Firecracker: Lightweight Virtualization for Serverless Applications

Alexandru Agache
Amazon Web Services

Alexandra Iordache
Amazon Web Services

Phil Piwonka
Amazon Web Services

Abstract

Serverless containers and functions are widely used for de-
ploying and managing software in the cloud. Their popularity
is due to reduced cost of operations, improved utilization of
hardware, and faster scaling than traditional deployment meth-
ods. The economics and scale of serverless applications de-
mand that workloads from multiple customers run on the same
hardware with minimal overhead, while preserving strong se-
curity and performance isolation. The traditional view is that
there is a choice between virtualization with strong security
and high overhead, and container technologies with weaker se-
curity and minimal overhead. This tradeoff is unacceptable to
public infrastructure providers, who need both strong security
and minimal overhead. To meet this need, we developed Fire-
cracker, a new open source Virtual Machine Monitor (VMM)
specialized for serverless workloads, but generally useful for
containers, functions and other compute workloads within a
reasonable set of constraints. We have deployed Firecracker in
two publically-available serverless compute services at Ama-
zon Web Services (Lambda and Fargate), where it supports
millions of production workloads, and trillions of requests
per month. We describe how specializing for serverless in-
formed the design of Firecracker, and what we learned from
seamlessly migrating Lambda customers to Firecracker.

1 Introduction

Serverless computing is an increasingly popular model for
deploying and managing software and services, both in public
cloud environments, e.g., [4, 16, 50, 51], as well as in on-
premises environments, e.g., [11,41]. The serverless model
is attractive for several reasons, including reduced work in
operating servers and managing capacity, automatic scaling,
pay-for-use pricing, and integrations with sources of events
and streaming data. Containers, most commonly embodied
by Docker, have become popular for similar reasons, includ-
ing reduced operational overhead, and improved manageabil-
ity. Containers and Serverless offer a distinct economic ad-

Marc Brooker
Amazon Web Services

Anthony Liguori
Amazon Web Services

Andreea Florescu
Amazon Web Services

Rolf Neugebauer
Amazon Web Services

Diana-Maria Popa
Amazon Web Services

vantage over traditional server provisioning processes: mul-
titenancy allows servers to be shared across a large num-
ber of workloads, and the ability to provision new func-
tions and containers in milliseconds allows capacity to be
switched between workloads quickly as demand changes.
Serverless is also attracting the attention of the research com-
munity [21,26,27,44,47], including work on scaling out video
encoding [13], linear algebra [20, 53] and parallel compila-
tion [12].

Multitenancy, despite its economic opportunities, presents
significant challenges in isolating workloads from one another.
Workloads must be isolated both for security (so one workload
cannot access, or infer, data belonging to another workload),
and for operational concerns (so the noisy neighbor effect
of one workload cannot cause other workloads to run more
slowly). Cloud instance providers (such as AWS EC2) face
similar challenges, and have solved them using hypervisor-
based virtualization (such as with QEMU/KVM [7, 29] or
Xen [5]), or by avoiding multi-tenancy and offering bare-
metal instances. Serverless and container models allow many
more workloads to be run on a single machine than traditional
instance models, which amplifies the economic advantages of
multi-tenancy, but also multiplies any overhead required for
isolation.

Typical container deployments on Linux, such as those
using Docker and LXC, address this density challenge by
relying on isolation mechanisms built into the Linux kernel.
These mechanisms include control groups (cgroups), which
provide process grouping, resource throttling and accounting;
namespaces, which separate Linux kernel resources such as
process IDs (PIDs) into namespaces; and seccomp-bpf, which
controls access to syscalls. Together, these tools provide a
powerful toolkit for isolating containers, but their reliance on
a single operating system kernel means that there is a fun-
damental tradeoff between security and code compatibility.
Container implementors can choose to improve security by
limiting syscalls, at the cost of breaking code which requires
the restricted calls. This introduces difficult tradeoffs: im-
plementors of serverless and container services can choose

between hypervisor-based virtualization (and the potentially
unacceptable overhead related to it), and Linux containers
(and the related compatibility vs. security tradeoffs). We built
Firecracker because we didn’t want to choose.

Other projects, such as Kata Containers [14], Intel’s Clear
Containers, and NEC’s LightVM [38] have started from a
similar place, recognizing the need for improved isolation,
and choosing hypervisor-based virtualization as the way to
achieve that. QEMU/KVM has been the base for the majority
of these projects (such as Kata Containers), but others (such
as LightVM) have been based on slimming down Xen. While
QEMU has been a successful base for these projects, it is a
large project (> 1.4 million LOC as of QEMU 4.2), and has
focused on flexibility and feature completeness rather than
overhead, security, or fast startup.

With Firecracker, we chose to keep KVM, but entirely re-
place QEMU to build a new Virtual Machine Monitor (VMM),
device model, and API for managing and configuring Mi-
croVMs. Firecracker, along with KVM, provides a new foun-
dation for implementing isolation between containers and
functions. With the provided minimal Linux guest kernel con-
figuration, it offers memory overhead of less than SMB per
container, boots to application code in less than 125ms, and
allows creation of up to 150 MicroVMs per second per host.
We released Firecracker as open source software in December
2018, under the Apache 2 license. Firecracker has been used
in production in Lambda since 2018, where it powers millions
of workloads and trillions of requests per month.

Section 2 explores the choice of an isolation solution for
Lambda and Fargate, comparing containers, language VM
isolation, and virtualization. Section 3 presents the design of
Firecracker. Section 4 places it in context in Lambda, explain-
ing how it is integrated, and the role it plays in the perfor-
mance and economics of that service. Section 5 compares
Firecracker to alternative technologies on performance, den-
sity and overhead.

1.1 Specialization

Firecracker was built specifically for serverless and container
applications. While it is broadly useful, and we are excited to
see Firecracker be adopted in other areas, the performance,
density, and isolation goals of Firecracker were set by its in-
tended use for serverless and containers. Developing a VMM
for a clear set of goals, and where we could make assumptions
about the properties and requirements of guests, was signifi-
cantly easier than developing one suitable for all uses. These
simplifying assumptions are reflected in Firecracker’s design
and implementation. This paper describes Firecracker in con-
text, as used in AWS Lambda, to illustrate why we made the
decisions we did, and where we diverged from existing VMM
designs. The specifics of how Firecracker is used in Lambda
are covered in Section 4.1.

