rounds to complete. Both situations are incompatible with the
availability and low latency goals of ALPS systems; we present
an algorithm for get_trans that completes in at most two
rounds of local get_by_version operations.

4.2 The COPS Key-Value Store

Unlike traditional (key, val)-tuple stores, COPS must track the
versions of written values, as well as their dependencies in the case
of COPS-GT. In COPS, the system stores the most recent version
number and value for each key. In COPS-GT, the system maps
each key to a list of version entries, each consisting of (version,
value, deps). The deps field is a list of the version’s zero or more
dependencies; each dependency is a (key, version) pair.

Each COPS cluster maintains its own copy of the key-value store.
For scalability, our implementation partitions the keyspace across
a cluster’s nodes using consistent hashing [27], through other tech-
niques (e.g., directory-based approaches [6, 21]) are also possible.
For fault tolerance, each key is replicated across a small number
of nodes using chain replication [5, 48, 51]. Gets and puts are lin-
earizable across the nodes in the cluster. Operations return to the
client library as soon as they execute in the local cluster; operations
between clusters occur asynchronously.

Every key stored in COPS has one primary node in each cluster.
We term the set of primary nodes for a key across all clusters as
the equivalent nodes for that key. In practice, COPS’s consistent
hashing assigns each node responsibility for a few different key
ranges. Key ranges may have different sizes and node mappings in
different datacenters, but the total number of equivalent nodes with
which a given node needs to communicate is proportional to the
number of datacenters (i.e., communication is not all-to-all between
nodes in different datacenters).

After a write completes locally, the primary node places it in a
replication queue, from which it is sent asynchronously to remote
equivalent nodes. Those nodes, in turn, wait until the value’s depen-
dencies are satisfied in their local cluster before locally committing

Alice’s Photo Upload

ctx_id = createContext () // Alice logs in
put (Photo, "Portuguese Coast", ctx_id)

put (Album, "add &Photo", ctx_id)
deleteContext (ctx_id) // Alice logs out

Bob’s Photo View

ctx_id = createContext () // Bob logs in
"&Photo" « get (Album, ctx_id)

"Portuguese Coast" ¢« get (Photo, ctx_id)
deleteContext (ctx_id) // Bob logs out

Figure 5: Snippets of pseudocode using the COPS programmer
interface for the photo upload scenario from Section 3.2. When
using COPS-GT, each get would instead be a get _trans on
a single key.

the value. This dependency checking mechanism ensures writes
happen in a causally consistent order and reads never block.

4.3 Client Library and Interface

The COPS client library provides a simple and intuitive program-
ming interface. Figure 5 illustrates the use of this interface for the
photo upload scenario. The client API consists of four operations:

. ctx_id « createContext()

. bool « deleteContext(ctx_id)

. bool « put (key, value, ctx_id)

. value « get (key, ctx_id) [In COPS]

or

4. (values) « get_trans ((keys), ctx_id) [In COPS-GT]

AW N -

The client API differs from a traditional key-value interface in two
ways. First, COPS-GT provides get _t rans, which returns a con-
sistent view of multiple key-value pairs in a single call. Second, all
functions take a context argument, which the library uses internally
to track causal dependencies across each client’s operations [49].
The context defines the causal+ “thread of execution.” A single
process may contain many separate threads of execution (e.g., a
web server concurrently serving 1000s of independent connections).
By separating different threads of execution, COPS avoids false
dependencies that would result from intermixing them.

We next describe the state kept by the client library in COPS-GT
to enforce consistency in get transactions. We then show how COPS
can store significantly less dependency state.

COPS-GT Client Library. The client library in COPS-GT stores
the client’s context in a table of (key, version, deps) entries. Clients
reference their context using a context ID (ctx_id) in the APL.* When
a client gets a key from the data store, the library adds this key and
its causal dependencies to the context. When a client puts a value,
the library sets the put’s dependencies to the most recent version
of each key in the current context. A successful put into the data
store returns the version number v assigned to the written value. The
client library then adds this new entry, (key, v, D), to the context.
The context therefore includes all values previously read or writ-
ten in the client’s session, as well as all of those dependencies’
dependencies, as illustrated in Figure 6. This raises two concerns
about the potential size of this causality graph: (i) state requirements
for storing these dependencies, both in the client library and in the

“Maintaining state in the library and passing in an ID was a design
choice; one could also encode the entire context table as an opaque blob and
pass it between client and library so that the library is stateless.

Wy Val Nearest Deps All Deps

| 2 - -

u - -

l \l V6 U t2,u1
wi - -

vV,
Yi 6 x3 Wi w1
\ / i x3 X3,W1
24 24 Y1,V6 12,U1,V6,W1,X3,)1

Figure 6: A sample graph of causal dependencies for a client
context. Arrows indicate causal relationships (e.g., x3 depends
on wy). The table lists all dependencies for each value and the
“nearest” dependencies used to minimize dependency checks.

data store, and (ii) the number of potential checks that must occur
when replicating writes between clusters, in order to ensure causal
consistency. To mitigate the client and data-store state required
to track dependencies, COPS-GT provides garbage collection, de-
scribed in Section 5.1, that removes dependencies once they are
committed to all COPS replicas.

To reduce the number of dependency checks during replication,
the client library identifies several potential optimizations for servers
to use. Consider the graph in Figure 6. y; depends on x; and, by
transitivity, on wy. If the storage node committing y; determines
that x; has been committed, then it can infer that w, has also been
committed, and thus, need not check for it explicitly. Similarly,
while z4 depends directly on #, and vs, the committing node needs
only check vg, because vy itself depends on .

We term dependencies that must be checked the nearest dependen-
cies, listed in the table in Figure 6.° To enable servers to use these
optimizations, the client library first computes the nearest dependen-
cies within the write’s dependency list and marks them accordingly
when issuing the write.

The nearest dependencies are sufficient for the key-value store to
provide causal+ consistency; the full dependency list is only needed
to provide get _trans operations in COPS-GT.

COPS Client Library. The client library in COPS requires sig-
nificantly less state and complexity because it only needs to learn
the nearest, rather than all, dependencies. Accordingly, it does not
store or even retrieve the dependencies of any value it gets: The
retrieved value is nearer than any of its dependencies, rendering
them unnecessary.

Thus, the COPS client library stores only (key, version) entries.
For a get operation, the retrieved (key, version) is added to the
context. For a put operation, the library uses the current context as
the nearest dependencies, clears the context, and then repopulates
it with only this put. This put depends on all previous key-version
pairs and thus is nearer than them.

4.4 Writing Values in COPS and COPS-GT

Building on our description of the client library and key-value store,
we now walk through the steps involved in writing a value to COPS.
All writes in COPS first go to the client’s local cluster and then
propagate asynchronously to remote clusters. The key-value store
exports a single API call to provide both operations:

(bool,vers) « put_after (key, val, [deps], nearest, vers=0)

>In graph-theoretic terms, the nearest dependencies of a value are those
in the causality graph with a longest path to the value of length one.

Writes to the local cluster. When a client calls put
(key,val,ctx_id), the library computes the complete set of de-
pendencies deps, and identifies some of those dependency tuples as
the value’s nearest ones. The library then calls put_after without
the version argument (i.e., it sets version=0). In COPS-GT, the
library includes deps in the put_after call because dependencies
must be stored with the value; in COPS, the library only needs
to include nearest and does not include deps.® The key’s primary
storage node in the local cluster assigns the key a version number
and returns it to the client library. We restrict each client to a single
outstanding put; this is necessary because later puts must know the
version numbers of earlier puts so they may depend on them.

The put_after operation ensures that val is committed to each
cluster only after all of the entries in its dependency list have been
written. In the client’s local cluster, this property holds automatically,
as the local store provides linearizability. (If y depends on x, then
put(x) must have been committed before put(y) was issued.) This
is not true in remote clusters, however, which we discuss below.

