TAO: Facebook’s Distributed Data Store for the Social Graph

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, Venkat Venkataramani
Facebook, Inc.

Abstract

We introduce a simple data model and API tailored for
serving the social graph, and TAO, an implementation
of this model. TAO is a geographically distributed data
store that provides efficient and timely access to the so-
cial graph for Facebook’s demanding workload using a
fixed set of queries. It is deployed at Facebook, replac-
ing memcache for many data types that fit its model. The
system runs on thousands of machines, is widely dis-
tributed, and provides access to many petabytes of data.
TAO can process a billion reads and millions of writes
each second.

1 Introduction

Facebook has more than a billion active users who record
their relationships, share their interests, upload text, im-
ages, and video, and curate semantic information about
their data [2]. The personalized experience of social ap-
plications comes from timely, efficient, and scalable ac-
cess to this flood of data, the social graph. In this paper
we introduce TAO, a read-optimized graph data store we
have built to handle a demanding Facebook workload.

Before TAO, Facebook’s web servers directly ac-
cessed MySQL to read or write the social graph, aggres-
sively using memcache [21] as a lookaside cache. TAO
implements a graph abstraction directly, allowing it to
avoid some of the fundamental shortcomings of a looka-
side cache architecture. TAO continues to use MySQL
for persistent storage, but mediates access to the database
and uses its own graph-aware cache.

TAO is deployed at Facebook as a single geograph-
ically distributed instance. It has a minimal API and
explicitly favors availability and per-machine efficiency
over strong consistency; its novelty is its scale: TAO can
sustain a billion reads per second on a changing data set
of many petabytes.

Overall, this paper makes three contributions. We mo-
tivate (§ 2) and characterize (§ 7) a challenging work-
load: efficient and available read-mostly access to a
changing graph. We describe objects and associations, a
data model and API that we use to access the graph (§ 3).
Lastly, we detail TAO, a geographically distributed sys-
tem that implements this API (§§ 4-6), and evaluate its
performance on our workload (§ 8).

a) Alice was at the Golden Gate Bridge 'with Bob

Cathy : Wish we were there! David | likes this

id: 105, otype: USER
name: Alice

id: 244, otype: USER
name: Bob
(.

b)
name: Golden Gate Bridge

id: 534, otype: LOCATION
loc: 37°49'11"N, 122°28'43"W

K TAGGED
TAGGED_AT

g

id: 379, otype: USER
name: Cathy

FRIEND
FRIEND

atype: COMMENT
time: 1334511670

id: 471, otype: USER

. text: Wish we were there!
name: David

id: 771, otype: COMMENT }

Figure 1: A running example of how a user’s checkin
might be mapped to objects and associations.

2 Background

A single Facebook page may aggregate and filter hun-
dreds of items from the social graph. We present each
user with content tailored to them, and we filter every
item with privacy checks that take into account the cur-
rent viewer. This extreme customization makes it infeasi-
ble to perform most aggregation and filtering when con-
tent is created; instead we resolve data dependencies and
check privacy each time the content is viewed. As much
as possible we pull the social graph, rather than pushing
it. This implementation strategy places extreme read de-
mands on the graph data store; it must be efficient, highly
available, and scale to high query rates.

2.1 Serving the Graph from Memcache

Facebook was originally built by storing the social graph
in MySQL, querying it from PHP, and caching results
in memcache [21]. This lookaside cache architecture is
well suited to Facebook’s rapid iteration cycles, since all

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 49

of the data mapping and cache-invalidation computations
are in client code that is deployed frequently. Over time
a PHP abstraction was developed that allowed develop-
ers to read and write the objects (nodes) and associations
(edges) in the graph, and direct access to MySQL was
deprecated for data types that fit the model.

TAO is a service we constructed that directly imple-
ments the objects and associations model. We were mo-
tivated by encapsulation failures in the PHP API, by the
opportunity to access the graph easily from non-PHP
services, and by several fundamental problems with the
lookaside cache architecture:

Inefficient edge lists: A key-value cache is not a good
semantic fit for lists of edges; queries must always fetch
the entire edge list and changes to a single edge require
the entire list to be reloaded. Basic list support in a looka-
side cache would only address the first problem; some-
thing much more complicated is required to coordinate
concurrent incremental updates to cached lists.

Distributed control logic: In a lookaside cache archi-
tecture the control logic is run on clients that don’t com-
municate with each other. This increases the number of
failure modes, and makes it difficult to avoid thundering
herds. Nishtala et al. provide an in-depth discussion of
the problems and present leases, a general solution [21].
For objects and associations the fixed API allows us to
move the control logic into the cache itself, where the
problem can be solved more efficiently.

Expensive read-after-write consistency: Facebook
uses asynchronous master/slave replication for MySQL,
which poses a problem for caches in data centers using a
replica. Writes are forwarded to the master, but some
time will elapse before they are reflected in the local
replica. Nishtala et al.’s remote markers [21] track keys
that are known to be stale, forwarding reads for those
keys to the master region. By restricting the data model
to objects and associations we can update the replica’s
cache at write time, then use graph semantics to interpret
cache maintenance messages from concurrent updates.
This provides (in the absence of multiple failures) read-
after-write consistency for all clients that share a cache,
without requiring inter-regional communication.

2.2 TAO’s Goal

TAO provides basic access to the nodes and edges of a
constantly changing graph in data centers across multiple
regions. It is optimized heavily for reads, and explicitly
favors efficiency and availability over consistency.

A system like TAO is likely to be useful for any ap-
plication domain that needs to efficiently generate fine-
grained customized content from highly interconnected
data. The application should not expect the data to be
stale in the common case, but should be able to tolerate
it. Many social networks fit in this category.

3 TAO Data Model and API

Facebook focuses on people, actions, and relationships.
We model these entities and connections as nodes and
edges in a graph. This representation is very flexible;
it directly models real-life objects, and can also be used
to store an application’s internal implementation-specific
data. TAO’s goal is not to support a complete set of graph
queries, but to provide sufficient expressiveness to han-
dle most application needs while allowing a scalable and
efficient implementation.