"https://firecracker-microvm.github.io/

Firecracker is probably most notable for what it does not of-
fer, especially compared to QEMU. It does not offer a BIOS,
cannot boot arbitrary kernels, does not emulate legacy de-
vices nor PCI, and does not support VM migration. Fire-
cracker could not boot Microsoft Windows without significant
changes to Firecracker. Firecracker’s process-per-VM model
also means that it doesn’t offer VM orchestration, packaging,
management or other features — it replaces QEMU, rather
than Docker or Kubernetes, in the container stack. Simplic-
ity and minimalism were explicit goals in our development
process. Higher-level features like orchestration and metadata
management are provided by existing open source solutions
like Kubernetes, Docker and containerd, or by our propri-
etary implementations inside AWS services. Lower-level fea-
tures, such as additional devices (USB, PCI, sound, video,
etc), BIOS, and CPU instruction emulation are simply not im-
plemented because they are not needed by typical serverless
container and function workloads.

2 Choosing an Isolation Solution

When we first built AWS Lambda, we chose to use Linux
containers to isolate functions, and virtualization to isolate
between customer accounts. In other words, multiple func-
tions for the same customer would run inside a single VM,
but workloads for different customers always run in different
VMs. We were unsatisfied with this approach for several rea-
sons, including the necessity of trading off between security
and compatibility that containers represent, and the difficulties
of efficiently packing workloads onto fixed-size VMs. When
choosing a replacement, we were looking for something that
provided strong security against a broad range of attacks (in-
cluding microarchitectural side-channel attacks), the ability
to run at high densities with little overhead or waste, and com-
patibility with a broad range of unmodified software (Lambda
functions are allowed to contain arbitrary Linux binaries, and
a significant portion do). In response to these challenges, we
evaluated various options for re-designing Lambda’s isolation
model, identifying the properties of our ideal solution:

Isolation: It must be safe for multiple functions to run on the
same hardware, protected against privilege escalation,
information disclosure, covert channels, and other risks.

Overhead and Density: It must be possible to run thou-
sands of functions on a single machine, with minimal
waste.

Performance: Functions must perform similarly to running
natively. Performance must also be consistent, and iso-
lated from the behavior of neighbors on the same hard-
ware.

Compatibility: Lambda allows functions to contain arbi-
trary Linux binaries and libraries. These must be sup-
ported without code changes or recompilation.

https://firecracker-microvm.github.io/

Fast Switching: It must be possible to start new functions
and clean up old functions quickly.

Soft Allocation: It must be possible to over commit CPU,
memory and other resources, with each function consum-
ing only the resources it needs, not the resources it is
entitled to.

Some of these qualities can be converted into quantitative
goals, while others (like isolation) remain stubbornly qualita-
tive. Modern commodity servers contain up to 1'TB of RAM,
while Lambda functions use as little as 128MB, requiring
up to 8000 functions on a server to fill the RAM (or more
due to soft allocation). We think of overhead as a percentage,
based on the size of the function, and initially targeted 10% on
RAM and CPU. For a 1024MB function, this means 102MB
of memory overhead. Performance is somewhat complex, as
it is measured against the function’s entitlement. In Lambda,
CPU, network, and storage throughput is allocated to func-
tions proportionally to their configured memory limit. Within
these limits, functions should perform similarly to bare metal
on raw CPU, IO throughput, IO latency and other metrics.

2.1 Evaluating the Isolation Options

Broadly, the options for isolating workloads on Linux can be
broken into three categories: containers, in which all work-
loads share a kernel and some combination of kernel mecha-
nisms are used to isolate them; virtualization, in which work-
loads run in their own VMs under a hypervisor; and language
VM isolation, in which the language VM is responsible for ei-
ther isolating workloads from each other or from the operating
system.

Figure | compares the security approaches between Linux
containers and virtualization. In Linux containers, untrusted
code calls the host kernel directly, possibly with the kernel
surface area restricted (such as with seccomp-bpf). It also
interacts directly with other services provided by the host
kernel, like filesystems and the page cache. In virtualization,
untrusted code is generally allowed full access to a guest
kernel, allowing all kernel features to be used, but explicitly
treating the guest kernel as untrusted. Hardware virtualization
and the VMM limit the guest kernel’s access to the privileged
domain and host kernel.

2.1.1 Linux Containers

Containers on Linux combine multiple Linux kernel features
to offer operational and security isolation. These features in-
clude: cgroups, providing CPU, memory and other resource

2It’s somewhat confusing that in common usage containers is both used to
describe the mechanism for packaging code, and the typical implementation
of that mechanism. Containers (the abstraction) can be provided without
depending on containers (the implementation). In this paper, we use the term
Linux containers to describe the implementation, while being aware that
other operating systems provide similar functionality.

Untrusted Code

Guest Kernel

| Untrusted Code | S

I

sandbox

| Host Kernel | KvM Host Kernel |

(a) Linux container model (b) KVM virtualization model

Figure 1: The security model of Linux containers (a) depends
directly on the kernel’s sandboxing capabilities, while KVM-
style virtualization (b) relies on security of the VMM, possibly
augmented sandboxing

limits; namespaces, providing namespacing for kernel re-
sources like user IDs (uids), process IDs (pids) and network
interfaces; seccomp-bpf, providing the ability to limit which
syscalls a process can use, and which arguments can be passed
to these syscalls; and chroot, proving an isolated filesystem.
Different Linux container implementations use these tools in
different combinations, but seccomp-bpf provides the most
important security isolation boundary. The fact that contain-
ers rely on syscall limitations for their security represents a
tradeoff between security and compatibility. A trivial Linux
application requires 15 unique syscalls. Tsai et al [57] found
that a typical Ubuntu Linux 15.04 installation requires 224
syscalls and 52 unique ioctl calls to run without problems,
along with the /proc and /sys interfaces of the kernel. Never-
theless, meaningful reduction of the kernel surface is possible,
especially as it is reasonable to believe that the Linux kernel
has more bugs in syscalls which are less heavily used [32].