The primary storage node uses a Lamport timestamp [31] to
assign a unique version number to each update. The node sets the
version number’s high-order bits to its Lamport clock and the low-
order bits to its unique node identifier. Lamport timestamps allow
COPS to derive a single global order over all writes for each key.
This order implicitly implements the last-writer-wins convergent
conflict handling policy. COPS is also capable of explicitly detecting
and resolving conflicts, which we discuss in Section 5.3. Note
that because Lamport timestamps provide a partial ordering of all
distributed events in a way that respects potential causality, this
global ordering is compatible with COPS’s causal consistency.

Write replication between clusters. After a write commits locally,
the primary storage node asynchronously replicates that write to its
equivalent nodes in different clusters using a stream of put_after
operations; here, however, the primary node includes the key’s
version number in the put_after call. As with local put_after
calls, the deps argument is included in COPS-GT, and not included
in COPS. This approach scales well and avoids the need for a single
serialization point, but requires the remote nodes receiving updates to
commit an update only after its dependencies have been committed
to the same cluster.

To ensure this property, a node that receives a put_after request
from another cluster must determine if the value’s nearest dependen-
cies have already been satisfied locally. It does so by issuing a check
to the local nodes responsible for the those dependencies:

bool < dep_check (key, version)

When a node receives a dep_check, it examines its local state to
determine if the dependency value has already been written. If so,
it immediately responds to the operation. If not, it blocks until the
needed version has been written.

If all dep_check operations on the nearest dependencies suc-
ceed, the node handling the put_after request commits the written
value, making it available to other reads and writes in its local
cluster. (If any dep_check operation times out the node handling
the put_after reissues it, potentially to a new node if a failure
occurred.) The way that nearest dependencies are computed en-
sures that all dependencies have been satisfied before the value is
committed, which in turn ensures causal consistency.

SWe use bracket notation ([]) to indicate an argument is optional; the
optional arguments are used in COPS-GT, but not in COPS.

4.5 Reading Values in COPS

Like writes, reads are satisfied in the local cluster. Clients call the
get library function with the appropriate context; the library in turn
issues a read to the node responsible for the key in the local cluster:

(value, version, deps) < get_by_version (key, version=LATEST)

This read can request either the latest version of the key or a specific
older one. Requesting the latest version is equivalent to a regular
single-key get; requesting a specific version is necessary to enable
get transactions. Accordingly, get_by_version operations in COPS
always request the latest version. Upon receiving a response, the
client library adds the (key,version[,deps]) tuple to the client context,
and returns value to the calling code. The deps are stored only in
COPS-GT, not in COPS.

4.6 Get Transactions in COPS-GT

The COPS-GT client library provides a get_trans interface be-
cause reading a set of dependent keys using a single-key get inter-
face cannot ensure causal+ consistency, even though the data store
itself is causal+ consistent. We demonstrate this problem by extend-
ing the photo album example to include access control, whereby
Alice first changes her album ACL to “friends only”, and then writes
a new description of her travels and adds more photos to the album.

A natural (but incorrect!) implementation of code to read Alice’s
album might (1) fetch the ACL, (2) check permissions, and (3) fetch
the album description and photos. This approach contains a straight-
forward “time-to-check-to-time-to-use” race condition: when Eve
accesses the album, her get (ACL) might return the old ACL, which
permitted anyone (including Eve) to read it, but her get(album
contents) might return the “friends only” version.

One straw-man solution is to require that clients issue single-key
get operations in the reverse order of their causal dependencies:
The above problem would not have occurred if the client executed
get(album) before get (ACL). This solution, however, is also incor-
rect. Imagine that after updating her album, Alice decided that some
photographs were too personal, so she (3) deleted those photos and
rewrote the description, and then (4) marked the ACL open again.
This straw-man has a different time-of-check-to-time-of-use error,
where get(album) retrieves the private album, and the subsequent
get(ACL) retrieves the “public” ACL. In short, there is no correct
canonical ordering of the ACL and the album entries.

Instead, a better programming interface would allow the client to
obtain a causal+ consistent view of multiple keys. The standard way
to achieve such a guarantee is to read and write all related keys in a
transaction; this, however, requires a single serialization point for all
grouped keys, which COPS avoids for greater scalability and sim-
plicity. Instead, COPS allows keys to be written independently (with
explicit dependencies in metadata), and provides a get_trans
operation for retrieving a consistent view of multiple keys.

Get transactions. To retrieve multiple values in a causal+ consis-
tent manner, a client calls get _t rans with the desired set of keys,
e.g., get_trans((ACL, album)). Depending on when and where
it was issued, this get transaction can return different combinations
of ACL and album, but never (ACLypiic, Albumpersonal)-

The COPS client library implements the get transactions algo-
rithm in two rounds, shown in Figure 7. In the first round, the
library issues n concurrent get_by_version operations to the local
cluster, one for each key the client listed in get_trans. Because

@param keys list of keys
@param ctx_id context id
@return values 1list of values

function get_trans (keys, ctx_id):
Get keys in parallel (first round)
for k in keys
results[k] = get_by_version(k, LATEST)

Calculate causally correct versions (ccv)
for k in keys
ccv[k] = max(ccv([k], resultslk].vers)
for dep in results[k].deps
if dep.key in keys
ccv[dep.key] = max(ccv[dep.key], dep.vers)

Get needed ccvs 1in parallel (second round)
for k in keys
if ccv[k] > resultsl[k].vers
results[k] = get_by_version(k, ccv[k])

Update the metadata stored in the context
update_context (results, ctx_id)

Return only the values to the client
return extract_values (results)

Figure 7: Pseudocode for the get_trans algorithm.

COPS-GT commits writes locally, the local data store guarantees
that each of these explicitly listed keys’ dependencies are already
satisfied—that is, they have been written locally and reads on them
will immediately return. These explicitly listed, independently re-
trieved values, however, may not be consistent with one another,
as shown above. Each get_by_version operation returns a (value,
version, deps) tuple, where deps is a list of keys and versions. The
client library then examines every dependency entry (key, version).
The causal dependencies for that result are satisfied if either the
client did not request the dependent key, or if it did, the version it
retrieved was > the version in the dependency list.

For all keys that are not satisfied, the library issues a second round
of concurrent get_by_version operations. The version requested
will be the newest version seen in any dependency list from the
first round. These versions satisfy all causal dependencies from
the first round because they are > the needed versions. In addition,
because dependencies are transitive and these second-round versions
are all depended on by versions retrieved in the first round, they do
not introduce any new dependencies that need to be satisfied. This
algorithm allows get _t rans to return a consistent view of the data
store as of the time of the latest timestamp retrieved in first round.

The second round happens only when the client must read newer
versions than those retrieved in the first round. This case occurs only
if keys involved in the get transaction are updated during the first
round. Thus, we expect the second round to be rare. In our example,
if Eve issues a get_trans concurrent with Alice’s writes, the
algorithms first round of gets might retrieve the public ACL and the
private album. The private album, however, depends on the “friends
only” ACL, so the second round would fetch this newer version of
the ACL, allowing get_trans to return a causal+ consistent set of
values to the client.

The causal+ consistency of the data store provides two important
properties for the get transaction algorithm’s second round. First,
the get_by_version requests will succeed immediately, as the re-
quested version must already exist in the local cluster. Second,
the new get_by_version requests will not introduce any new de-
pendencies, as those dependencies were already known in the first

round due to transitivity. This second property demonstrates why
the get transaction algorithm specifies an explicit version in its sec-
ond round, rather than just getting the latest: Otherwise, in the face
of concurrent writes, a newer version could introduce still newer
dependencies, which could continue indefinitely.

5. GARBAGE, FAULTS, AND CONFLICTS

This section describes three important aspects of COPS and COPS-
GT: their garbage collection subsystems, which reduce the amount
of extra state in the system; their fault tolerant design for client, node,
and datacenter failures; and their conflict detection mechanisms.