Consider the social networking example in Figure 1a,
in which Alice used her mobile phone to record her visit
to a famous landmark with Bob. She ‘checked in’ to
the Golden Gate Bridge and ‘tagged’ Bob to indicate
that he is with her. Cathy added a comment that David
has ‘liked.” The social graph includes the users (Alice,
Bob, Cathy, and David), their relationships, their actions
(checking in, commenting, and liking), and a physical
location (the Golden Gate Bridge).

Facebook’s application servers would query this
event’s underlying nodes and edges every time it is ren-
dered. Fine-grained privacy controls mean that each user
may see a different view of the checkin: the individual
nodes and edges that encode the activity can be reused
for all of these views, but the aggregated content and the
results of privacy checks cannot.

3.1 Objects and Associations

TAO objects are typed nodes, and TAO associations
are typed directed edges between objects. Objects are
identified by a 64-bit integer (id) that is unique across all
objects, regardless of object type (otype). Associations
are identified by the source object (idl), association
type (atype) and destination object (id2). At most one
association of a given type can exist between any two
objects. Both objects and associations may contain
data as key—value pairs. A per-type schema lists the
possible keys, the value type, and a default value. Each
association has a 32-bit time field, which plays a central

role in queries!.

Object: (id) — (otype, (key — value)x)
Assoc.: (id1, atype, id2) — (time, (key — value)x)

Figure 1b shows how TAO objects and associations
might encode the example, with some data and times
omitted for clarity. The example’s users are represented
by objects, as are the checkin, the landmark, and Cathy’s
comment. Associations capture the users’ friendships,
authorship of the checkin and comment, and the binding
between the checkin and its location and comments.

IThe time field is actually a generic application-assigned integer.

50 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

Actions may be encoded either as objects or associ-
ations. Both Cathy’s comment and David’s ‘like’ repre-
sent actions taken by a user, but only the comment results
in a new object. Associations naturally model actions
that can happen at most once or record state transitions,
such as the acceptance of an event invitation, while re-
peatable actions are better represented as objects.

Although associations are directed, it is common for
an association to be tightly coupled with an inverse edge.
In this example all of the associations have an inverse
except for the link of type COMMENT. No inverse
edge is required here since the application does not tra-
verse from the comment to the CHECKIN object. Once
the checkin’s id is known, rendering Figure la only re-
quires traversing outbound associations. Discovering the
checkin object, however, requires the inbound edges or
that an id is stored in another Facebook system.

The schemas for object and association types describe
only the data contained in instances. They do not impose
any restrictions on the edge types that can connect to a
particular node type, or the node types that can terminate
an edge type. The same atype is used to represent au-
thorship of the checkin object and the comment object in
Figure 1, for example. Self-edges are allowed.

3.2 Object API

TAQ’s object API provides operations to allocate a new
object and id, and to retrieve, update, or delete the object
associated with an id. A notable omission is a compare-
and-set functionality, whose usefulness is substantially
reduced by TAO’s eventual consistency semantics. The
update operation can be applied to a subset of the fields.

3.3 Association API

Many edges in the social graph are bidirectional, ei-
ther symmetrically like the example’s FRIEND rela-
tionship or asymmetrically like AUTHORED and AU-
THORED_BY. Bidirectional edges are modeled as two
separate associations. TAO provides support for keeping
associations in sync with their inverses, by allowing as-
sociation types to be configured with an inverse type. For
such associations, creations, updates, and deletions are
automatically coupled with an operation on the inverse
association. Symmetric bidirectional types are their own
inverses. The association write operations are:

* assoc_add(idl, atype, id2, time, (k—v)*) -
Adds or overwrites the association (id1, atype,id2),
and its inverse (id1, inv(atype), id2) if defined.

* assoc_delete(id1, atype, id2) — Deletes the asso-
ciation (id1, atype, id2) and the inverse if it exists.

* assoc_change_type(idl, atype, id2, newtype)
— Changes the association (id1, atype, id2) to (id1,
newtype, id2), if (id1, atype, id2) exists.

3.4 Association Query API

The starting point for any TAO association query is an
originating object and an association type. This is the
natural result of searching for a specific type of informa-
tion about a particular object. Consider the example in
Figure 1. In order to display the CHECKIN object, the
application needs to enumerate all tagged users and the
most recently added comments.

A characteristic of the social graph is that most of the
data is old, but many of the queries are for the newest
subset. This creation-time locality arises whenever an
application focuses on recent items. If the Alice in Fig-
ure 1 is a famous celebrity then there might be thousands
of comments attached to her checkin, but only the most
recent ones will be rendered by default.

TAO’s association queries are organized around asso-
ciation lists. We define an association list to be the list of
all associations with a particular id1 and atype, arranged
in descending order by the time field:

Association List: (id1, atype) — [anew - - - dold]

For example, the list (i, COMMENT) has edges to the
example’s comments about i, most recent first.

TAO’s queries on associations lists:

 assoc_get(idl, atype, id2set, high?, low?) -
returns all of the associations (id1, atype, id2) and
their time and data, where id2 € id2set and high
> time > low (if specified). The optional time
bounds are to improve cacheability for large asso-
ciation lists (see § 5).

* assoc_count(idl, atype) — returns the size of the
association list for (id1, atype), which is the num-
ber of edges of type atype that originate at id1.

* assoc_range(idl, atype, pos, limit) — returns el-
ements of the (id1, atype) association list with in-
dex i € [pos, pos + limit).

* assoc_time_range(id1l, atype, high, low, limit)
— returns elements from the (id1, atype) association
list, starting with the first association where time <
high, returning only edges where time > low.

TAO enforces a per-atype upper bound (typically
6,000) on the actual limit used for an association query.
To enumerate the elements of a longer association list
the client must issue multiple queries, using pos or high
to specify a starting point.

For the example shown in Figure 1 we can map some
possible queries to the TAO API as follows:

¢ “50 most recent comments on Alice’s checkin” =
assoc_range(632, COMMENT, 0, 50)

» “How many checkins at the GG Bridge?” =
assoc_count(534, CHECKIN)

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 51

4 TAO Architecture

In this section we describe the units that make up TAO,
and the multiple layers of aggregation that allow it to
scale across data centers and geographic regions. TAO
is separated into two caching layers and a storage layer.

