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Les CRDT : Cohérence sans contrôle de concurrence

Résumé : Un CRDT est un type de données dont toutes les opérations concurrentes sont
commutatives. Les répliques d’un CRDT convergent inéluctablement, sans nécessiter un
contrôle de concurrence complexe. Comme preuve d’existence, nous montrons un CRDT non
trivial : un tampon d’édition partagée appelé Treedoc. Nous en résumons la conception, la
mise en œuvre et les performances. Nous discutons les limites et les possibles généralisations
du concept.

Mots-clés : Réplication des données, réplication optimiste, opérations commutatives
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1 Introduction

Shared read-only data is easy to scale by using well-understood replication techniques. How-
ever, sharing mutable data at a large scale is a difficult problem, because of the CAP impos-
sibility result [5]. Two approaches dominate in practice. One ensures scalability by giving up
consistency guarantees, for instance using the Last-Writer-Wins (LWW) approach [7]. The
alternative guarantees consistency by serialising all updates, which does not scale beyond
a small cluster [12]. Optimistic replication allows replicas to diverge, eventually resolving
conflicts either by LWW-like methods or by serialisation [11].

In some (limited) cases, a radical simplification is possible. If concurrent updates to
some datum commute, and all of its replicas execute all updates in causal order, then
the replicas converge.1 We call this a Commutative Replicated Data Type (CRDT). The
CRDT approach ensures that there are no conflicts, hence, no need for consensus-based
concurrency control. CRDTs are not a universal solution, but, perhaps surprisingly, we
were able to design highly useful CRDTs. This new research direction is promising as it
ensures consistency in the large scale at a low cost, at least for some applications.

A trivial example of a CRDT is a set with a single add-element operation. A delete-
element operation can be emulated by adding “deleted” elements to a second set. This
suffices to implement a mailbox [1]. However, this is not practical, as the data structures
grow without bound. A more interesting example is WOOT, a CRDT for concurrent editing
[9], pioneering but inefficient, and its successor Logoot [13].

As an existence proof of non-trivial, useful, practical and efficient CRDT, we exhibit
one that implements an ordered set with insert-at-position and delete operations. It is
called Treedoc, because sequence elements are identified compactly using a naming tree,
and because its first use was concurrent document editing [10]. Its design presents original
solutions to scalability issues, namely restructuring the tree without violating commutativity,
supporting very large and variable numbers of writable replicas, and leveraging the data
structure to ensure causal ordering without vector clocks.

Another non-trivial CRDT that we developed (but we do not describe here) is a high-
performance shared, distributed graph structure, the multilog [2].

While the advantages of commutativity are well documented, we are the first (to our
knowledge) to address the design of CRDTs. In future work, we plan to explore what other
interesting CRDTs may exist, and what are the theoretical and practical requirements for
CRDTs.

The contributions of this paper are the following: We exhibit a non-trivial, practical,
efficient CRDT. We address practical issues in CRDT design such as indefinite growth,
identifier size, restructuring and garbage collection. We present a novel approach side-
stepping the non-scalability of consensus when dealing with dynamic, varying numbers of
sites. We present some experimental data based on Wikipedia traces.

1 Technically, LWW operations commute; however they achieve this by throwing away non-winning
operations. We aim instead for genuine commutativity that does not lose work, i.e., the output should
reflect the cumulative effect of the operations.
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The paper proceeds as follows. This introduction is Section 1. Section 2 presents our
ordered-sequence CRDT abstraction. Section 3 examines the trace data and experimental
performance of our CRDT. In Section 4 we present our solutions to some specific scalability
issues. Section 5 discusses lessons learned and possible generalisations. Section 6 concludes
and outlines future work.

2 An ordered-set CRDT

We begin by considering the requirements of a CRDT providing the abstraction of an ordered
sequence of (opaque) atoms.

2.1 Model

We consider a collection of sites (i.e., networked computers), each carrying a replica of a
shared ordered-set object, and connected by a reliable broadcast protocol (e.g., epidemic
communication). We support a peer-to-peer, multi-master execution model: some arbitrary
site initiates an update and executes it against its local replica; each other site eventually
receives the operation and replays it against its own replica. All sites eventually receive
and execute all operations; causally-related operations execute in order, but concurrent
operations may execute in different orders at different sites.

The update operations of the ordered-set abstraction are the following:� insert(ID,newatom), where ID is a fresh identifier. This operation adds atom newatom
to the ordered-set.� delete(ID), deletes the atom identified ID from the ordered-set.

Two inserts or deletes that refer to different IDs commute. Furthermore, operations are
idempotent, i.e., inserting or deleting the same ID any number of times has the same effect
as once. To ensure commutativity of concurrent inserts, we only need to ensure that no two
IDs are equal across sites. Our ID allocation mechanism will be described next.