5.1 Garbage Collection Subsystem

COPS and COPS-GT clients store metadata; COPS-GT servers addi-
tionally keeps multiple versions of keys and dependencies. Without
intervention, the space footprint of the system would grow without
bound as keys are updated and inserted. The COPS garbage col-
lection subsystem deletes unneeded state, keeping the total system
size in check. Section 6 evaluates the overhead of maintaining and
transmitting this additional metadata.

Version Garbage Collection. (COPS-GT only)

What is stored: COPS-GT stores multiple versions of each key to
answer get_by_version requests from clients.

Why it can be cleaned: The get_t rans algorithm limits the num-
ber of versions needed to complete a get transaction. The algorithm’s
second round issues get_by_version requests only for versions
later than those returned in the first round. To enable prompt garbage
collection, COPS-GT limits the total running time of get_trans
through a configurable parameter, trans_time (set to 5 seconds in our
implementation). (If the timeout fires, the client library will restart
the get_trans call and satisfy the transaction with newer versions
of the keys; we expect this to happen only if multiple nodes in a
cluster crash.)

When it can be cleaned: After a new version of a key is writ-
ten, COPS-GT only needs to keep the old version around for
trans_time plus a small delta for clock skew. After this time, no
get_by_version call will subsequently request the old version, and
the garbage collector can remove it.

Space Overhead: The space overhead is bounded by the number of
old versions that can be created within the frans_time. This number
is determined by the maximum write throughput that the node can
sustain. Our implementation sustains 105MB/s of write traffic per
node, requiring (potentially) a non-prohibitive extra 525MB of buffer
space to hold old versions. This overhead is per-machine and does
not grow with the cluster size or the number of datacenters.

Dependency Garbage Collection. (COPS-GT only)

What is stored: Dependencies are stored to allow get transactions to
obtain a consistent view of the data store.

Why it can be cleaned: COPS-GT can garbage collect these depen-
dencies once the versions associated with old dependencies are no
longer needed for correctness in get transaction operations.

To illustrate when get transaction operations no longer need de-
pendencies, consider value z, that depends on x, and y,. A get
transaction of x, y, and z requires that if z, is returned, then x-,
and y», must be returned as well. Causal consistency ensures that
x, and y, are written before z, is written. Causal+ consistency’s
progressing property ensures that once x, and y, are written, then
either they or some later version will always be returned by a get

operation. Thus, once z, has been written in all datacenters and the
trans_time has passed, any get transaction returning z, will return
Xx>7 and ys;, and thus z,’s dependencies can be garbage collected.
When it can be cleaned: After trans_time seconds after a value has
been committed in all datacenters, COPS-GT can clean a value’s
dependencies. (Recall that committed enforces that its dependencies
have been satisfied.) Both COPS and COPS-GT can further set the
value’s never-depend flag, discussed below. To clean dependencies
each remote datacenter notifies the originating datacenter when the
write has committed and the timeout period has elapsed. Once
all datacenters confirm, the originating datacenter cleans its own
dependencies and informs the others to do likewise. To minimize
bandwidth devoted to cleaning dependencies, a replica only notifies
the originating datacenter if this version of a key is the newest
after trans_time seconds; if it is not, there is no need to collect the
dependencies because the entire version will be collected.”

Space Overhead: Under normal operation, dependencies are garbage
collected after trans_time plus a round-trip time. Dependencies are
only collected on the most recent version of the key; older versions
of keys are already garbage collected as described above.

During a partition, dependencies on the most recent versions of
keys cannot be collected. This is a limitation of COPS-GT, although
we expect long partitions to be rare. To illustrate why this concession
is necessary for get transaction correctness, consider value b, that
depends on value a,: if b,’s dependence on a, is prematurely col-
lected, some later value ¢, that causally depends on b,—and thus on
a,—could be written without the explicit dependence on a,. Then,
if a,, b,, and ¢, are all replicated to a datacenter in short order, the
first round of a get transaction could obtain a,, an earlier version of
a, with ¢,, and then return these two values to the client, precisely
because it did not know ¢, depends on the newer a,.

Client Metadata Garbage Collection. (COPS + COPS-GT)
What is Stored: The COPS client library tracks all operations dur-
ing a client session (single thread of execution) using the ctx_id
passed with all operation. In contrast to the dependency informa-
tion discussed above which resides in the key-value store itself, the
dependencies discussed here are part of the client metadata and are
store in the client library. In both systems, each get since the last
put adds another nearest dependency. Additionally in COPS-GT,
all new values and their dependencies returned in get_trans oper-
ations and all put operations add normal dependencies. If a client
session lasts for a long time, the number of dependencies attached
to updates will grow large, increasing the size of the dependency
metadata that COPS needs to store.

Why it can be cleaned: As with the dependency tracking above,
clients need to track dependencies only until they are guaranteed to
be satisfied everywhere.

When it can be cleaned: COPS reduces the size of this client state
(the context) in two ways. First, as noted above, once a put_after
commits successfully to all datacenters, COPS flags that key version
as never-depend, in order to indicate that clients need not express
a dependence upon it. get_by_version results include this flag,
and the client library will immediately remove a never-depend item
from the list of dependencies in the client context. Furthermore, this
process is transitive: Anything that a never-depend key depended
on must have been flagged never-depend, so it too can be garbage
collected from the context.

7We are currently investigating if collecting dependencies in this manner
provides a significant enough benefit over collecting them after the global
checkpoint time (discussed below) to justify its messaging cost.

Second, the COPS storage nodes remove unnecessary depen-
dencies from put_after operations. When a node receives a
put_after, it checks each item in the dependency list and removes
items with version numbers older than a global checkpoint time. This
checkpoint time is the newest Lamport timestamp that is satisfied
at all nodes across the entire system. The COPS key-value store
returns this checkpoint time to the client library (e.g., in response
to a put_after), allowing the library to clean these dependencies
from the context.?

To compute the global checkpoint time, each storage node first de-
termines the oldest Lamport timestamp of any pending put_after
in the key range for which it is primary. (In other words, it deter-
mines the timestamp of its oldest key that is not guaranteed to be
satisfied at all replicas.) It then contacts its equivalent nodes in other
datacenters (those nodes that handle the same key range). The nodes
pair-wise exchange their minimum Lamport times, remembering the
oldest observed Lamport clock of any of the replicas. At the con-
clusion of this step, all datacenters have the same information: each
node knows the globally oldest Lamport timestamp in its key range.
The nodes within a datacenter then gossip around the per-range min-
imums to find the minimum Lamport timestamp observed by any
one of them. This periodic procedure is done 10 times a second in
our implementation and has no noticeable impact on performance.

5.2 Fault Tolerance

COPS is resilient to client, node, and datacenter failures. For the
following discussion, we assume that failures are fail-stop: compo-
nents halt in response to a failure instead of operating incorrectly or
maliciously, and failures are detectable.

Client Failures. COPS’s key-value interface means that each client
request (through the library) is handled independently and atomically
by the data store. From the storage system’s perspective, if a client
fails, it simply stops issuing new requests; no recovery is necessary.
From a client’s perspective, COPS’s dependency tracking makes it
easier to handle failures of other clients, by ensuring properties such
as referential integrity. Consider the photo and album example: If a
client fails after writing the photo, but before writing a reference to
the photo, the data store will still be in a consistent state. There will
never be an instance of the reference to the photo without the photo
itself already being written.

Key-Value Node Failures. COPS can use any underlying fault-
tolerant linearizable key-value store. We built our system on top
of independent clusters of FAWN-KV [5] nodes, which use chain
replication [51] within a cluster to mask node failures. Accordingly,
we describe how COPS can use chain replication to provide tolerance
to node failures.

Similar to the design of FAWN-KYV, each data item is stored in
a chain of R consecutive nodes along the consistent hashing ring.
put_after operations are sent to the head of the appropriate chain,
propagate along the chain, and then commit at the tail, which then
acknowledges the operation. get_by_version operations are sent
to the tail, which responds directly.