One approach to this challenge is to provide some of the
operating system functionality in userspace, requiring a sig-
nificantly smaller amount of kernel functionality to provide
the programmer with the appearance of a fully featured envi-
ronment. Graphene [56], Drawbridge [45], Bascule [6] and
Google’s gvisor [15] take this approach. In environments run-
ning untrusted code, container isolation is not only concerned
with preventing privilege escalation, but also in preventing
information disclosure side channels (such as [19]), and pre-
venting communication between functions over covert chan-
nels. The richness of interfaces like /proc have showed this to
be challenging (CVE-2018-17972 and CVE-2017-18344 are
recent examples).

2.1.2 Language-Specific Isolation

A second widely-used method for isolating workloads is lever-
aging features of the language virtual machine, such as the
Java Virtual Machine (JVM) or V8. Some language VMs
(such as V8’s isolates and the JVM’s security managers) aim
to run multiple workloads within a single process, an approach
which introduces significant tradeoffs between functionality

(and compatibility) and resistance to side channel attacks such
as Spectre [30,39]. Other approaches, such as Chromium site
isolation [46], Alto [31] and SAND [1] use a process per
trust domain, and instead aim to prevent the code from escap-
ing from the process or accessing information from beyond
the process boundary. Language-specific isolation techniques
were not suitable for Lambda or Fargate, given our need to
support arbitrary binaries.

2.1.3 Virtualization

Modern virtualization uses hardware features (such as Intel
VT-x) to provide each sandbox an isolated environment with
its own virtual hardware, page tables, and operating system
kernel. Two key, and related, challenges of virtualization are
density and overhead. The VMM and kernel associated with
each guest consumes some amount of CPU and memory be-
fore it does useful work, limiting density. Another challenge
is startup time, with typical VM startup times in the range of
seconds. These challenges are particularly important in the
Lambda environment, where functions are small (so relative
overhead is larger), and workloads are constantly changing.
One way to address startup time is to boot something smaller
than a full OS kernel, such as a unikernel. Unikernels are al-
ready being investigated for use with containers, for example
in LightVM [38] and Solo5 [59]. Our requirement for running
unmodified code targeting Linux meant that we could not
apply this approach.

The third challenge in virtualization is the implementation
itself: hypervisors and virtual machine monitors (VMMs),
and therefore the required trusted computing base (TCB), can
be large and complex, with a significant attack surface. This
complexity comes from the fact that VMM s still need to ei-
ther provide some OS functionality themselves (type 1) or
depend on the host operating system (type 2) for function-
ality. In the type 2 model, The VMM depends on the host
kernel to provide 1O, scheduling, and other low-level function-
ality, potentially exposing the host kernel and side-channels
through shared data structures. Williams et al [60] found that
virtualization does lead to fewer host kernel functions being
called than direct implementation (although more than their
libOS-based approach). However, Li et al [32] demonstrate
the effectiveness of a ’popular paths’ metric, showing that
only 3% of kernel bugs are found in frequently-used code
paths (which, in our experience, overlap highly with the code
paths used by the VMM).

To illustrate this complexity, the popular combination of
Linux Kernel Virtual Machine [29] (KVM) and QEMU
clearly illustrates the complexity. QEMU contains > 1.4
million lines of code, and can require up to 270 unique
syscalls [57] (more than any other package on Ubuntu Linux
15.04). The KVM code in Linux adds another 120,000 lines.
The NEMU [24] project aims to cut down QEMU by remov-
ing unused features, but appears to be inactive.

Efforts have been made (such as with Muen [9] and
Nova [55]) to significantly reduce the size of the Hypervisor
and VMM, but none of these minimized solutions offer the
platform independence, operational characteristics, or matu-
rity that we needed at AWS.

Firecracker’s approach to these problems is to use KVM
(for reasons we discuss in section 3), but replace the VMM
with a minimal implementation written in a safe language.
Minimizing the feature set of the VMM helps reduce surface
area, and controls the size of the TCB. Firecracker contains
approximately 50k lines of Rust code (96% fewer lines than
QEMU), including multiple levels of automated tests, and
auto-generated bindings. Intel Cloud Hypervisor [25] takes
a similar approach, (and indeed shares much code with Fire-
cracker), while NEMU [24] aims to address these problems
by cutting down QEMU.

Despite these challenges, virtualization provides many com-
pelling benefits. From an isolation perspective, the most com-
pelling benefit is that it moves the security-critical interface
from the OS boundary to a boundary supported in hardware
and comparatively simpler software. It removes the need to
trade off between kernel features and security: the guest ker-
nel can supply its full feature set with no change to the threat
model. VMMs are much smaller than general-purpose OS ker-
nels, exposing a small number of well-understood abstractions
without compromising on software compatibility or requiring
software to be modified.

3 The Firecracker VMM

Firecracker is a Virtual Machine Monitor (VMM), which uses
the Linux Kernel’s KVM virtualization infrastructure to pro-
vide minimal virtual machines (MicroVMs), supporting mod-
ern Linux hosts, and Linux and OSv guests. Firecracker pro-
vides a REST based configuration API; device emulation for
disk, networking and serial console; and configurable rate lim-
iting for network and disk throughput and request rate. One
Firecracker process runs per MicroVM, providing a simple
model for security isolation.

Our other philosophy in implementing Firecracker was
to rely on components built into Linux rather than re-im-
plementing our own, where the Linux components offer the
right features, performance, and design. For example we pass
block IO through to the Linux kernel, depend on Linux’s pro-
cess scheduler and memory manager for handling contention
between VMs in CPU and memory, and we use TUN/TAP
virtual network interfaces. We chose this path for two reasons.
One was implementation cost: high-quality operating system
components, such as schedulers, can take decades to get right,
especially when they need to deal with multi-tenant work-
loads on multi-processor machines. The implementations in
Linux, while not beyond criticism [36], are well-proven in
high-scale deployments.