4.1 Storage Layer

Objects and associations were stored in MySQL at Face-
book even before TAO was built; it was the backing store
for the original PHP implementation of the API. This
made it the natural choice for TAO’s persistent storage.

The TAO API is mapped to a small set of simple
SQL queries, but it could also be mapped efficiently to
range scans in a non-SQL data storage system such as
LevelDB [3] by explicitly maintaining the required in-
dexes. When evaluating the suitability of a backing store
for TAO, however, it is important to consider the data
accesses that don’t use the API. These include back-
ups, bulk import and deletion of data, bulk migrations
from one data format to another, replica creation, asyn-
chronous replication, consistency monitoring tools, and
operational debugging. An alternate store would also
have to provide atomic write transactions, efficient gran-
ular writes, and few latency outliers.

Given that TAO needs to handle a far larger volume of
data than can be stored on a single MySQL server, we
divide data into logical shards. Each shard is contained
in a logical database. Database servers are responsible
for one or more shards. In practice, the number of shards
far exceeds the number of servers; we tune the shard to
server mapping to balance load across different hosts. By
default all object types are stored in one table, and all
association types in another.

Each object id contains an embedded shard_id that
identifies its hosting shard. Objects are bound to a shard
for their entire lifetime. An association is stored on the
shard of its id1, so that every association query can be
served from a single server. Two ids are unlikely to map
to the same server unless they were explicitly colocated
at creation time.

4.2 Caching Layer

TAO’s cache implements the complete API for clients,
handling all communication with databases. The caching
layer consists of multiple cache servers that together
form a tier. A tier is collectively capable of responding to
any TAO request. (We also refer to the set of databases
in one region as a tier.) Each request maps to a single
cache server using a sharding scheme similar to the one
described in § 4.1. There is no requirement that tiers have
the same number of hosts.

Clients issue requests directly to the appropriate cache
server, which is then responsible for completing the read

or write. For cache misses and write requests, the server
contacts other caches and/or databases.

The TAO in-memory cache contains objects, associ-
ation lists, and association counts. We fill the cache on
demand and evict items using a least recently used (LRU)
policy. Cache servers understand the semantics of their
contents and use them to answer queries even if the exact
query has not been previously processed, e.g. a cached
count of zero is sufficient to answer a range query.

Write operations on an association with an inverse
may involve two shards, since the forward edge is stored
on the shard for id1 and the inverse edge is on the shard
for id2. The tier member that receives the query from
the client issues an RPC call to the member hosting id2,
which will contact the database to create the inverse asso-
ciation. Once the inverse write is complete, the caching
server issues a write to the database for id1l. TAO does
not provide atomicity between the two updates. If a
failure occurs the forward may exist without an inverse;
these hanging associations are scheduled for repair by an
asynchronous job.

4.3 Client Communication Stack

It is common for hundreds of objects and associations
to be queried while rendering a Facebook page, which is
likely to require communication with many cache servers
in a short period of time. The challenges of the resulting
all-to-all communication are similar to those faced by our
memcache pools. TAO and memcache share most of the
client stack described by Nishtala et al. [21]. The latency
of TAO requests can be much higher than those of mem-
cache, because TAO requests may access the database,
so to avoid head-of-line blocking on multiplexed connec-
tions we use a protocol with out-of-order responses.

4.4 Leaders and Followers

In theory a single cache tier could be scaled to handle any
foreseeable aggregate request rate, so long as shards are
small enough. In practice, though, large tiers are prob-
lematic because they are more prone to hot spots and they
have a quadratic growth in all-to-all connections.

To add servers while limiting the maximum tier size
we split the cache into two levels: a leader tier and mul-
tiple follower tiers. Some of TAO’s advantages over a
lookaside cache architecture (as described in § 2.1) rely
on having a single cache coordinator per database; this
split allows us to keep the coordinators in a single tier
per region. As in the single-tier configuration, each tier
contains a set of cache servers that together are capable
of responding to any TAO query; that is, every shard in
the system maps to one caching server in each tier. Lead-
ers (members of the leader tier) behave as described in
§ 4.2, reading from and writing to the storage layer. Fol-

52 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

lowers (members of follower tiers) will instead forward
read misses and writes to a leader. Clients communicate
with the closest follower tier and never contact leaders
directly; if the closest follower is unavailable they fail
over to another nearby follower tier.

Given this two-level caching hierarchy, care must be
taken to keep TAO caches consistent. Each shard is
hosted by one leader, and all writes to the shard go
through that leader, so it is naturally consistent. Follow-
ers, on the other hand, must be explicitly notified of up-
dates made via other follower tiers.

TAO provides eventual consistency [33, 35] by asyn-
chronously sending cache maintenance messages from
the leader to the followers. An object update in the leader
enqueues invalidation messages to each corresponding
follower. The follower that issued the write is updated
synchronously on reply from the leader; a version num-
ber in the cache maintenance message allows it to be ig-
nored when it arrives later. Since we cache only con-
tiguous prefixes of association lists, invalidating an as-
sociation might truncate the list and discard many edges.
Instead, the leader sends a refill message to notify follow-
ers about an association write. If a follower has cached
the association, then the refill request triggers a query to
the leader to update the follower’s now-stale association
list. § 6.1 discusses the consistency of this design and
also how it tolerates failures.

Leaders serialize concurrent writes that arrive from
followers. Because a single leader mediates all of the
requests for an id1, it is also ideally positioned to protect
the database from thundering herds. The leader ensures
that it does not issue concurrent overlapping queries to
the database and also enforces a limit on the maximum
number of pending queries to a shard.

4.5 Scaling Geographically

The leader and followers configuration allows TAO to
scale to handle a high workload, since read throughput
scales with the total number of follower servers in all
tiers. Implicit in the design, however, is the assumption
that the network latencies from follower to leader and
leader to database are low. This assumption is reasonable
if clients are restricted to a single data center, or even to
a set of data centers in close proximity. It is not true,
however, in our production environment.