Server-issued operations are slightly more involved because they
are issued from and processed by different chains of nodes. The
tail in the local cluster replicates put_after operations to the head
in each remote datacenter. The remote heads then send dep_check
operations, which are essentially read operations, to the appropriate

8Because of outstanding reads, clients and servers must also wait
trans_time seconds before they can use a new global checkpoint time.

tails in their local cluster. Once these return (if the operation does
not return, a timeout will fire and the dep_check will be reissued),
the remote head propagates the value down the (remote) chain to
the remote tail, which commits the value and acknowledges the
operation back to the originating datacenter.

Dependency garbage collection follows a similar pattern of inter-
locking chains, though we omit details for brevity. Version garbage
collection is done locally on each node and can operate as in the
single node case. Calculation of the global checkpoint time, for
client metadata garbage collection, operates normally with each tail
updating its corresponding key range minimums.

Datacenter Failures. The partition-tolerant design of COPS also
provides resiliency to entire datacenter failures (or partitions). In the
face of such failures, COPS continues to operate as normal, with a
few key differences.

First, any put_after operations that originated in the failed data-
center, but which were not yet copied out, will be lost. This is an
inevitable cost of allowing low-latency local writes that return faster
than the propagation delay between datacenters. If the datacenter is
only partitioned and has not failed, no writes will be lost. Instead,
they will only be delayed until the partition heals.’

Second, the storage required for replication queues in the active
datacenters will grow. They will be unable to send put_after
operations to the failed datacenter, and thus COPS will be unable to
garbage collect those dependencies. The system administrator has
two options: allow the queues to grow if the partition is likely to heal
soon, or reconfigure COPS to no longer use the failed datacenter.

Third, in COPS-GT, dependency garbage collection cannot con-
tinue in the face of a datacenter failure, until either the partition is
healed or the system is reconfigured to exclude the failed datacenter.

5.3 Conflict Detection

Conflicts occur when there are two “simultaneous” (i.e., not in
the same context/thread of execution) writes to a given key. The
default COPS system avoids conflict detection using a last-writer-
wins strategy. The “last” write is determined by comparing version
numbers, and allows us to avoid conflict detection for increased
simplicity and efficiency. We believe this behavior is useful for many
applications. There are other applications, however, that become
simpler to reason about and program with a more explicit conflict-
detection scheme. For these applications, COPS can be configured
to detect conflicting operations and then invoke some application-
specific convergent conflict handler.

COPS with conflict detection, which we refer to as COPS-CD,
adds three new components to the system. First, all put operations
carry with them previous version metadata, which indicates the most
recent previous version of the key that was visible at the local cluster
at the time of the write (this previous version may be null). Second,
all put operations now have an implicit dependency on that previous
version, which ensures that a new version will only be written after
its previous version. This implicit dependency entails an additional
dep_check operation, though this has low overhead and always
executes on the local machine. Third, COPS-CD has an application-
specified convergent conflict handler that is invoked when a conflict
is detected.

°It remains an interesting aspect of future work to support flexibility in
the number of datacenters required for committing within the causal+ model.

10

System Causal+ Scalable Get Trans
LOG Yes No No
COPS Yes Yes No
COPS-GT Yes Yes Yes

Table 1: Summary of three systems under comparison.

COPS-CD follows a simple procedure to determine if a put opera-
tion new to a key (with previous version prev) is in conflict with the
key’s current visible version curr:

prev # curr if and only if new and curr conflict.

‘We omit a full proof, but present the intuition here. In the forward
direction, we know that prev must be written before new, prev #
curr, and that for curr to be visible instead of prev, we must have
curr > prev by the progressing property of causal+. But because
prev is the most recent causally previous version of new, we can
conclude curr > new. Further, because curr was written before
new, it cannot be causally after it, so new % curr and thus they
conflict. In the reverse direction, if new and curr conflict, then
curr /4 new. By definition, prev ~ new, and thus curr # prev.

6. EVALUATION

This section presents an evaluation of COPS and COPS-GT us-
ing microbenchmarks that establish baseline system latency and
throughput, a sensitivity analysis that explores the impact of dif-
ferent parameters that characterize a dynamic workload, and larger
end-to-end experiments that show scalable causal+ consistency.

6.1 Implementation and Experimental Setup

COPS is approximately 13,000 lines of C++ code. It is built on
top of FAWN-KYV [5, 18] (~8500 LOC), which provides lineariz-
able key-value storage within a local cluster. COPS uses Apache
Thrift [7] for communication between all system components and
Google’s Snappy [45] for compressing dependency lists. Our current
prototype implements all features described in the paper, excluding
chain replication for local fault tolerance'® and conflict detection.

We compare three systems: LOG, COPS, and COPS-GT. LOG
uses the COPS code-base but excludes all dependency tracking,
making it simulate previous work that uses log exchange to establish
causal consistency (e.g., Bayou [41] and PRACTI [10]). Table 1
summarizes these three systems.

Each experiment is run on one cluster from the VICCI testbed [52].
The cluster’s 70 servers give users an isolated Linux VServer. Each
server has 2x6 core Intel Xeon X5650 CPUs, 48GB RAM, 3x1TB
Hard Drives, and 2x1GigE network ports.

For each experiment, we partition the cluster into multiple logical
“datacenters” as necessary. We retain full bandwidth between the
nodes in different datacenters to reflect the high-bandwidth backbone
that often exists between them. All reads and writes in FAWN-KV
go to disk, but most operations in our experiments hit the kernel
buffer cache.

The results presented are from 60-second trials. Data from the first
and last 15s of each trial were elided to avoid experimental artifacts,
as well as to allow garbage collection and replication mechanisms
to ramp up. We run each trial 15 times and report the median; the
minimum and maximum results are almost always within 6% of

19Chain replication was not fully functional in the version of FAWN-KV
on which our implementation is built.

. Latency (ms) Throughput
System Operation 50% 99% 999% (Kops/s)
Thrift ping 0.26 3.62 12.25 60
COPS get_by_version 0.37 3.08 11.29 52
COPS-GT get_by_version 0.38 3.14 9.52 52
COPS put_after (1) 0.57 6.91 11.37 30
COPS-GT put_after (1) 0.91 5.37 7.37 24
COPS-GT put_after (130) 1.03 7.45 11.54 20

Table 2: Latency (in ms) and throughput (in Kops/s) of vari-
ous operations for 1B objects in saturated systems. put_after(x)
includes metadata for x dependencies.

the median, and we attribute the few trials with larger throughput
differences to the shared nature of the VICCI platform.

6.2 Microbenchmarks

We first evaluate the performance characteristics for COPS and
COPS-GT in a simple setting: two datacenters, one server per data-
center, and one colocated client machine. The client sends put and
get requests to its local server, attempting to saturate the system. The
requests are spread over 2'® keys and have 1B values—we use 1B
values for consistency with later experiments, where small values
are the worst case for COPS (see Figure 11(c)). Table 2 shows the
median, 99%, and 99.9% latencies and throughput.

The design decision in COPS to handle client operations lo-
cally yields low latency for all operations. The latencies for
get_by_version operations in COPS and COPS-GT are similar to
an end-to-end RPC ping using Thrift. The latencies for put_after
operations are slightly higher because they are more computationally
expensive; they need to update metadata and write values. Neverthe-
less, the median latency for put_after operations, even those with
up to 130 dependencies, is around 1 ms.

System throughput follows a similar pattern. get_by_version
operations achieve high throughput, similar to that of Thrift ping op-
erations (52 vs. 60 Kops/s). A COPS server can process put_after
operations at 30 Kops/s (such operations are more computationally
expensive than gets), while COPS-GT achieves 20% lower through-
put when put_after operations have 1 dependency (due to the cost
of garbage collecting old versions). As the number of dependen-
cies in COP-GT put_after operations increases, throughput drops
slightly due to the greater size of metadata in each operation (each
dependency is ~12B).