The other reason was operational knowledge: within AWS,

our operators are highly experienced at operating, automating,
optimizing Linux systems (for example, Brendan Gregg’s
books on Linux performance [18] are popular among Amazon
teams). Using KVM in Linux, along with the standard Linux
programming model, allows our operators to use most of the
tools they already know when operating and troubleshooting
Firecracker hosts and guests. For example, running ps on a
Firecracker host will include all the MicroVMs on the host in
the process list, and tools like top, vmstat and even kill work
as operators expect. While we do not routinely provide access
to in-production Firecracker hosts to operators, the ability to
use the standard Linux toolset has proven invaluable during
the development and testing of our services. In pursuit of this
philosophy, Firecracker does sacrifice portability between
host operating systems, and inherits a larger trusted compute
base.

In implementing Firecracker, we started with Google’s
Chrome OS Virtual Machine Monitor crosvm, re-using some
of its components. Consistent with the Firecracker philoso-
phy, the main focus of our adoption of crosvm was removing
code: Firecracker has fewer than half as many lines of code as
crosvm. We removed device drivers including USB and GPU,
and support for the 9p filesystem protocol. Firecracker and
crosvm have now diverged substantially. Since diverging from
crosvm and deleting the unneeded drivers, Firecracker has
added over 20k lines of new code, and changed 30k lines. The
rust-vmm project’ maintains a common set of open-source
Rust crates (packages) to be shared by Firecracker and crosvm
and used as a base by future VMM implementers.

3.1 Device Model

Reflecting its specialization for container and function work-
loads, Firecracker provides a limited number of emulated
devices: network and block devices, serial ports, and partial
18042 (PS/2 keyboard controller) support. For comparison,
QEMU is significantly more flexible and more complex, with
support for more than 40 emulated devices, including USB,
video and audio devices. The serial and 18042 emulation im-
plementations are straightforward: the 18042 driver is less than
50 lines of Rust, and the serial driver around 250. The network
and block implementations are more complex, reflecting both
higher performance requirements and more inherent complex-
ity. We use virtio [40,48] for network and block devices, an
open API for exposing emulated devices from hypervisors.
virtio is simple, scalable, and offers sufficiently good over-
head and performance for our needs. The entire virtio block
implementation in Firecracker (including MMIO and data
structures) is around 1400 lines of Rust.

We chose to support block devices for storage, rather than
filesystem passthrough, as a security consideration. Filesys-
tems are large and complex code bases, and providing only

3https://github.com/rust-vmm/community

block IO to the guest protects a substantial part of the host
kernel surface area.

3.2 API

The Firecracker process provides a REST API over a Unix
socket, which is used to configure, manage and start and stop
MicroVMs. Providing an API allows us to more carefully
control the life cycle of MicroVMs. For example, we can
start the Firecracker process and pre-configure the MicroVM
and only start the MicroVM when needed, reducing startup
latency. We chose REST because clients are available for
nearly any language ecosystem, it is a familiar model for
our targeted developers, and because OpenAPI allows us to
provide a machine- and human-readable specification of the
API. By contrast, the typical Unix approach of command-
line arguments do not allow messages to be passed to the
process after it is created, and no popular machine-readable
standard exists for specifying structured command-line argu-
ments. Firecracker users can interact with the API using an
HTTP client in their language of choice, or from the command
line using tools like curl.

REST APIs exist for specifying the guest kernel and boot
arguments, network configuration, block device configuration,
guest machine configuration and cpuid, logging, metrics, rate
limiters, and the metadata service. Common defaults are pro-
vided for most configurations, so in the simplest use only the
guest kernel and one (root) block device need to be configured
before the VM is started.

To shut down the MicroVM, it is sufficient to kill the Fire-
cracker process, or issue a reboot inside the guest. As with the
rest of Firecracker, the REST API is intentionally kept simple
and minimal, especially when compared to similar APIs like
Xen’s Xenstore.

3.3 Rate Limiters, Performance and Machine
Configuration

The machine configuration API allows hosts to configure
the amount of memory and number of cores exposed to a
MicroVM, and set up the cpuid bits that the MicroVM sees.
While Firecracker offers no emulation of missing CPU func-
tionality, controlling cpuid allows hosts to hide some of their
capabilities from MicroVMs, such as to make a heterogeneous
compute fleet appear homogeneous.

Firecracker’s block device and network devices offer built-
in rate limiters, also configured via the API. These rate lim-
iters allow limits to be set on operations per second (IOPS
for disk, packets per second for network) and on bandwidth
for each device attached to each MicroVM. For the network,
separate limits can be set on receive and transmit traffic. Lim-
iters are implemented using a simple in-memory token bucket,
optionally allowing short-term bursts above the base rate, and
a one-time burst to accelerate booting. Having rate limiters

be configurable via the API allows us to vary limits based
on configured resources (like the memory configured for a
Lambda function), or dynamically based on demand. Rate
limiters play two roles in our systems: ensuring that our stor-
age devices and networks have sufficient bandwidth available
for control plane operations, and preventing a small number of
busy MicroVMs on a server from affecting the performance
of other MicroVMs.

While Firecracker’s rate limiters and machine configuration
provide the flexibility that we need, they are significantly
less flexible and powerful than Linux cgroups which offer
additional features including CPU credit scheduling, core
affinity, scheduler control, traffic prioritization, performance
events and accounting. This is consistent with our philosophy.
We implemented performance limits in Firecracker where
there was a compelling reason: enforcing rate limits in device
emulation allows us to strongly control the amount of VMM
and host kernel CPU time that a guest can consume, and we
do not trust the guest to implement its own limits. Where we
did not have a compelling reason to add the functionality to
Firecracker, we use the capabilities of the host OS.