As our social networking application’s computing and
network requirements have grown, we have had to ex-
pand beyond a single geographical location: today, fol-
lower tiers can be thousands of miles apart. In this con-
figuration, network round trip times can quickly become
the bottleneck of the overall architecture. Since read
misses by followers are 25 times as frequent as writes in
our workloads, we chose a master/slave architecture that
requires writes to be sent to the master, but that allows

Master Region for Shard

Clients

Slave Region for Shard

Followers Followers
Leader Leader

Cache Cache

Master DB

Slave DB

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave is made separately for each shard.

read misses to be serviced locally. As with the leader/-
follower design, we propagate update notifications asyn-
chronously to maximize performance and availability, at
the expense of data freshness.

The social graph is tightly interconnected; it is not pos-
sible to group users so that cross-partition requests are
rare. This means that each TAO follower must be local
to a tier of databases holding a complete multi-petabyte
copy of the social graph. It would be prohibitively ex-
pensive to provide full replicas in every data center.

Our solution to this problem is to choose data center
locations that are clustered into only a few regions, where
the intra-region latency is small (typically less than 1 mil-
lisecond). It is then sufficient to store one complete copy
of the social graph per region. Figure 2 shows the overall
architecture of the master/slave TAO system.

Followers behave identically in all regions, forwarding
read misses and writes to the local region’s leader tier.
Leaders query the local region’s database regardless of
whether it is the master or slave. Writes, however, are
forwarded by the local leader to the leader that is in the
region with the master database. This means that read
latency is independent of inter-region latency.

The master region is controlled separately for each
shard, and is automatically switched to recover from the
failure of a database. Writes that fail during the switch
are reported to the client as failed, and are not retried.
Note that since each cache hosts multiple shards, a server
may be both a master and a slave at the same time. We
prefer to locate all of the master databases in a single re-
gion. When an inverse association is mastered in a differ-
ent region, TAO must traverse an extra inter-region link
to forward the inverse write.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 53

TAO embeds invalidation and refill messages in the
database replication stream. These messages are deliv-
ered in a region immediately after a transaction has been
replicated to a slave database. Delivering such messages
earlier would create cache inconsistencies, as reading
from the local database would provide stale data. At
Facebook TAO and memcache use the same pipeline for
delivery of invalidations and refills [21].

If a forwarded write is successful then the local leader
will update its cache with the fresh value, even though
the local slave database probably has not yet been up-
dated by the asynchronous replication stream. In this
case followers will receive two invalidates or refills from
the write, one that is sent when the write succeeds and
one that is sent when the write’s transaction is replicated
to the local slave database.

TAQO’s master/slave design ensures that all reads can
be satisfied within a single region, at the expense of po-
tentially returning stale data to clients. As long as a user
consistently queries the same follower tier, the user will
typically have a consistent view of TAO state. We discuss
exceptions to this in the next section.

5 Implementation

Previous sections describe how TAO servers are aggre-
gated to handle large volumes of data and query rates.
This section details important optimizations for perfor-
mance and storage efficiency.

5.1 Caching Servers

TAO’s caching layer serves as an intermediary between
clients and the databases. It aggressively caches objects
and associations to provide good read performance.

TAO’s memory management is based on Facebook’s
customized memcached, as described by Nishtala et
al. [21]. TAO has a slab allocator that manages slabs of
equal size items, a thread-safe hash table, LRU eviction
among items of equal size, and a dynamic slab rebalancer
that keeps the LRU eviction ages similar across all types
of slabs. A slab item can hold one node or one edge list.

To provide better isolation, TAO partitions the avail-
able RAM into arenas, selecting the arena by the object
or association type. This allows us to extend the cache
lifetime of important types, or to prevent poor cache cit-
izens from evicting the data of better-behaved types. So
far we have only manually configured arenas to address
specific problems, but it should be possible to automati-
cally size arenas to improve TAO’s overall hit rate.

For small fixed-size items, such as association counts,
the memory overhead of the pointers for bucket items in
the main hash table becomes significant. We store these
items separately, using direct-mapped 8-way associative
caches that require no pointers. LRU order within each

bucket is tracked by simply sliding the entries down. We
achieve additional memory efficiency by adding a table
that maps the each active atype to a 16 bit value. This
lets us map (id1, atype) to a 32-bit count in 14 bytes; a
negative entry, which records the absence of any id2 for
an (id1, atype), takes only 10 bytes. This optimization
allows us to hold about 20% more items in cache for a
given system configuration.

5.2 MySQL Mapping

Recall that we divide the space of objects and associ-
ations into shards. Each shard is assigned to a logical
MySQL database that has a table for objects and a table
for associations. All of the fields of an object are serial-
ized into a single ‘data‘ column. This approach allows
us to store objects of different types within the same ta-
ble, Objects that benefit from separate data management
polices are stored in separate custom tables.

Associations are stored similarly to objects, but to sup-
port range queries, their tables have an additional index
based on idl, atype, and time. To avoid potentially ex-
pensive SELECT COUNT queries, association counts
are stored in a separate table.

5.3 Cache Sharding and Hot Spots

Shards are mapped onto cache servers within a tier using
consistent hashing [15]. This simplifies tier expansions
and request routing. However, this semi-random assign-
ment of shards to cache servers can lead to load imbal-
ance: some followers will shoulder a larger portion of
the request load than others. TAO rebalances load among
followers with shard cloning, in which reads to a shard
are served by multiple followers in a tier. Consistency
management messages for a cloned shard are sent to all
followers hosting that shard.

In our workloads, it is not uncommon for a popular
object to be queried orders of magnitude more often than
other objects. Cloning can distribute this load across
many followers, but the high hit rate for these objects
makes it worthwhile to place them in a small client-side
cache. When a follower responds to a query for a hot
item, it includes the object or association’s access rate.
If the access rate exceeds a certain threshold, the TAO
client caches the data and version. By including the ver-
sion number in subsequent queries, the follower can omit
the data in replies if the data has not changed since the
previous version. The access rate can also be used to
throttle client requests for very hot objects.