6.3 Dynamic Workloads

We model a dynamic workload with interacting clients accessing the
COPS system as follows. We set up two datacenters of S servers
each and colocate S client machines in one of the two datacenters.
The clients access storage servers in the local datacenter, which repli-
cates put_after operations to the remote datacenter. We report the
sustainable throughput in our experiments, which is the maximum
throughput that both datacenters can handle. In most cases, COPS
becomes CPU-bound at the local datacenter, and that COPS-GT
becomes CPU-bound at the remote one.

To better stress the system and more accurately depict real oper-
ation, each client machine emulates multiple logical COPS clients.
Each time a client performs an operation, it randomly executes a put
or get operation, according to a specified put:get ratio. All operations
in a given experiment use fixed-size values.

11

1
Z 08 g§ -9Z
5 06Fc2-0—
S 04
e 0-5 I L 1 L I
1 2 3 4 5

Keygroups

Figure 8: In our experiments, clients choose keys to access by
first selecting a keygroup according to some normal distribu-
tion, then randomly selecting a key within that group according
to a uniform distribution. Figure shows such a stepped normal
distribution for differing variances for client #3 (of 5).

The key for each operation is selected to control the amount of
dependence between operations (i.e., from fully isolated to fully
intermixed). Specifically, given N clients, the full keyspace consists
of N keygroups, R; ... Ry, one per client. Each keygroup contains
K keys, which are randomly distributed (i.e., they do not all reside
on the same server). When clients issue operations, they select keys
as follows. First, they pick a keygroup by sampling from a normal
distribution defined over the N keygroups, where each keygroup has
width 1. Then, they select a key within that keygroup uniformly at
random. The result is a distribution over keys with equal likelihood
for keys within the same keygroup, and possibly varying likelihood
across groups.

Figure 8 illustrates an example, showing the keygroup distribution
for client #3 (of 5 total) for variances of 0, 1, and the limit approach-
ing co. When the variance is 0, a client will restrict its accesses to
its “own” keygroup and never interact with other clients. In contrast,
when the variance — oo, client accesses are distributed uniformly
at random over all keys, leading to maximal inter-dependencies
between put_after operations.

The parameters of the dynamic workload experiments are the
following, unless otherwise specified:

Parameter Default | Parameter Default
datacenters 2 | put:getratio 1:1or1:4
servers / datacenter 4 | variance 1
clients / server 1024 | value size 1B
keys / keygroup 512

As the state space of all possible combinations of these variables is
large, the following experiments explore parameters individually.

Clients Per Server. We first characterize the system throughput as a
function of increasing delay between client operations (for two differ-
ent put:get ratios).!! Figure 9(a) shows that when the inter-operation
delay is low, COPS significantly outperforms COPS-GT. Conversely,
when the inter-operation delay approaches several hundred millisec-
onds, the maximum throughputs of COPS and COPS-GT converge.
Figure 9(b) helps explain this behavior: As the inter-operation de-
lay increases, the number of dependencies per operation decreases
because of the ongoing garbage collection.

For these experiments, we do not directly control the inter-operation
delay. Rather, we increase the number of logical clients running on each of
the client machines from 1 to 2'8; given a fixed-size thread pool for clients in
our test framework, each logical client gets scheduled more infrequently. As
each client makes one request before yielding, this leads to higher average

inter-op delay (calculated simply as ;h:f)ﬁhel:::). Our default setting of 1024
clients/server yields an average inter-op delay of 29 ms for COPS-GT with a
1:0 put:get ratio, 11ms for COPS with 1:0, 11ms for COPS-GT with 1:4, and

8ms for COPS with 1:4.

§ 140

» 120

o

§, 100

5 80

s

S 60

=]

© 40

i

= 20

x

S 0
1 10 100 1000
Average Inter-Op Delay (ms)

(a)

51000

3 100

2 10 LCOPS-GT 1:4 &

a] COPS-QT 1:0 & .
1 10 100 1000

Average Inter-Op Delay (ms)
(b)

Figure 9: Maximum throughput and the resulting average de-
pendency size of COPS and COPS-GT for a given inter-put de-
lay between consecutive operations by the same logical client.
The legend gives the put:get ratio (i.e., 1:0 or 1:4).

To understand this relationship, consider the following example. If
the global-checkpoint-time is 6 seconds behind the current time and
a logical client is performing 100 puts/sec (in an all-put workload),
each put will have 100-6 = 600 dependencies. Figure 9(b) illustrates
this relationship. While COPS will store only the single nearest
dependency (not shown), COPS-GT must track all dependencies
that have not been garbage collected. These additional dependencies
explain the performance of COPS-GT: When the inter-put time
is small, there are a large number of dependencies that need to
be propagated with each value, and thus each operation is more
expensive.

The global-checkpoint-time typically lags ~6 seconds behind the
current time because it includes both the trans_time delay (per Sec-
tion 5.1) and the time needed to gossip checkpoints around their
local datacenter (nodes gossip once every 100ms). Recall that an
agreed-upon trans_time delay is needed to ensure that currently exe-
cuting get_trans operations can complete, while storage nodes
use gossiping to determine the oldest uncommitted operation (and
thus the latest timestamp for which dependencies can be garbage
collected). Notably, round-trip-time latency between datacenters
is only a small component of the lag, and thus performance is not
significantly affected by RTT (e.g., a 70ms wide-area RTT is about
1% of a 6s lag for the global-checkpoint-time).

Put:Get Ratio. We next evaluate system performance under vary-
ing put:get ratios and key-access distributions. Figure 10(a) shows
the throughput of COPS and COPS-GT for put:get ratios from 64:1
to 1:64 and three different distribution variances. We observe that
throughput increases for read-heavier workloads (put:get ratios < 1),
and that COPS-GT becomes competitive with COPS for read-mostly
workloads. While the performance of COPS is identical under differ-
ent variances, the throughput of COPS-GT is affected by variance.
We explain both behaviors by characterizing the relationship be-

12

§ 160 A
7 y
2 140
X /
5 120 ///
o
S 100
3 COPS —+
S 80 COPS-GT (0) -
= COPS-GT (1) ¢
X 60 COPS-GT (512) &
g I i i i i I i
64:1 16:1 4:1 1:1 14 1:16 1:64
Put:Get Ratio
(a)
g 100 g_
S 49 [COPS-GT () = "
s FCOPS-GT (1) ¢
Q 1 [COPS-GT(512) » . . L
64:1 16:1 4:1 1:1 14 1:16 1:64

Put:Get Ratio
(b)

Figure 10: Maximum throughput and the resulting average de-
pendency size of COPS and COPS-GT for a given put:get ratio.
The legend gives the variance (i.e., 0, 1, or 512).

tween put:get ratio and the number of dependencies (Figure 10(b));
fewer dependencies translates to less metadata that needs to be prop-
agated and thus higher throughput.

When different clients access the same keys (variance > 0), we
observe two distinct phases in Figure 10(b). First, as the put:get
ratio decreases from 64:1 to 1:1, the number of dependencies in-
creases. This increase occurs because each get operation increases
the likelihood a client will inherit new dependencies by getting a
value that has been recently put by another client. For instance, if
client; puts a value v; with dependencies d and client, reads that
value, then client,’s future put will have dependencies on both v; and
d. Second, as the put:get ratio then decreases from 1:1 to 1:64, the
number of dependencies decreases for two reasons: (i) each client
is executing fewer put operations and thus each value depends on
fewer values previously written by this client; and (ii) because there
are fewer put operations, more of the keys have a value that is older
than the global-checkpoint-time, and thus getting them introduces
no additional dependencies.

When clients access independent keys (variance = 0), the number
of dependencies is strictly decreasing with the put:get ratio. This
result is expected because each client accesses only values in its own
keygroup that it previously wrote and already has a dependency on.
Thus, no get causes a client to inherit new dependencies.