3.4 Security

Architectural and micro-architectural side-channel attacks
have existed for decades. Recently, the publication of Melt-
down [34], Spectre [30], Zombieload [49], and related at-
tacks (e.g. [2,37,54,58]) has generated a flurry of interest
in this area, and prompted the development of new mitiga-
tion techniques in operating systems, processors, firmware
and microcode. Canella et al [10] and ARM [33] provide
good summaries of the current state of research. With exist-
ing CPU capabilities, no single layer can mitigate all these
attacks, so mitigations need to be built into multiple layers
of the system. For Firecracker, we provide clear guidance
on current side-channel mitigation best-practices for deploy-
ments of Firecracker in production®. Mitigations include dis-
abling Symmetric MultiThreading (SMT, aka HyperThread-
ing), checking that the host Linux kernel has mitigations en-
abled (including Kernel Page-Table Isolation, Indirect Branch
Prediction Barriers, Indirect Branch Restricted Speculation
and cache flush mitigations against L1 Terminal Fault), en-
abling kernel options like Speculative Store Bypass mitiga-
tions, disabling swap and samepage merging, avoiding sharing
files (to mitigate timing attacks like Flush+Reload [61] and
Prime+Probe [42]), and even hardware recommendations to
mitigate RowHammer [28,43]. While we believe that all of
these practices are necessary in a public cloud environment,
and enable them in our Lambda and Fargate deployments of
Firecracker, we also recognize that tradeoffs exist between
performance and security, and that Firecracker consumers in
less-demanding environments may choose not to implement

“https://github.com/firecracker-microvm/firecracker/
blob/master/docs/prod-host-setup.md

some of these mitigations. As with all security mitigations,
this is not an end-point, but an ongoing process of understand-
ing and responding to new threats as they surface.

Other side-channel attacks, such as power and temperature,
are not addressed by Firecracker, and instead must be handled
elsewhere in the system architecture. We have paid careful
attention to mitigating these attacks in our own services, but
anybody who adopts Firecracker must understand them and
have plans to mitigate them.

3.4.1 Jailer

Firecracker’s jailer implements an additional level of protec-
tion against unwanted VMM behavior (such as a hypotheti-
cal bug that allows the guest to inject code into the VMM).
The jailer implements a wrapper around Firecracker which
places it into a restrictive sandbox before it boots the guest,
including running it in a chroot, isolating it in pid and net-
work namespaces, dropping privileges, and setting a restric-
tive seccomp-bpf profile. The sandbox’s chroot contains only
the Firecracker binary, /dev/net/tun, cgroups control files, and
any resources the particular MicroVM needs access to (such
as its storage image). The seccomp-bpf profile whitelists 24
syscalls, each with additional argument filtering, and 30 ioctls
(of which 22 are required by KVM ioctl-based API).

4 Firecracker In Production

4.1 Inside AWS Lambda

Lambda [51] is a compute service which runs functions in re-
sponse to events. Lambda offers a number of built-in language
runtimes (including Python, Java, NodeJS, and C#) which al-
lows functions to be provided as snippets of code implement-
ing a language-specific runtime interface. A "Hello, World!"
Lambda function can be implemented in as few as three lines
of Python or Javascript. It also supports an HTTP/REST run-
time API, allowing programs which implement this API to
be developed in any language, and provided either as bina-
ries or a bundle alongside their language implementation.
Lambda functions run within a sandbox, which provides a
minimal Linux userland and some common libraries and utili-
ties. When Lambda functions are created, they are configured
with a memory limit, and a maximum runtime to handle each
individual event’. Events include those explicitly created by
calling the Lambda Invoke API, from HTTP requests via
AWS’s Application Load Balancer and API Gateway, and
from integrations with other AWS services including storage
(83), queue (SQS), streaming data (Kinesis) and database
(DynamoDB) services.

Typical use-cases for AWS Lambda include backends for
IoT, mobile and web applications; request-response and event-

3 As of early 2019, Lambda limits memory to less than 3GB and runtime
to 15 minutes, but we expect these limits to increase considerably over time.

https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md

|

Frontend ‘

—
Function
Metadata

Worker
Manager

Placement

Workers m
T
T

Figure 2: High-level architecture of AWS Lambda event path,
showing control path (light lines) and data path (heavy lines)

sourced microservices; real-time streaming data processing;
on-demand file processing; and infrastructure automation.
AWS markets Lambda as serverless compute, emphasizing
that Lambda functions minimize operational and capacity
planning work, and entirely eliminate per-server operations
for most use-cases. Most typical deployments of Lambda
functions use them with other services in the AWS suite: S3,
SQS, DynamoDB and Elasticache are common companions.
Lambda is a large-scale multi-tenant service, serving trillions
of events per month for hundreds of thousands of customers.

4.1.1 High-Level Architecture

Figure 2 presents a simplified view of the architecture of
Lambda. Invoke traffic arrives at the frontend via the Invoke
REST API, where requests are authenticated and checked
for authorization, and function metadata is loaded. The fron-
tend is a scale-out shared-nothing fleet, with any frontend
able to handle traffic for any function. The execution of the
customer code happens on the Lambda worker fleet, but to
improve cache locality, enable connection re-use and amor-
tize the costs of moving and loading customer code, events
for a single function are sticky-routed to as few workers as
possible. This sticky routing is the job of the Worker Man-
ager, a custom high-volume (millions of requests per second)
low-latency (<10ms 99.9th percentile latency) stateful router.
The Worker Manager replicates sticky routing information
for a single function (or small group of functions) between
a small number of hosts across diverse physical infrastruc-
ture, to ensure high availability. Once the Worker Manager
has identified which worker to run the code on, it advises the
invoke service which sends the payload directly to the worker
to reduce round-trips. The Worker Manager and workers also
implement a concurrency control protocol which resolves
the race conditions created by large numbers of independent
invoke services operating against a shared pool of workers.
Each Lambda worker offers a number of slots, with each
slot providing a pre-loaded execution environment for a func-
tion. Slots are only ever used for a single function, and a
single concurrent invocation of that function, but are used

Listing 1 Lambda function illustrating slot re-use. The re-
turned number will count up over many invokes.

var 1 = 0;
exports.handler = async (event,
return i++;

context) => {

}i

Customer Code

Micro L 4T\ shim
Manager :

Linux Kernel

Monitoring, i [MicrovM “slot” |
Logging, etc. virtio
: Firecracker

Figure 3: Architecture of the Lambda worker

for many serial invocations of the function. The MicroVM
and the process the function is running in are both re-used, as
illustrated by Listing | which will return a series of increasing
numbers when invoked with a stream of serial events.