2.2 Identifiers

Atom identifiers must have the following properties: (i) Two replicas of the same atom (in
different replicas of the ordered-set) have the same identifier. (ii) No two atoms have the
same identifier. (iii) An atom’s identifier remains constant for the entire lifetime of the
ordered-set.2 (iv) There is a total order “<” over identifiers, which defines the ordering of
the atoms in the ordered-set. (v) The identifier space is dense.

Property (v) means that between any two identifiers P and F , P < F , we can allocate a
fresh identifier N , such that P < N < F . Thus, we are able to insert a new atom between
any two existing ones.

2 Later in this paper we will weaken this property.
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Figure 1: Example Treedoc. The TID for ”b” is 0; the TID of ”c” is the empty string; the
TID of ”d” is 10.
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 Figure 2: A treedoc major node
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Figure 3: A treedoc node with disambiguators

The set of real numbers R is dense, but cannot be used for our purpose, because, as
atoms are inserted, the precision required will grow without bound. We outline a simpler
solution next.

2.3 The Treedoc CRDT

In Treedoc, an atom identifier, henceforth called a TID, represents a path in a tree. If the tree
is balanced, the average TID size is logarithmic in the number of atoms. We experimented
with both binary and 256-ary trees; for lack of space we present only the binary version.
The order “<” is infix traversal order (i.e., left to right). Figure 1 shows a binary Treedoc
that contains the text ”abcdef”.

In a distributed environment, different sites might concurrently allocate the same TID.
To avoid this, we extend the basic tree structure, allowing a node to contain a number of
internal nodes, called mini-nodes. A node containing mini-nodes will be called a major node.
Figure 2 shows an example major node. Inside a major node, mini-nodes are distinguished
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by a disambiguator that identifies the site that inserted the node. Disambiguators are unique
and ordered, giving a total order between entries in the ordered-set.

Figure 3 shows a Treedoc structure with disambiguators represented at every node. Site
A with disambiguator dA inserted atom a, site B inserted atom b, and so on. Mini-nodes
are traversed in disambiguator order.

2.4 Treedoc insert and delete

We now describe the ordered-set update operations, insert and delete. We start with delete,
the simpler of the two. A delete(TID) simply discards the atom associated with TID . We
retain the corresponding tree node and mark it as a tombstone. (In certain cases, out of the
scope of this short paper, a tombstone may be discarded immediately.)

To insert an atom, the initiator site chooses a fresh TID that positions it as desired
relative to the other atoms. For instance, to insert an atom R to the right of atom L: � If L

does not have a right child, the TID of R is the TID of L concatenated with 1 (R becomes
the right child of L). � Otherwise, if L has a right child Q, then allocate the TID of the
leftmost position of the subtree rooted at Q.

2.5 Restructuring the tree

In the approach described so far, depending on the pattern of inserts and deletes, the
tree may become badly unbalanced or riddled with tombstones. To alleviate this problem,
the new restructuring operation flatten transforms a tree into a flat array, eliminating all
storage overhead. As a flat array can equivalently be interpreted as a balanced tree, there is
no need for the inverse operation. As the flattening operation changes the TIDs, we modify
Property (iii) of Section 2.2 to allow non-ambiguous renaming.

However, flattening does not genuinely commute with update operations. We solve this
using an update-wins approach: if a flatten occurs concurrently with an update, the update
wins, and the flatten aborts with no effect. We use a two-phase commit protocol for this
purpose (or, better, a fault-tolerant variant such as Paxos Commit [6]). The site that
initiates the flatten acts as the coordinator and collects the votes of all other sites. Any site
that detects an update concurrent to the flatten votes “no”, otherwise it votes “yes.” The
coordinator aborts the flatten if any site voted “no” or if some site is crashed. Commitment
protocols are problematic in large-scale and dynamic systems; in Section 4 we explain how
we solve this issue.

3 Experiments

We ran a series of experiments based on cooperative editing traces.
A number of Wikipedia pages were stored as Treedocs, interpreting differences between

successive versions of a page as a series of inserts and deletes. In some experiments our
atoms were words; in the ones reported here an atom is a whole paragraph. We also ran
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Figure 4: Treedoc size over time (GWB page)

similar experiments based on traces of SVN repositories containing LaTeX Java source code.
A common observation across all experiments is that the number of deletes is surprisingly
high.

We studied medium-sized Wikipedia pages such as “Distributed Computing,” reaching
20KB of text in 800 revisions, or “PowerPC” reaching 25KB in 400 revisions. Applying all
the revisions for these pages required less than 1 second when using paragraphs as atoms,
and 2 seconds using words. We also studied some frequently-edited pages, e.g., “George W.
Bush” (GWB) reaching 150KB in 40, 000 revisions. Because of vandalism, the GWB page
contains an even higher proportion of deletes (in the absence of flattening, 95% of nodes
would be tombstones).