5.4 High-Degree Objects

Many objects have more than 6,000 associations with the
same atype emanating from them, so TAO does not cache

54 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

the complete association list. It is also common that as-
soc_get queries are performed that have an empty result
(no edge exists between the specified id1 and id2). Un-
fortunately, for high-degree objects these queries will al-
ways go to the database, because the queried id2 could
be in the uncached tail of the association list.

We have addressed this inefficiency in the cache im-
plementation by modifying client code that is observed
to issue problematic queries. One solution to this prob-
lem is to use assoc_count to choose the query direction,
since checking for the inverse edge is equivalent. In
some cases where both ends of an edges are high-degree
nodes, we can also leverage application-domain knowl-
edge to improve cacheability. Many associations set the
time field to their creation time, and many objects in-
clude their creation time as a field. Since an edge to a
node can only be created after the node has been created,
we can limit the id2 search to associations whose time
is > than the object’s creation time. So long as an edge
older than the object is present in cache then this query
can be answered directly by a TAO follower.

6 Consistency and Fault Tolerance

Two of the most important requirements for TAO are
availability and performance. When failures occur we
would like to continue to render Facebook, even if the
data is stale. In this section, we describe the consistency
model of TAO under normal operation, and how TAO
sacrifices consistency under failure modes.

6.1 Consistency

Under normal operation, objects and associations in TAO
are eventually consistent [33, 35]; after a write, TAO
guarantees the eventual delivery of an invalidation or re-
fill to all tiers. Given a sufficient period of time during
which external inputs have quiesced, all copies of data
in TAO will be consistent and reflect all successful write
operations to all objects and associations. Replication
lag is usually less than one second.

In normal operation (at most one failure encountered
by a request) TAO provides read-after-write consistency
within a single tier. TAO synchronously updates the
cache with locally written values by having the master
leader return a changeset when the write is successful.
This changeset is propagated through the slave leader (if
any) to the follower tier that originated the write query.
If an inverse type is configured for an association, then
writes to associations of that type may affect both the
id1’s and the id2’s shard. In these cases, the changeset
returned by the master leader contains both updates, and
the slave leader (if any) and the follower that forwarded
the write must each send the changeset to the id2’s shard
in their respective tiers, before returning to the caller.

The changeset cannot always be safely applied to the
follower’s cache contents, because the follower’s cache
may be stale if the refill or invalidate from a second fol-
lower’s update has not yet been delivered. We resolve
this race condition in most cases with a version number
that is present in the persistent store and the cache. The
version number is incremented during each update, so
the follower can safely invalidate its local copy of the
data if the changeset indicates that its pre-update value
was stale. Version numbers are not exposed to the TAO
clients. In slave regions, this scheme is vulnerable to
a rare race condition between cache eviction and stor-
age server update propagation. The slave storage server
may hold an older version of a piece of data than what
is cached by the caching server, so if the post-changeset
entry is evicted from cache and then reloaded from the
database, a client may observe a value go back in time
in a single follower tier. Such a situation can only oc-
cur if it takes longer for the slave region’s storage server
to receive an update than it does for a cached item to be
evicted from cache, which is rare in practice.

Although TAO does not provide strong consistency for
its clients, because it writes to MySQL synchronously
the master database is a consistent source of truth. This
allows us to provide stronger consistency for the small
subset of requests that need it. TAO reads may be marked
critical, in which case they will be proxied to the master
region. We could use critical reads during an authentica-
tion process, for example, so that replication lag doesn’t
allow use of stale credentials.

6.2 Failure Detection and Handling

TAO scales to thousands of machines over multiple ge-
ographical locations, so transient and permanent fail-
ures are commonplace. Therefore, it is important that
TAO detect potential failures and route around them.
TAO servers employ aggressive network timeouts so as
not to continue waiting on responses that may never ar-
rive. Each TAO server maintains per-destination time-
outs, marking hosts as down if there are several consec-
utive timeouts, and remembering downed hosts so that
subsequent requests can be proactively aborted. This
simple failure detector works well, although it does not
always preserve full capacity in a brown-out scenario,
such as bursty packet drops that limit TCP throughput.
Upon detection of a failed server, TAO routes around the
failures in a best effort fashion in order to preserve avail-
ability and performance at the cost of consistency. We
actively probe failed machines to discover when (if) they
recover.

Database failures: Databases are marked down in a
global configuration if they crash, if they are taken of-
fline for maintenance, or if they are replicating from a
master database and they get too far behind. When a

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC '13) 55

master database is down, one of its slaves is automati-
cally promoted to be the new master.

When a region’s slave database is down, cache misses
are redirected to the TAO leaders in the region hosting the
database master. Since cache consistency messages are
embedded in the database’s replication stream, however,
they can’t be delivered by the primary mechanism. Dur-
ing the time that a slave database is down an additional
binlog tailer is run on the master database, and the re-
fills and invalidates are delivered inter-regionally. When
the slave database comes back up, invalidation and refill
messages from the outage will be delivered again.

Leader failures: When a leader cache server fails,
followers automatically route read and write requests
around it. Followers reroute read misses directly to
the database. Writes to a failed leader, in contrast,
are rerouted to a random member of the leader’s tier.
This replacement leader performs the write and associ-
ated actions, such as modifying the inverse association
and sending invalidations to followers. The replacement
leader also enqueues an asynchronous invalidation to the
original leader that will restore its consistency. These
asynchronous invalidates are recorded both on the coor-
dinating node and inserted into the replication stream,
where they are spooled until the leader becomes avail-
able. If the failing leader is partially available then fol-
lowers may see a stale value until the leader’s consis-
tency is restored.

Refill and invalidation failures: Leaders send refills
and invalidations asynchronously. If a follower is un-
reachable, the leader queues the message to disk to be
delivered at a later time. Note that a follower may be
left with stale data if these messages are lost due to per-
manent leader failure. This problem is solved by a bulk
invalidation operation that invalidates all objects and as-
sociations from a shard_id. After a failed leader box is
replaced, all of the shards that map to it must be invali-
dated in the followers, to restore consistency.