Where a slot is available for a function, the Worker Man-
ager can simply perform its lightweight concurrency control
protocol, and tell the frontend that the slot is available for
use. Where no slot is available, either because none exists
or because traffic to a function has increased to require addi-
tional slots, the Worker Manager calls the Placement service
to request that a new slot is created for the function. The
Placement service in turn optimizes the placement of slots
for a single function across the worker fleet, ensuring that the
utilization of resources including CPU, memory, network, and
storage is even across the fleet and the potential for correlated
resource allocation on each individual worker is minimized.
Once this optimization is complete — a task which typically
takes less than 20ms — the Placement service contacts a
worker to request that it creates a slot for a function. The
Placement service uses a time-based lease [17] protocol to
lease the resulting slot to the Worker Manager, allowing it to
make autonomous decisions for a fixed period of time.

The Placement service remains responsible for slots, in-
cluding limiting their lifetime (in response to the life cycle of
the worker hosts), terminating slots which have become idle
or redundant, managing software updates, and other similar
activities. Using a lease protocol allows the system to both
maintain efficient sticky routing (and hence locality) and have
clear ownership of resources. As part of its optimization re-
sponsibilities, the placement service also consumes load and
health data for each slot in each worker.

4.1.2 Firecracker In The Lambda Worker

Figure 3 shows the architecture of the Lambda worker, where
Firecracker provides the critical security boundary required to
run a large number of different workloads on a single server.

Each worker runs hundreds or thousands of MicroVMs (each
providing a single slot), with the number depending on the
configured size of each MicroVM, and how much memory,
CPU and other resources each VM consumes. Each MicroVM
contains a single sandbox for a single customer function,
along with a minimized Linux kernel and userland, and a
shim control process. The MicroVM is a primary security
boundary, with all components assuming that code running
inside the MicroVM is untrusted. One Firecracker process
is launched per MicroVM, which is responsible for creating
and managing the MicroVM, providing device emulation and
handling VM exits.

The shim process in each MicroVM communicates through
the MicroVM boundary via a TCP/IP socket with the Micro-
Manager, a per-worker process which is responsible for man-
aging the Firecracker processes. MicroManager provides slot
management and locking APIs to placement, and an event
invoke API to the Frontend. Once the Frontend has been
allocated a slot by the WorkerManager, it calls the MicroMan-
ager with the details of the slot and request payload, which
the MicroManager passes on to the Lambda shim running
inside the MicroVM for that slot. On completion, the Mi-
croManager receives the response payload (or error details
in case of a failure), and passes these onto the Frontend for
response to the customer. Communicating into and out of the
MicroVM over TCP/IP costs some efficiency, but is consistent
with the design principles behind Firecracker: it keeps the
MicroManager process loosely coupled from the MicroVM,
and re-uses a capability of the MicroVM (networking) rather
than introducing a new device. The MicroManager’s protocol
with the Lambda shim is important for security, because it is
the boundary between the multi-tenant Lambda control plane,
and the single-tenant (and single-function) MicroVM. Also,
on each worker is a set of processes that provides monitoring,
logging, and other services for the worker. Logs and metrics
are provided for consumption by both humans and automated
alarming and monitoring systems, and metrics are also pro-
vided back to Placement to inform its view of the load on the
worker.

The MicroManager also keeps a small pool of pre-booted
MicroVMs, ready to be used when Placement requests a new
slot. While the 125ms boot times offered by Firecracker are
fast, they are not fast enough for the scale-up path of Lambda,
which is sometimes blocking user requests. Fast booting is a
first-order design requirement for Firecracker, both because
boot time is a proxy for resources consumed during boot, and
because fast boots allow Lambda to keep these spare pools
small. The required mean pool size can be calculated with
Little’s law [35]: the pool size is the product of creation rate
and creation latency. Alternatively, at 125ms creation time,
one pooled MicroVM is required for every 8 creations per
second.

Y
‘ Busy ‘
\ e

Figure 4: State transitions for a single slots on a Lambda
worker

‘ Init }—»‘ Idle

4.2 The Role of Multi-Tenancy

Soft-allocation (the ability for the platform to allocate re-
sources on-demand, rather than at startup) and multi-tenancy
(the ability for the platform to run large numbers of unre-
lated workloads) are critical to the economics of Lambda.
Each slot can exist in one of three states: initializing, busy,
and idle, and during their lifetimes slots move from initializ-
ing to idle, and then move between idle and busy as invokes
flow to the slot (see Figure 4). Slots use different amounts
of resources in each state. When they are idle they consume
memory, keeping the function state available. When they are
initializing and busy, they use memory but also resources like
CPU time, caches, network and memory bandwidth and any
other resources in the system. Memory makes up roughly
40% of the capital cost of typical modern server designs, so
idle slots should cost 40% of the cost of busy slots. Achieving
this requires that resources (like CPU) are both soft-allocated
and oversubscribed, so can be sold to other slots while one is
idle.

Oversubscription is fundamentally a statistical bet: the plat-
form must ensure that resources are kept as busy as possible,
but some are available to any slot which receives work. We
set some compliance goal X (e.g., 99.99%), so that functions
are able to get all the resources they need with no contention
X% of the time. Efficiency is then directly proportional to the
ratio between the Xth percentile of resource use, and mean
resource use. Intuitively, the mean represents revenue, and the
Xth percentile represents cost. Multi-tenancy is a powerful
tool for reducing this ratio, which naturally drops approxi-
mately with v/N when running N uncorrelated workloads on
a worker. Keeping these workloads uncorrelated requires that
they are unrelated: multiple workloads from the same appli-
cation, and to an extent from the same customer or industry,
behave as a single workload for these purposes.

4.3 Experiences Deploying and Operating
Firecracker

Starting in 2018, we migrated Lambda customers from our
first isolation solution (based on containers per function, and
AWS EC2 instances per customer) to Firecracker running
on AWS EC2 bare metal instances, with no interruption to
availability, latency or other metrics. Each Lambda slot exists
for at most 12 hours before it is recycled. Simply changing

the recycling logic to switch between Firecracker and legacy
implementations allowed workloads to be migrated with no
change in behavior.