Hereafter we report only on the most stressful benchmark, i.e., the GWB traces, with a
256-ary tree, and full paragraphs as atoms, flattening every 1, 000 revisions; 1, 000 successive
revisions may include up to 100, 000 update operations.

Figure 4 shows the size of the GWB Treedoc structure over the first 350, 000 edit opera-
tions of the GWB page. Size increases with successive edits, then falls dramatically at each
periodic flattening. The decrease is attributable mostly to discarding tombstones, but also
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Figure 5: Execution time per operation (GWB page)

to improved balance of the tree: thus, the average TID size shrinks from 60 bytes before
flattening to only 2 bytes.

Figure 5 shows execution time per operation. Again, flattening has dramatic effect.
Without flattening, the per-operation time would grow up to 3ms. Periodic flattening
decreases the depth of the tree to 2-3 levels, and the slowest update takes only 0.3 ms.

From this we can estimate the scalability of Treedoc for concurrent updating. Assume
that every site continuously initiates one update every 3 seconds. Then the system can
sustain 1, 000 simultaneous users without flattening, and 10, 000 when flattening at 1, 000-
revision intervals.

4 Treedoc in the large scale

The CRDT approach guarantees that replicas converge. However, we saw that metadata
accumulates over time, with a big impact on performance, and must be garbage-collected
from time to time. The attendant commitment or consensus is a problem for scalability. In
this section, we explain how Treedoc addresses this issue.

INRIA
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4.1 Supporting large and dynamic numbers of replicas

Commitment requires the unanimous agreement of a well-identified set of sites. This is
problematic in a large-scale system, where sites fluctuate dynamically. In scenarios such as
collaborative editing, new participants may enter at any time, leave the system definitely,
or disconnect for an unpredictable period of time, while continuing to initiate updates.

To solve this problem, we partition the sites in two disjoint subsets. The core consists of
a small group of sites that are well-known and well-connected. In the limit, the core could
reduce to a single server. The sites that are not in the core are part of the nebula. Only
core sites participate in commitment.

4.2 Nebula catch-up protocol

Let us call an interval between successful flattens an epoch. Each flatten – each change of
epoch – changes the frame of reference for TIDs: TIDs from some epoch are invalid in other
epochs, and sites may exchange updates only if in the same epoch. Core sites are in the
same epoch by construction, but a nebula site may lag behind.

In order to communicate with the nebula, a core site executes a catch-up protocol, which
we now describe at a high level. To simplify the description, assume that the core and the
nebula sites started from the same initial state, and that the core executed a single flatten
since then: If the core is in epoch n (the “new” epoch), the nebula is in epoch n− 1 (“old”
epoch). Updates in the old epoch use “old” TIDs, whereas those in the new epoch use “new”
TIDs.

A core site maintains a buffer of update messages that it needs to send to the nebula,
some in the old epoch, some in the new one. Conversely, a nebula site maintains a buffer of
update messages to be sent to the core; they are all in the old epoch.

Old messages buffered in the core can be sent to the nebula site (operating in the old
epoch) and replayed there. However, the converse is not true: since the core is in the new
epoch, it cannot replay old updates from the nebula. The nebula must first bring them into
the new epoch. To this effect, and once it has applied all old core updates, the nebula site
flattens its local replica of the tree, using the tree itself to keep track of the mapping between
old and new TIDs. Then it translates old TIDs in buffered messages into the corresponding
new TIDs. At this point, the nebula site is in the new epoch. (It may now either join the
core, or remain in the nebula.) Finally, it sends its buffered messages to the core, which can
now replay them.

Since epochs are totally ordered, and since every nebula site will go through the same
catch-up protocol, concurrent updates remain commutative, even if initiated in different
epochs.

4.3 Core/nebula requirements

The requirements for managing the core and nebula follow from the above description.
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Joining or leaving the core follows a membership protocol [3]. All core sites participate
in flattening. Core sites may freely initiate updates and replay each others’.

Sites in the nebula are assumed to be uniquely identified (for disambiguators), but are
otherwise unrestricted. The nebula may contain any number of sites, which are connected to
the network or disconnected. Nebula sites may freely initiate updates, but do not participate
in commitment.

Two sites may send updates to each other, and replay each others’ updates, if and only
if they are in the same epoch.

4.4 TID translation algorithm

We now describe in more detail how a nebula site translates TIDs from the old to the new
epoch. It needs to distinguish operations that were received from the core and are serialised
before the flatten, from those initiated locally or received from other nebula sites, which
must be serialised after the flatten. For this purpose we colour the corresponding nodes
either Cyan (C for Core) or Black (Noir in French, N for Nebula).