The average dependency count for COPS (not shown) is always
low, from 1 to 4 dependencies, because COPS needs to track only
the nearest (instead of all) dependencies.

Keys Per Keygroup. Figure 11(a) shows the effect of keygroup
size on the throughput of COPS and COPS-GT. Recall that clients
distribute their requests uniformly over keys in their selected key-
group. The behavior of COPS-GT is nuanced; we explain its varying
throughput by considering the likelihood that a get operation will
inherit new dependencies, which in turn reduces throughput. With
the default variance of 1 and a low number of keys/keygroup, most

g 180 160 -

8160 by 2 140 |+ + + + + 3 ==

2 140 VIV g g_ 120 o——e 5 'S, 0.8

<120 | W £ 100 * 3 o6 COPS 1:4 +

5 100 5 — . ET COPS-GT 1:4 &

2 80 A / A 3 80 3

g 60 M&’Eﬂﬁ* 2 60 copsia 4 81 j/f/: —%

2 40 - o £ 40 |COPS-GT1:4 o 0.8

£ 5 COPS1:1 3¢ £ ,0| COPS1:1 E — COPS 1:0

8 5L . . , COPSGT1a + x °, [COPSGTT:1 « , , 806 . COPS-GT1:0 = -

= 1 4 16 64 256 1024 = 1/64 1/8 1 8 64 512 1 2 4 8 16
Keys / Keygroup Variance Value Size (KB)

(a)

(b)

(©

Figure 11: Maximum system throughput (using put:get ratios of 1:4, 1:1, or 1:0) for varied keys/keygroup, variances, and value sizes.

clients access only a small number of keys. Once a value is retrieved
and its dependencies inherited, subsequent gets on that same value
do not cause a client to inherit any new dependencies. As the number
of keys/keygroup begins to increase, however, clients are less likely
to get the same value repeatedly, and they begin inheriting additional
dependencies. As this number continues to rise, however, garbage
collection can begin to have an effect: Fewer gets retrieve a value
that was recently written by another client (e.g., after the global
checkpoint time), and thus fewer gets return new dependencies. The
bowed shape of COPS-GT’s performance is likely due to these two
contrasting effects.

Variance. Figure 11(b) examines the effect of variance on system
performance. As noted earlier, the throughput of COPS is unaffected
by different variances: Get operations in COPS never inherit extra
dependencies, as the returned value is always “nearer,” by definition.
COPS-GT has an increased chance of inheriting dependencies as
variance increases, however, which results in decreased throughput.

Value Size. Finally, Figure 11(c) shows the effect of value size on
system performance. In this experiment, we normalize the systems’
maximum throughput against that of COPS (the COPS line at exactly
1.0 is shown only for comparison). As the size of values increases,
the relative throughput of COPS-GT approaches that of COPS.

We attribute this to two reasons. First, the relative cost of pro-
cessing dependencies (which are of fixed size) decreases compared
to that of processing the actual values. Second, as processing time
per operation increases, the inter-operation delay correspondingly
increases, which in turn leads to fewer dependencies.

6.4 Scalability

To evaluate the scalability of COPS and COPS-GT, we compare
them to LOG. LOG mimics systems based on log serialization and
exchange, which can only provide causal+ consistency with single
node replicas. Our implementation of LOG uses the COPS code, but
excludes dependency tracking.

Figure 12 shows the throughput of COPS and COPS-GT (running
on 1, 2, 4, 8, or 16 servers/datacenter) normalized against LOG
(running on 1 server/datacenter). Unless specified otherwise, all
experiments use the default settings given in Section 6.3, including
a put:get ratio of 1:1. In all experiments, COPS running on a single
server/datacenter achieves performance almost identical to LOG.
(After all, compared to LOG, COPS needs to track only a small num-
ber of dependencies, typically < 4, and any dep_check operations
in the remote datacenter can be executed as local function calls.)
More importantly, we see that COPS and COPS-GT scale well in
all scenarios: as we double the number of servers per datacenter,
throughput almost doubles.

13

In the experiment with all default settings, COPS and COPS-GT
scale well relative to themselves, although COPS-GT’s throughput is
only about two-thirds that of COPS. These results demonstrate that
the default parameters were chosen to provide a non-ideal workload
for the system. However, under a number of different conditions—
and, indeed, a workload more common to Internet services—the
performance of COPS and COPS-GT is almost identical.

As one example, the relative throughput of COPS-GT is close
to that of COPS when the inter-operation delay is high (achieved
by hosting 32K clients per server, as opposed to the default 1024
clients; see Footnote 11). Similarly, a more read-heavy workload
(put:get ratio of 1:16 vs. 1:1), a smaller variance in clients’ access
distributions (1/128 vs. 1), or larger-sized values (16KB vs. 1B)—
controlling for all other parameters—all have the similar effect: the
throughput of COPS-GT becomes comparable to that of COPS.

Finally, for the “expected workload” experiment, we set the pa-
rameters closer to what we might encounter in an Internet service
such as social networking. Compared to the default, this workload
has a higher inter-operation delay (32K clients/server), larger values
(1KB), and a read-heavy distribution (1:16 ratio). Under these set-
tings, the throughput of COPS and COPS-GT are very comparable,
and both scale well with the number of servers.

7. RELATED WORK

We divide related work into four categories: ALPS systems, causally
consistent systems, linearizable systems, and transactional systems.

ALPS Systems. The increasingly crowded category of ALPS sys-
tems includes eventually consistent key-value stores such as Ama-
zon’s Dynamo [16], LinkedIn’s Project Voldemort [43], and the
popular memcached [19]. Facebook’s Cassandra [30] can be config-
ured to use eventual consistency to achieve ALPS properties, or can
sacrifice ALPS properties to provide linearizability. A key influence
for our work was Yahoo!’s PNUTS [15], which provides per-key
sequential consistency (although they name this per-record timeline
consistency). PNUTS does not provide any consistency between
keys, however; achieving such consistency introduces the scalability
challenges that COPS addresses.

Causally Consistent Systems. Many previous system designers
have recognized the utility of causal consistency. Bayou [41] pro-
vides a SQL-like interface to single-machine replicas that achieves
causal+ consistency. Bayou handles all reads and writes locally; it
does not address the scalability goals we consider.

TACT [53] is a causal+ consistent system that uses order and
numeric bounding to limit the divergence of replicas in the system.
The ISIS [12] system exploits the concept of virtual synchrony [11]
to provide applications with a causal broadcast primitive (CBcast).

- 16 - g
= - =
o E
.g, 8 -_COPS_GT [1 | RSN SREIRRUEROSS) | RS | SSRGS -] | S
S C
° I~
- 4 E | [T Y | | SO) | - | | ';_ NI 5
£ I s i
= W !
'§ 2 ..:\\ g ...E\\: o
'T; LN : LN NI : N 2
g ét] \ | |
é’ \ \: ...
All High 1:16 1/128 16KB Expected
Defaults Inter-Op Delay Put:Get Variance Values Workload

Figure 12: Throughput for LOG with 1 server/datacenter, and COPS and COPS-GT with 1, 2, 4, 8, and 16 servers/datacenter, for a
variety of scenarios. Throughput is normalized against LOG for each scenario; raw throughput (in Kops/s) is given above each bar.

CBcast could be used in a straightforward manner to provide a
causally consistent key-value store. Replicas that share information
via causal memory [2] can also provide a causally consistent ALP
key-value store. These systems, however, all require single-machine
replicas and thus do not provide scalability.

PRACTI [10] is a causal+ consistent ALP system that supports
partial replication, which allows a replica to store only a subset of
keys and thus provides some scalability. However, each replica—and
thus the set of keys over which causal+ consistency is provided—is
still limited to what a single machine can handle.