We took advantage of users of Lambda inside AWS by
migrating their workloads first, and carefully monitoring their
metrics. Having access to these internal customer’s metrics
and code reduced the risk of early stages of deployment, be-
cause we didn’t need to rely on external customers to inform
us of subtle issues. This migration was mostly uneventful, but
we did find some minor issues. For example, our Firecracker
fleet has Symmetric MultiThreading (SMT, aka Hyperthread-
ing) disabled [52] while our legacy fleet had it enabled®. Mi-
grating to Firecracker changed the timings of some code, and
exposed minor bugs in our own SDK, and in Apache Com-
mons HttpClient [22,23]. Once we moved all internal AWS
workloads, we started to migrate external customers. This
migration has been uneventful, despite moving arbitrary code
provided by hundreds of thousands of AWS customers.

Throughout the migration, we made sure that the metrics
and logs for the Firecracker and legacy stacks could be mon-
itored independently. The team working on the migration
carefully compared the metrics between the two stacks, and
investigated each case where they were diverged significantly.
We keep detailed per-workload metrics, including latency and
error-rate, allowing us to use statistical techniques to proac-
tively identify anomalous behavior. Architecturally, we chose
to use a common production environment for both stacks as
far as possible, isolating the differences between the stacks
behind a common API. This allowed the migration team to
work independently, shifting the target of the API traffic with
no action from teams owning other parts of the architecture.

Our deployment mechanism was also designed to allow
fast, safe, and (in some cases) automatic rollback, moving
customers back to the legacy stack at the first sign of trouble.
Rollback is a key operational safety practice at AWS, allowing
us to mitigate customer issues quickly, and then investigate.
One case where we used this mechanism was when some
customers reported seeing DNS-related performance issues:
we rolled them back, and then root-caused the issue to a mis-
configuration causing DNS lookups not to be cached inside
the MicroVM.

One area of focus for our deployment was building mecha-
nisms to patch software, including Firecracker and the guest
and host kernels, quickly and safely and then audit that patches
have reached the whole fleet. We use an immutable infrastruc-
ture approach, where we patch by completely re-imaging the
host, implemented by terminating and re-launching our AWS
EC2 instances with an updated machine image (AMI). We
chose this approach based on a decade of experience operat-
ing AWS services, and learning that it is extremely difficult to
keep software sets consistent on large-scale mutable fleets (for
example, package managers like rpm are non-deterministic,

SWe disable SMT on the Firecracker fleet as a sidechannel mitigation. On
the legacy fleet the same threats are mitigated by pinning VMs to cores.

producing different results on across a fleet). It also illustrates
the value of building higher-level services like Lambda on
lower-level services like AWS EC2: we didn’t need to build
any host management or provisioning infrastructure.

5 Evaluation

In Section 2, we described six criteria for choosing a mecha-
nism for isolation in AWS Lambda: Isolation, Overhead, Per-
formance, Compatibility, Fast Switching and Soft Allocation.
In this section we evaluate Firecracker against these criteria
as well as other solutions in this space. We use Firecracker
v0.20.0 as the base line and use QEMU v4.2.0 (statically
compiled with a minimal set of options) for comparison. We
also include data for the recently released Intel Cloud Hyper-
visor [25], a VMM written in Rust sharing significant code
with Firecracker, while targeting a different application space.

Our evaluation is performed on an EC2 m5d.metal instance,
with two Intel Xeon Platinum 8175M processors (for a total
of 48 cores with hyper-threading disabled), 384GB of RAM,
and four 840GB local NVMe disks. The base OS was Ubuntu
18.04.2 with kernel 4.15.0-1044-aws. The configuration and
scripts used for all our experiments, and the resulting data, is
publicly available’.

5.1 Boot Times

Boot times of MicroVMs are important for serverless work-
loads like Lambda. While Lambda uses a small local pool
of MicroVMs to hide boot latency from customers, the costs
of switching between workloads (and therefore the cost of
creating new MicroVMs) is very important to our economics.
In this section we compare the boot times of different VMMs.
The boot time is measured as the time between when VMM
process is forked and the guest kernel forks its init process.
For this experiment we use a minimal init implementation,
which just writes to a pre-configured IO port. We modified all
VMM s to call exit () when the write to this IO port triggers
a VM exit.

All VMMs directly load a Linux 4.14.94 kernel via the
command line (i.e. the kernel is directly loaded by the VMM
and not some bootloader). The kernel is configured with the
settings we recommend for MicroVMs (minimal set of kernel
driver and no kernel modules), and we use a file backed min-
imal root filesystem containing the init process. The VMs
are configured with a single vCPU and 256MB of memory.

Figure 5 shows the cumulative distribution of (wall-clock)
kernel boot times for 500 samples executed serially, so only
one boot was taking place on the system at a time. Firecracker
results are presented in two ways: end-to-end, including fork-
ing the Firecracker process and configuration through the APT;
and pre-configured where Firecracker has already been set up

Thttps://github.com/firecracker-microvm/nsdi2020-data

https://github.com/firecracker-microvm/nsdi2020-data

P ;
0.8 [CloudHV]
wo 0.6 k QEMU A
O F]
0.4 : ‘ 1
0.2 F : f 7

oL I L I
0 50 100 150 200 250

Boot time (ms)

Figure 5: Cumulative distribution of wall-clock times for start-
ing MicroVMs in serial, for pre-configured Firecracker (FC-
pre), end-to-end Firecracker, Cloud Hypervisor, and QEMU.

T T

T
FC-pre

1]
0.8 ?CIoudI—FIS — A
LSL 0.6 QEMU :
0.4 b
ol ! A | ! i |

0 50 100 150 200 250 300 350
Boot time (ms)

Figure 6: Cumulative distribution of wall-clock times for
starting 50 MicroVMs in parallel, for pre-configured Fire-
cracker (FC-pre), end-to-end Firecracker, Cloud Hypervi-
sor,and QEMU.

through the API and time represent the wall clock time from
the final API call to start the VM until the init process gets
executed.

Pre-configured Firecracker and the Cloud Hypervisor per-
form significantly better than QEMU, both on average and
with a tighter distribution, booting twice as fast as QEMU. The
end-to-end Firecracker boot times are somewhat in-between,
which is expected since we currently perform several API
calls to configure the Firecracker VM. Cloud Hypervisor
boots marginally faster than pre-configured Firecracker. We
suspect subtle differences in the VM emulation to be the
reason.