Follower failures: In the event that a TAO follower
fails, followers in other tiers share the responsibility of
serving the failed host’s shards. We configure each TAO
client with a primary and backup follower tier. In nor-
mal operations requests are sent only to the primary. If
the server that hosts the shard for a particular request has
been marked down due to timeouts, then the request is
sent instead to that shard’s server in the backup tier. Be-
cause failover requests still go to a server that hosts the
corresponding shard, they are fully cacheable and do not
require extra consistency work. Read and write requests
from the client are failed over in the same way. Note that
failing over between different tiers may cause read-after-
write consistency to be violated if the read reaches the
failover target before the write’s refill or invalidate.

read requests 99.8 % write requests 0.2 %
assoc_get 15.7 % assoc_add 52.5 %
assoc_range 40.9 % assoc_del 8.3 %
assoc_time_range 2.8 % assoc_change_type 0.9 %
assoc_count 11.7 % obj_add 16.5 %
obj_get 28.9 % obj_update 20.7 %

obj_delete 2.0 %

Figure 3: Relative frequencies for client requests to TAO
from all Facebook products. Reads account for almost
all of the calls to the APIL.

7 Production Workload

Facebook has a single instance of TAO in production.
Multi-tenancy in a system such as TAO allows us to
amortize operational costs and share excess capacity
among clients. It is also an important enabler for rapid
product innovation, because new applications can link to
existing data and there is no need to move data or pro-
vision servers as an application grows from one user to
hundreds of millions. Multi-tenancy is especially im-
portant for objects, because it allows the entire 64-bit id
space to be handled uniformly without an extra step to
resolve the otype.

The TAO system contains many follower tiers spread
across several geographic regions. Each region has one
complete set of databases, one leader cache tier, and at
least two follower tiers. Our TAO deployment contin-
uously processes a billion reads and millions of writes
per second. We are not aware of another geographically
distributed graph data store at this scale.

To characterize the workload that is seen by TAO, we
captured a random sample of 6.5 million requests over a
40 day period. In this section, we describe the results of
an analysis of that sample.

At a high level, our workload shows the following
characteristics:

e reads are much more frequent than writes;
* most edge queries have empty results; and

e query frequency, node connectivity, and data size
have distributions with long tails.

Figure 3 breaks down the load on TAO. Reads domi-
nate, with only 0.2% of requests involving a write. The
majority of association reads resulted in empty associa-
tion lists. Calls to assoc_get found an association only
19.6% of the time, 31.0% of the calls to assoc_range in
our trace had a non-empty result, and only 1.9% of the
calls to assoc_time_range returned any edges.

Figure 4 shows the distribution of the return values
from assoc_count. 45% of calls return zero. Among the
non-zero values, although small values are the most com-
mon, 1% of the return values were > 500, 000.

Figure 5 shows the distribution of the number of asso-

56 2013 USENIX Annual Technical Conference (USENIX ATC '13)

USENIX Association

100% _‘\
10%

1%

CCDF (fraction >)
S
w

LI I e B B D B I D O B D B B B B B B B
1248 25 27 29 211 213 215 217 219 221 223 225 227
assoc_count return value

Figure 4: assoc_count frequency in our production envi-
ronment. 1% of returned counts were >512K.

100%
10% i

Y —

assoc_range
assoc_time_range -------

CCDF (fraction >)

~

T T T T T T T T T T
o4 o5 98 o7 58 99 510 511 512 513
of returned assocs

10° T T T
1 2 4 8

Figure 5: The number of edges returned by assoc_range
and assoc_time_range queries. 64% of the non-empty
results had 1 edge, 13% of which had a limit of 1.

ciations returned for range and time-range queries, and
the subset that hit the limit for returned associations.
Most range and time range queries had large client-
supplied limits. 12% of the queries had limit = 1, but
95% of the remaining queries had limit > 1000. Less
than 1% of the return values for queries with a limit > 1
actually reached the limit.

Although queries for non-existent associations were
common, this is not the case for objects. A valid id is
only produced during object creation, so obj_get can only
return an empty result if the object has been removed
or if the object’s creation has not yet been replicated to
the current region. Neither of these cases occurred in
our trace; every object read was successful. This doesn’t
mean that objects were never deleted — it just means that
there was never an attempt to read a deleted object.

Figure 6 shows the distribution of the data sizes for
TAO query results. 39.5% of the associations queried
by clients contained no data. Our implementation allows
objects to store IMB of data and associations to store
64K of data (although a custom table must be configured
for associations that store more than 255 bytes of data).
The actual size of most objects and associations is much

associations

jects E==X
10% N objects |

1%

frequency
o o
o S)
S w

-
S
o

o
=)
>

data size

Figure 6: The size of the data stored in associations and
objects that were returned by the TAO API. Associations
typically store much less data than objects. The aver-
age association data size was 97.8 bytes for the 60.5%
of returned associations that had some data. The average
object data size was 673 bytes.

600000 - avg aggregate hit rate -------

500000

400000

300000
200000 3 E

100000 | 3 R

single-server throughput (request per sec)

O T T T T T T T T T T T : T T T
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
follower hit rate (%)

Figure 7: Throughput of an individual follower in our
production environment. Cache misses and writes are
more expensive than cache hits, so the peak query rate
rises with hit rate. Writes are included in this graph as
non-hit requests.

smaller. However, large values are frequent enough that
the system must deal with them efficiently.

8 Performance

Running a single TAO deployment for all of Facebook
allows us to benefit from economies of scale, and makes
it easy for new products to integrate with existing por-
tions of the social graph. In this section, we report on the
performance of TAO under a real workload.
Availability: Over a period of 90 days, the fraction
of failed TAO queries as measured from the web server
was 4.9 x 107°. Care must be taken when interpreting
this number, since the failure of one TAO query might
prevent the client from issuing another query with a dy-
namic data dependence on the first. TAO’s failures may
also be correlated with those of other dependent systems.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 57

hit lat. (msec) miss lat. (msec)

operation 50% avg 99% 50% avg 99%
assoc_count 1.1 2.5 289 5.0 26.2 186.8
assoc_get 1.0 24 259 5.8 14.5 143.1
assoc_range 1.1 2.3 2438 54 11.2 936
assoc_time_range 1.3 3.2 32.8 58 11.9 472
obj_get 1.0 2.4 270 82 753 1864

Figure 8: Client-observed TAO latency in milliseconds
for read requests, including client API overheads and net-
work traversal, separated by cache hits and cache misses.

remote region latency =<3
master region latency =
avg ping latency -------

40% -

30% |- 3 i

frequency

20% |- -

10% -

0% Ly ‘I,Irlu‘..‘- ‘ B EHHHNWmﬁ ——

0 10 20 30 40 50 60 70 80 90 100 110 120 130
write latency (msec)

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

Follower capacity: The peak throughput of a follower
depends on its hit rate. Figure 7 shows the highest 15-
minute average throughput we observe in production for
our current hardware configuration, which has 144GB
of RAM, 2 Intel Xeon 8 core E5-2660 CPUs running at
2.2Ghz with Hyperthreading, and 10 Gigabit ethernet.