Thus we distinguish cyan nodes, cyan tombstones, black nodes and black tombstones. A
node can be both a cyan node and a black tombstone; the converse is not possible.

We will now describe the steps that a nebula site needs to take in order to execute a
flatten operation. We will assume that all the operations from the core issued prior to the
flatten have been executed as well as some black operations, some local and some from other
nebula sites. Once the flatten is performed the site will be able to send the black operations
to the core. The flatten will construct list of subtrees, each having as root a cyan node.

The first step is to go through the tree and examine only cyan nodes and tombstones.
We ensure that a sentinel node nb always exists to mark the beginning of the ordered-set
and to ensure the tree is not empty. We identify the following cases:� cyan node (can also be a black tombstone) - add to the list along with any black

children it has� cyan tombstone - add any black children to the subtree of the last node in the
flattened list. We preserve the correct order by adding at the end of the subtree. If
no cyan nodes have been seen so far, we add the black children to nb.

The second step is to create the new balanced tree from the roots of the subtrees stored
in the linear list. The nodes that have black children will be transformed into major nodes
if both a cyan child and a black child should be placed on the same position.

The last step is to go though the new tree and generate the update operations to be sent
to the core. We examine only black nodes and tombstones:� black node - send insert operation with this TID and atom� black tombstone - send delete operation with this TID

INRIA
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When a nebula site connects to the core, it sends not only black operations generated lo-
cally, but also operations received from other nebula sites. It may happen that a site receives
the same update multiple times, but this causes no harm since updates are idempotent.

4.5 Approximate causal ordering

Vector clocks are commonly used to ensure causal ordering and to suppress duplicate mes-
sages. We observe that causal ordering is already encoded in the Treedoc structure: insert-
ing some node always happens-before inserting some descendant of that node, and always
happens-before the deletion of the same node. Operations on unrelated nodes, even if one
happened-before the other, can execute in any order. Furthermore, duplicate messages are
inefficient but cause no harm, since operations are idempotent. Therefore, a precise vector
clock is not necessary; approximate variants that are scalable may be sufficient as long as
they suppress a good proportion of duplicates.

5 Discussion

Massive distributed computing environments, such as Zookeeper or Dynamo [4], replicate
data to achieve high availability, performance and durability. Achieving strong consistency
in such environments is inherently difficult and requires a non-scalable consensus; however
in the absence of consistency, application programmers are faced with overwhelming com-
plexity. For some applications, eventual consistency is sufficient [4], but complexity and
consensus are hiding under a different guise, namely of conflict detection and resolution.

In this paper we propose to use CRDTs because they ensure eventual consistency without
requiring consensus. Although garbage collection is based on consensus, it remains outside
the critical path of the application and hidden inside the abstraction boundary.

Not all abstractions can be converted into a CRDT: for instance a queue or a stack rely
on a strong invariant (a total order) that inherently requires consensus. Treedoc on the
other hand maintains a local, partial order, and the outcome of its operations need not be
unique.

Even when an abstraction is not a CRDT, it is very useful to design it so that most
pairs of operations commute when concurrent. Those pairs can benefit from cheap, high-
performance protocols, resorting to consensus only for non-commuting pairs [8].

Generalising from Treedoc and Multilog (see Introduction) teaches us a few interesting
lessons about the requirements for CRDTs. To commute, operations must have identical pre-
condition; in practice, all operations should have pre-condition “true.” A central requirement
is the use of unique, unchanging identifiers. To be practical, the data structure must remain
compact; we ensure this by using an ever-growing tree, ensuring that metadata and identifiers
remain compact (logarithmic in the size of the data).
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6 Conclusion

The Commutative Replicated Data Type or CRDT is designed to make concurrent opera-
tions commute. This removes the need for complex concurrency control allowing operations
to be executed in different orders and still have replicas converge to the same result. CRDTs
enable increased performance and scalability compared to classical approaches.

Although designing a CRDT to satisfy certain requirements is not always possible, loos-
ening invariants or precision constraints should allow the design of commutative operations.

We have proposed a CRDT called Treedoc that maintains an ordered set of atoms while
providing insert and delete operations. To overcome the challenges of practicality and scala-
bility, we explored some innovative solutions. Each atom has a unique, system-wide, compact
identification that does not change between flattens. Garbage collection is a requirement in
practice; it is disruptive and requires consensus, but it has lower precedence that updates,
and it is not in the critical path of applications. We side-step the non-scalability of consensus
by dividing sites into two categories with different roles. CRDTs require causal ordering,
but since the Treedoc metadata encodes causal ordering implicitly, it does not need to be
maintained strictly at the system level; this enables the use of scalable approximations of
vector clocks.

Our future work includes searching for other CRDTs as well as studying the interaction
between CRDTs and classical data structures.
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