Lazy replication [29] is closest to COPS’s approach. Lazy repli-
cation explicitly marks updates with their causal dependencies and
waits for those dependencies to be satisfied before applying them
at a replica. These dependencies are maintained and attached to
updates via a front-end that is an analog to our client library. The
design of lazy replication, however, assumes that replicas are limited
to a single machine: Each replica requires a single point that can (i)
create a sequential log of all replica operations, (ii) gossip that log
to other replicas, (iii) merge the log of its operations with those of
other replicas, and finally (iv) apply these operations in causal order.

Finally, in concurrent theoretical work, Mahajan et al. [35] define
real-time causal (RTC) consistency and prove that it is the strongest
achievable in an always-available system. RTC is stronger than
causal+ because it enforces a real-time requirement: if causally-
concurrent writes do not overlap in real-time, the earlier write may
not be ordered after the later write. This real-time requirement helps
capture potential causality that is hidden from the system (e.g., out-
of-band messaging [14]). In contrast, causal+ does not have a real-
time requirement, which allows for more efficient implementations.
Notably, COPS’s efficient last-writer-wins rule results in a causal+
but not RTC consistent system, while a “return-them-all” conflict
handler would provide both properties.

Linearizable Systems. Linearizability can be provided using a sin-
gle commit point (as in primary-copy systems [4, 39], which may
eagerly replicate data through two-phase commit protocols [44]) or
using distributed agreement (e.g., Paxos [33]). Rather than replicate
content everywhere, quorum systems ensure that read and write sets
overlap for linearizability [22, 25].

As noted earlier, CAP states that linearizable systems cannot have
latency lower than their round-trip inter-datacenter latency; only
recently have they been used for wide-area operation, and only when
the low latency of ALPS can be sacrificed [9]. CRAQ [48] can
complete reads in the local-area when there is little write contention,
but otherwise requires wide-area operations to ensure linearizability.

14

Transactions. Unlike most filesystems or key-value stores, the
database community has long considered consistency across mul-
tiple keys through the use of read and write transactions. In many
commercial database systems, a single master executes transactions
across keys, then lazily sends its transaction log to other replicas,
potentially over the wide-area. Typically, these asynchronous repli-
cas are read-only, unlike COPS’s write-anywhere replicas. Today’s
large-scale databases typically partition (or shard) data over multiple
DB instances [17, 38, 42], much like in consistent hashing. Transac-
tions are applied only within a single partition, whereas COPS can
establish causal dependencies across nodes/partitions.

Several database systems support transactions across partitions
and/or datacenters (both of which have been viewed in the database
literature as independent sites). For example, the R* database [37]
uses a tree of processes and two-phase locking for multi-site transac-
tions. This two-phase locking, however, prevents the system from
guaranteeing availability, low latency, or partition tolerance. Sinfo-
nia [1] provides “mini” transactions to distributed shared memory
via a lightweight two-phase commit protocol, but only considers
operations within a single datacenter. Finally, Walter [47], a recent
key-value store for the wide-area, provides transactional consistency
across keys (including for writes, unlike COPS), and includes op-
timizations that allow transactions to execute within a single site,
under certain scenarios. But while COPS focuses on availability
and low-latency, Walter stresses transactional guarantees: ensuring
causal relationships between keys can require a two-phase commit
across the wide-area. Furthermore, in COPS, scalable datacenters
are a first-order design goal, while Walter’s sites currently consist of
single machines (as a single serialization point for transactions).

8. CONCLUSION

Today’s high-scale, wide-area systems provide “always on,” low-
latency operations for clients, at the cost of weak consistency guar-
antees and complex application logic. This paper presents COPS, a
scalable distributed storage system that provides causal+ consistency
without sacrificing ALPS properties. COPS achieves causal+ consis-
tency by tracking and explicitly checking that causal dependencies
are satisfied before exposing writes in each cluster. COPS-GT builds
upon COPS by introducing get transactions that enable clients to
obtain a consistent view of multiple keys; COPS-GT incorporates
optimizations to curtail state, minimize multi-round protocols, and
reduce replication overhead. Our evaluation demonstrates that COPS
and COPS-GT provide low latency, high throughput, and scalability.

Acknowledgments. We owe a particular debt both to the SOSP pro-
gram committee and to our shepherd, Mike Dahlin, for their exten-
sive comments and Mike’s thoughtful interaction that substantially
improved both the presentation of and, indeed, our own view of, this
work. Jeff Terrace, Erik Nordstrom, and David Shue provided useful
comments on this work; Vijay Vasudevan offered helpful assistance
with FAWN-KYV; and Sapan Bhatia and Andy Bavier helped us run
experiments on the VICCI testbed. This work was supported by NSF
funding (CAREER CSR-0953197 and CCF-0964474), VICCI (NSF
Award MRI-1040123), a gift from Google, and the Intel Science and
Technology Center for Cloud Computing.

REFERENCES

[1]

[2]

[3]

[4

=

[5

=

[6]

[7
[8

= =

[9

—

[10]

[11]
[12]
[13]
[14]

[15]

[16]

(171

[18]
[19]
[20]
[21]

[22]

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.
Sinfonia: A new paradigm for building scalable distributed systems.
ACM TOCS, 27(3), 2009.

M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1), 1995.

M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, Aug. 2008.

P. Alsberg and J. Day. A principle for resilient sharing of distributed
resources. In Conf. Software Engineering, Oct. 1976.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan. FAWN: A fast array of wimpy nodes. In SOSP, Oct.
2009.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. ACM TOCS,
14(1), 1996.

Apache Thrift. http://thrift.apache.org/,2011.

H. Attiya and J. L. Welch. Sequential consistency versus linearizability.
ACM TOCS, 12(2), 1994.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing
scalable, highly available storage for interactive services. In CIDR, Jan.
2011.

N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng. PRACTI replication. In NSDI, May
2006.

K. P. Birman and T. Joseph. Exploiting virtual synchrony in distributed
systems. In SOSP, Nov. 1987.

K. P. Birman and R. V. Renesse. Reliable Distributed Computing with
the ISIS Toolkit. IEEE Comp. Soc. Press, 1994.

E. Brewer. Towards robust distributed systems. PODC Keynote, July
2000.

D. R. Cheriton and D. Skeen. Understanding the limitations of causally
and totally ordered communication. In SOSP, Dec. 1993.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. In VLDB, Aug. 2008.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In SOSP, Oct. 2007.

D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen. The gamma database machine project. Knowledge
and Data Engineering, 2(1), 1990.

FAWN-KV. https://github.com/vrv/FAWN-KV, 2011.

B. Fitzpatrick. Memcached: a distributed memory object caching
system. http://memcached.org/, 2011.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-based scalable network services. In SOSP, Oct. 1997.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In
SOSP, Oct. 2003.

D. K. Gifford. Weighted voting for replicated data. In SOSP, Dec.
1979.

15

[23]

[24]

[25]
[26]

[27]

[28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]

[36]
[37]
[38]
[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]
[51]

[52]
[53]

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2), 2002.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible
data center network. In SIGCOMM, Aug. 2009.

M. Herlihy. A quorum-consensus replication method for abstract data
types. ACM TOCS, 4(1), Feb. 1986.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM TOPLAS, 12(3), 1990.

D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In STOC,
May 1997.

J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
file system. ACM TOCS, 10(3), Feb. 1992.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM TOCS, 10(4), 1992.

A. Lakshman and P. Malik. Cassandra — a decentralized structured
storage system. In LADIS, Oct. 2009.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Comm. ACM, 21(7), 1978.

L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computer, 28(9), 1979.
L. Lamport. The part-time parliament. ACM TOCS, 16(2), 1998.
R.J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory.
Technical Report TR-180-88, Princeton Univ., Dept. Comp. Sci., 1988.
P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, and
convergence. Technical Report TR-11-22, Univ. Texas at Austin, Dept.
Comp. Sci., 2011.

J. Misra. Axioms for memory access in asynchronous hardware sys-
tems. ACM TOPLAS, (1), Jan. 1986.

C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in
the R* distributed database management system. ACM Trans. Database
Sys., 11(4), 1986.