Hit rates and latency: As part of the data collection
process that was described in § 7, we measured latencies
in the client application; these measurements include all
network latencies and the time taken to traverse the PHP
TAO client stack. Requests were sampled at the same
rate in all regions. TAO’s overall hit rate for reads was
96.4%. Figure 8 shows the client-observed latencies for
reads. obj_get has higher miss latencies than the other
reads because objects typically have more data (see Fig-
ure 6). assoc_count requests to the persistent store have a
larger id1 working set than other association queries, and
hence make poorer use of the database’s buffer cache.

TAO’s writes are performed synchronously to the mas-
ter database, so writes from other regions include an
inter-region round trip. Figure 9 compares the latency
in two data centers that are 58.1 milliseconds away from
each other (average round trip). Average write latency
in the same region as the master was 12.1 msec; in the
remote region it was 74.4 = 58.1 + 16.3 msec.

Replication lag: TAO’s asynchronous replication of
writes between regions is a design trade-off that favors

read performance and throughput over consistency. We
observed that TAO’s slave storage servers lag their mas-
ter by less than 1 second during 85% of the tracing win-
dow, by less than 3 seconds 99% of the time, and by less
than 10 seconds 99.8% of the time.

Failover: Follower caches directly contact the
database when a leader is unavailable; this failover path
was used on 0.15% of follower cache misses over our
sample. Failover for write requests involves delegating
those requests to a random leader, which occurred for
0.045% of association and object writes. Slave databases
were promoted to be the master 0.25% of the time due to
planned maintenance or unplanned downtime.

9 Related Work

TAO is a geographically distributed eventually consis-
tent graph store optimized for reads. Previous distributed
systems works have explored relaxed consistency, graph
databases, and read-optimized storage. To our knowl-
edge, TAO is the first to combine all of these techniques
in a single system at large scale.

Eventual consistency: Terry et al. [33] describe
eventual consistency, the relaxed consistency model
which is used by TAO. Werner describes read-after-write
consistency as a property of some variants of eventual
consistency [35].

Geographically distributed data stores: The Coda
file system uses data replication to improve performance
and availability in the face of slow or unreliable net-
works [29]. Unlike Coda, TAO does not allow writes
in portions of the system that are disconnected.

Megastore is a storage system that uses Paxos across
geographically distributed data centers to provide strong
consistency guarantees and high availability [5]. Span-
ner, the next generation globally distributed database de-
veloped at Google after Megastore, introduces the con-
cept of a time API that exposes time uncertainty and
leverages that to improve commit throughput and provide
snapshot isolation for reads [8]. TAO addresses a very
different use case, providing no consistency guarantees
but handling many orders of magnitude more requests.

Distributed hash tables and key-value systems: Un-
structured key-value systems are an attractive approach
to scaling distributed storage because data can be easily
partitioned and little communication is needed between
partitions. Amazon’s Dynamo [10] demonstrates how
they can be used in building flexible and robust com-
mercial systems. Drawing inspiration from Dynamo,
LinkedIn’s Voldemort [4] also implements a distributed
key-value store but for a social network. TAO accepts
lower write availability than Dynamo in exchange for
avoiding the programming complexities that arise from
multi-master conflict resolution. The simplicity of key-

58 2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

value stores also allows for aggressive performance opti-
mizations, as seen in Facebook’s use of memcache [21].

Many contributions in distributed hash tables have fo-
cused on routing [28, 32, 25, 24]. Li et al. [16] character-
ize the performance of DHTs under churn while Dabek et
al. [9] focus on designing DHTs in a wide-area network.
TAO exploits the hierarchy of inter-cluster latencies af-
forded by our data center placement and assumes a con-
trolled environment that has few membership or cluster
topology changes.

Many other works have focused on the consistency se-
mantics provided by key-value stores. Gribble et al. [13]
provide a coherent view of cached data by leverag-
ing two-phase commit. Glendenning et al. [12] built a
linearizable key-value store tolerant of churn. Sovran
et al. [31] implement geo-replicated transactions.

The COPS system [17] provides causal consistency
in a highly available key-value store by tracking all de-
pendencies for all keys accessed by a client context.
Eiger [18] improves on COPS by tracking conflicts be-
tween pending operations in a column-family database.
The techniques used in Eiger may be applicable TAO if
the per-machine efficiency can be improved.

Hierarchical connectivity: Nygren et al. [22] de-
scribe how the Akamai content cache optimizes latency
by grouping edge clusters into regional groups that share
a more powerful ‘parent’ cluster, which are similar to
TAO’s follower and leader tiers.

Structured storage: TAO follows the recent trend of
shifting away from relational databases towards struc-
tured storage approaches. While loosely defined, these
systems typically provide weaker guarantees than the
traditional ACID properties. Google’s BigTable [6],
Yahoo!’s PNUTS [7], Amazon’s SimpleDB [1], and
Apache’s HBase [34] are examples of this more scal-
able approach. These systems all provide consistency
and transactions at the per-record or row level similar to
TAQO’s semantics for objects and associations, but do not
provide TAO’s read efficiency or graph semantics. Es-
criva et al. [27] describe a searchable key-value store.
Redis [26] is an in-memory storage system providing a
range of data types and an expressive API for data sets
that fit entirely in memory.