MySQL. http://www.mysqgl.com/,2011.

B. M. Oki and B. H. Liskov. Viewstamped replication: A general
primary copy. In PODC, Aug. 1988.

D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection
of mutual inconsistency in distributed systems. [EEE Trans. Software
Eng., 9(3), 1983.

K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexi-
ble update propagation for weakly consistent replication. In SOSP, Oct.
1997.

PostgresSQL. http://www.postgresqgl.org/,2011.

Project Voldemort. http://project-voldemort.com/, 2011.
D. Skeen. A formal model of crash recovery in a distributed system.
IEEE Trans. Software Engineering, 9(3), May 1983.

Snappy. http://code.google.com/p/snappy/, 2011.

J. Sobel. Scaling out. Engineering at Facebook blog, Aug. 20 2008.
Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, Oct. 2011.

J. Terrace and M. J. Freedman. Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads. In USENIX
ATC, June 2009.

D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch. Session guarantees for weakly consistent replicated data.
In Conf. Parallel Distributed Info. Sys., Sept. 1994.

R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Sys., 4(2), 1979.
R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In OSDI, Dec. 2004.

VICCI. http://vicci.org/,2011.

H. Yu and A. Vahdat. Design and evaluation of a continuous consistency
model for replicated services. In OSDI, Oct. 2000.

http://thrift.apache.org/
https://github.com/vrv/FAWN-KV
http://memcached.org/
http://www.mysql.com/
http://www.postgresql.org/
http://project-voldemort.com/
http://code.google.com/p/snappy/
http://vicci.org/

A. FORMAL DEFINITION OF CAUSAL+

We first present causal consistency with convergent conflict handling
(causal+ consistency) for a system with only get and put operations
(reads and writes), and we then introduce get transactions. We use
a model closely derived from Ahamad et al. [2], which in turn was
derived from those used by Herlihy and Wing [26] and Misra [36].

Original Model of Causal Consistency [2] with terminology mod-
ified to match this paper’s definitions:

A system is a finite set of threads of execution, also called threads,
that interact via a key-value store that consists of a finite set of keys.
Let T ={#1,t,...,t,} be the set of threads. The local history L; of
a thread i is a sequence of get and put operations. If operation o
precedes o, in L;, we write o —[> o,. Ahistory H=(Ly, Ly, ..., Ly,)
is the collection of local histories for all threads of execution. A
serialization S of H is a linear sequence of all operations in H in
which each get on a key returns its most recent preceding put (or L if
there does not exist any preceding put). The serialization S respects
an order — if, for any operation oy and 0, in S, oy — 0, implies
o precedes 0, in S.

The puts-into order associates a put operation, put(k,v), with
each get operation, get(k)=v. Because there may be multiple puts
of a value to a key, there may be more than one puts-into order.'> A
puts-into order — on H is any relation with the following properties:

e If oy > 07, then there is a key k and value v such that operation
o :=put(k,v) and o, := get(k)=v.

e For any operation o, there exists at most one o, for which
o 0.

e If 0 := get(k)=v for some k,v and there exists no o, such
that o — 0, then v = L. That is, a get with no preceding put
must retrieve the initial value.

Two operations, oy and o, are related by a causal order ~» if and
only if one of the following holds:

e 0 — 0, for some 1; (o) precedes 0, in L;);
1

e 0| — 0, (0, gets the value put by o7); or
o There is some other operation o~ such that oy ~ o’ ~ 0.

Incorporating Convergent Conflict Handling. Two operations on
the same key, o-:=put(k,v;) and o,:=put(k,v,), are in conflict if
they are not related by causality: oy %> 0 and 0 7% 07y.

A convergent conflict handling function is an associative, com-
mutative function that operates on a set of conflicting operations on
a key to eventually produce one (possibly new) final value for that
key. The function must produce the same final value independent of
the order in which it observes the conflicting updates. In this way,
once every replica has observed the conflicting updates for a key,
they will all independently agree on the same final value.

We model convergent conflict handling as a set of handler threads
that are distinct from normal client threads. The handlers operate on
a pair of conflicting values (vy, ;) to produce a new value newval =
h(vy,v,). By commutativity, h(vy,v;) = h(v,,v). To produce the
new value, the handler thread had to read both v, and v, before
putting the new value, and so newval is causally ordered after both
original values: v; ~» newval and v, ~> newval.

With more than two conflicting updates, there will be multiple
invocations of handler threads. For three values, there are several
possible orders for resolving the conflicting updates in pairs:

12The COPS system uniquely identifies values with version numbers so
there is only one puts-into order, but this is not necessarily true for causal+
consistency in general.

16

01—>0q

02 013—> 0123
03— 023

The commutativity and associativity of the handler function en-
sures that regardless of the order, the final output will be identical.
Further, it will be causally ordered after all of the original conflicting
writes, as well as any intermediate values generated by the applica-
tion of the handler function. If the handler observes multiple pairs
of conflicting updates that produce the same output value (e.g., the
final output in the figure above), it must output only one value, not
multiple instances of the same value.

To prevent a client from seeing and having to reason about mul-
tiple, conflicting values, we restrict the put set for each client
thread to be conflict free, denoted p.;. A put set is conflict free
if Voj, 0k € pcs, 0j and o are not in conflict; that is, either they are
puts to different keys or causally-related puts to the same key. For
example, in the three conflicting put example, p. might include o,
012, and 07 23, but not 0, 03, 01 3, or 023. The conflict-free prop-
erty applies to client threads and not handler threads purposefully.
Handler threads must be able to get values from conflicting puts so
they may reason about and resolve them; client threads should not
see conflicts so they do not have to reason about them.

Adding handler threads models the new functionality that conver-
gent conflict handling provides. Restricting the put set strengthens
consistency from causal to causal+. There are causal executions that
are not causal+: for example, if oy and o, conflict, a client may get
the value put by oy and then the value put by o, in a causal, but not
causal+, system. On the other hand, there are no causal+ executions
that are not causal, because causal+ only introduces an additional
restriction (a smaller put set) to causal consistency.

If H is a history and #; is a thread, let A" pes comprise all operations
in the local history of #;, and a conﬂict—freé'set of putsin H, p.;. A
history H is causally consistent with convergent conflict handling
(causal+) if it has a causal order ~+, such that

Causal+: For each client thread of execution ¢;, there is a serial-

ization §; of A% ey, that respects ~-.

A data store is causal+ consistent if it admits only causal+ histories.

Introducing Get Transactions. To add get transactions to the
model, we redefine the puts-into order so that it associates N
put operations, put(k,v), with each get transaction of N values,
get_trans(lky,...,ky])=[vi,...,vy]. Now, a puts-into order
on H is any relation with the following properties:

e If 0| > 0, then there is a k and v such that 0| := put(k,v)
and 0, := get_trans([...,k,...])=[...,v,...]. Thatis, for
each component of a get transaction, there exists a preceding
put.

e For each component of a get transaction o, there exists at most
one o for which o — 0.

o Ifo,:=get_trans([...)k,...D=[...,v,...] for some k,v and
there exists no o; such that oy — o0, then v=_. That is, a get
with no preceding put must retrieve the initial value.

	Introduction
	ALPS Systems and Trade-offs
	Causal+ Consistency
	Definition
	Causal+ vs. Other Consistency Models
	Causal+ in COPS
	Scalable Causality

	System Design of COPS
	Overview of COPS
	The COPS Key-Value Store
	Client Library and Interface
	Writing Values in COPS and COPS-GT
	Reading Values in COPS
	Get Transactions in COPS-GT

	Garbage, Faults, and Conflicts
	Garbage Collection Subsystem
	Fault Tolerance
	Conflict Detection

	Evaluation
	Implementation and Experimental Setup
	Microbenchmarks
	Dynamic Workloads
	Scalability

	Related Work
	Conclusion
	Formal Definition of Causal+