Graph serving: Since TAO was designed specifically
to serve the social graph, it is unsurprising that it shares
features with existing works on graph databases. Shao
and Wang’s Trinity effort [30] stores its graph structures
in-memory. Neo4j [20] is a popular open-source graph
database that provides ACID semantics and the ability
to shard data across several machines. Twitter uses its
FlockDB [11] to store parts of its social graph, as well.
To the best our knowledge, none of these systems scale
to support Facebook’s workload.

Redis [26] is a key-value store with a rich selection of

value types sufficient to efficiently implement the objects
and associations API. Unlike TAO, however, it requires
that the data set fit entirely in memory. Redis replicas are
read-only, so they don’t provide read-after-write consis-
tency without a higher-level system like Nishtala et al.’s
remote markers [21].

Graph processing: TAO does not currently support
an advanced graph processing API. There are several
systems that try to support such operations but they are
not designed to receive workloads directly from client
applications. PEGASUS [14] and Yahoo’s Pig Latin [23]
are systems to do data mining and analysis of graphs on
top of Hadoop, with PEGASUS being focused on peta-
scale graphs and Pig Latin focusing on a more-expressive
query language. Similarly, Google’s Pregel [19] tackles
a lot of the same graph analysis issues but uses its own
more-expressive job distribution model. These systems
focus on throughput for large tasks, rather than a high
volume of updates and simple queries. Facebook has
similar large-scale offline graph-processing systems that
operate on data copied from TAO’s databases, but these
analysis jobs do not execute within TAO itself.

10 Conclusion

Overall, this paper makes three contributions. First, we
characterize a challenging Facebook workload: queries
that require high throughput, low latency read access to
the large, changing social graph. Second, we describe
the objects and associations data model for Facebook’s
social graph, and the API that serves it. Lastly, we detail
TAO, our geographically distributed system that imple-
ments this API.

TAO is deployed at scale inside Facebook. Its separa-
tion of cache and persistent store has allowed those layers
to be independently designed, scaled, and operated, and
maximizes the reuse of components across our organiza-
tion. This separation also allows us to choose different
tradeoffs for efficiency and consistency at the two lay-
ers, and to use an idempotent cache invalidation strategy.
TAO’s restricted data and consistency model has proven
to be usable for our application developers while allow-
ing an efficient and highly available implementation.

Acknowledgements

We would like to thank Rajesh Nishtala, Tony Savor, and
Barnaby Thieme for reading earlier versions of this pa-
per and contributing many improvements. We thank the
many Facebook engineers who built, used, and scaled the
original implementation of the objects and associations
API for providing us with the design insights and work-
load that led to TAO. Thanks also to our reviewers and
our shepherd Phillipa Gill for their detailed comments.

USENIX Association

2013 USENIX Annual Technical Conference (USENIX ATC "13) 59

References

(1]
(2]
(3]
[4]
(5]

[6

[t}

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Amazon SimpleDB. http://aws.amazon.com/simpledb/.
Facebook — Company Info. http://newsroom.fb.com.
LevelDB. https://code.google.com/p/leveldb.

Project Voldemort. http://project-voldemort.com/.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services.
In Proceedings of the Conference on Innovative Data system Re-
search, CIDR, 2011.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating System Design and
Implementation, OSDI. USENIX Assoc., 2006.

B. E. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform. PVLDB,
1(2), 2008.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI, Berkeley, CA, USA, 2012.

F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a DHT for low latency and high throughput. In
Proceedings of the 1st Symposium on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proceedings of 21st ACM Symposium on Operating Systems Prin-
ciples, SOSP, New York, NY, USA, 2007.

FlockDB.
flockdb.html.

L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. An-
derson. Scalable consistency in scatter. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles, SOSP,
New York, NY, USA, 2011.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service construc-
tion. In Proceedings of the 4th Symposium on Operating System
Design and Implementation, OSDI, Berkeley, CA, USA, 2000.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: min-
ing peta-scale graphs. Knowledge Information Systems, 27(2),
2011.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent Hashing and Random trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th annual ACM Symposium on
Theory of Computing, STOC, 1997.

J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Com-
paring the performance of distributed hash tables under churn. In
Proceedings of the Third International Conference on Peer-to-
Peer Systems, IPTPS, Berlin, Heidelberg, 2004.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In T. Wobber and P. Druschel, editors,
Proceedings of the 23rd ACM Symposium on Operating System
Design and Implementation, SOSP. ACM, 2011.

http://engineering.twitter.com/2010/05/introducing-

[18]

(19]

[20]
(21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]
[35]

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In
Proceedings of the 10th USENIX conference on Networked Sys-
tems Design and Implementation, NSDI, 2013.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In A. K. Elmagarmid and D. Agrawal, editors,
Proceedings of the ACM SIGMOD International Conference on
Management of Data. ACM, 2010.

Neo4j. http://neod;j.org/.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, NSDI, 2013.

E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network:
a platform for high-performance internet applications. SIGOPS
Operating Systems Review, 44(3), Aug. 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. InJ. T.-
L. Wang, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data. ACM, 2008.

V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup per-
formance for power-law query distributions in peer-to-peer over-
lays. In Proceedings of the 1st Symposium on Networked Systems
Design and Implementation, NSDI, Berkeley, CA, USA, 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of the 2001
conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM, New York,
NY, USA, 2001.

Redis. http://redis.io/.

E. G. S. Robert Escriva, Bernard Wong. Hyperdex: A dis-
tributed, searchable key-value store for cloud computing. Techni-
cal report, Department of Computer Science, Cornell University,
Ithaca, New York, December 2011.

A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, Middleware, Lon-
don, UK, UK, 2001.

M. Satyanarayanan. The evolution of coda. ACM Transactions
on Computer Systems, 20(2), May 2002.

B. Shao and H. Wang. Trinity. http://research.microsoft.com/en-
us/projects/trinity/.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP, New
York, NY, USA, 2011.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer
communications, SIGCOMM, New York, NY, USA, 2001.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles,
SOSP, New York, NY, USA, 1995.

The Apache Software Foundation. http://hbase.apache.org, 2010.
W. Vogels. Eventually consistent. Queue, 6(6), Oct. 2008.

60

2013 USENIX Annual Technical Conference (USENIX ATC "13)

USENIX Association