We then booted 1000 MicroVMs with 50 VMs launch-
ing concurrently. While any highly-concurrent test will give
results that vary between runs, the results in Figure 6 are
representative: Firecracker and QEMU perform similarly for
end-to-end comparisons, roughly maintaining the 5S0ms gap
already seen with the serial boot times above. Like with serial
boot times, pre-configured Firecracker and Cloud Hypervisor
show significantly better results, with pre-configured Fire-
cracker out-performing Cloud Hypervisor both in average
boot times as well as a tighter distribution with a 99th per-
centile of 146ms vs 158ms. We also repeated the experiment

with starting 100 MicroVMs concurrently and see a similar
trend, albeit with a slightly wider distribution with the 99th
percentile for pre-configure Firecracker going up to 153ms.

Based on these results, we are investigating a number of
optimizations to Firecracker. We could move the Firecracker
configuration into a single combined API call would close the
gap between the pre-configured and end-to-end boot times.
We also investigate to move some of the VM initialization into
the VM configuration phase, e.g., allocating the VM memory
and loading the kernel image during the configuration API
call. This should improve considerably the pre-configured
boot times.

The choice of VMM is, of course, only one factor impacting
boot times. For example, both Firecracker and Cloud Hyper-
visor are capable of booting uncompressed Linux kernels
while QEMU only boots compressed kernel images. Cloud
Hypervisor is also capable of booting compressed kernel. De-
compressing the kernel during boot adds around 40ms. The
kernel configuration also matters. In the same test setup, the
kernel which ships with Ubuntu 18.04 takes an additional
900ms to start! Part of this goes to timeouts when probing
for legacy devices not emulated by Firecracker, and part to
loading unneeded drivers. In our kernel configuration, we ex-
clude almost all drivers, except the virtio and serial drivers
that Firecracker supports,build all functionality into the ker-
nel (avoiding modules), and disable any kernel features that
typical container and serverless deployments will not need.
The compressed kernel built with this configuration is 4.0MB
with no modules, compared to the Ubuntu 18.04 kernel at
6.7MB with 44MB of modules. We also recommend a kernel
command line for Firecracker which, among other things, dis-
ables the standard logging to the serial console (saving up to
70ms of boot time). Note, we use similar optimizations for
the other VMM in iur tests.

For the tests above, all MicroVMs were configured without
networking. Adding a statically configured network interface
adds around 20ms to the boot times for Firecracker and Cloud
Hypervisor and around 35ms for QEMU. Finally, QEMU
requires a BIOS to boot. For our test we use gboot [8], a
minimal BIOS, which reduces boot times by around 20ms
compared to the default BIOS. Overall the boot times compare
favourable to those reported in the literature, for example [38]
reported boot times for an unmodified Linux kernel of 180ms.

5.2 Memory overhead

For Lambda, memory overhead is a key metric, because our
goal is to sell all the memory we buy. Lower memory overhead
also allows for a higher density of MicroVMs. We measure
the memory overhead for the different VMMs as the differ-
ence between memory used by the VMM process and the
configured MicroVM size. To measure the size of the VMM
process we parse the output of the pmap command and add
up all non-shared memory segments reported. This way our

160
3 128 ¢ AR]
= Z]
o 96 FC ——
3 r CloudHV —%¢—
£ 64 | QEMU 7]
o []
> [
) 32 7
0 fe f f f A f
0 1 2 3 4 5 6 7 8

VM memory (GB)

Figure 7: Memory overhead for different VMMs depending
on the configured VM size.

calculation excludes the size of the VMM binary itself.

Figure 7 shows that all three VMMs have a constant mem-
ory overhead irrespective of the configured VM size (with the
exception of QEMU, where for a 128MB sized VM, the over-
head is slightly higher). Firecracker has the smallest overhead
(around 3MB) of all VMM sizes measured. Cloud Hyper-
visors overhead is around 13MB per VM. QEMU has the
highest overhead of around 131MB per MicroVM. In particu-
lar for smaller MicroVMs, QEMU'’s overhead is significant.

We also measured the memory available inside the Mi-
croVM using the free command. The difference in memory
available between the different VMM:s is consistent with the
data presented above.

5.3 10 performance

In this section, we look at the 10 performance of the different
VMMs both for disks and networking. For all tests we use
VMs configured with 2 vCPUs and 512MB of memory. For
block IO performance tests we use fio [3], and rate limiting
was disabled in Firecracker. fio is configured to perform
random IO directly against the block device, using direct IO
through libaio, and all tests were backed by the local NVMe
SSDs on the m5d.metal server. Figure 8 shows the perfor-
mance of random read and write IO of small (4kB) and large
(128kB) blocks (queue depth 32). The results reflect two lim-
itations in Firecracker’s (and Cloud Hypervisor’s) current
block IO implementation: it does not implement flush-to-disk
so high write performance comes at the cost of durability
(particularly visible in 128kB write results), and it is currently
limited to handling IOs serially (clearly visible in the read
results). The hardware is capable of over 340,000 read IOPS
(1GB/s at 4kB), but the Firecracker (and Cloud Hypervisor)
guest is limited to around 13,000 IOPS (52MB/s at 4kB).
We expect to fix both of these limitations in time. QEMU
clearly has a more optimized IO path and performs flushing
on write. For 128k reads and writes it almost matches the
performance of the physical disk, but for 4k operations the
higher transaction rate highlights its overheads.

Figure 9 shows 99th percentile latency for block 10 with

1800

1600 metalll | I I I |
]
1400 | iou4 fiv]
1200 - MU *
1000 - *
800 n
600 - *
400 - T
200 - y
0

4k write 128k read 128k write

Bandwidth (MB/s)

4k read

Figure 8: 10 throughput on EC2 m5d.metal and running inside
various VMs.

800
700 -

T T
metal I—

FC mmmm
600 [Cloud HV
500 - QEMU

I T
400 | .
300 .
200 .
100 - II .
0 mmll

4k read 4k write 128k read 128k write

Latency (us)

Figure 9: 99th percentile 10 latency on EC2 m5d.metal and
running inside various VMMs.

a queue depth of 1. Here Firecracker fares fairly well for
small blocks: 4kB reads are only 49us slower than native
reads. Large blocks have significantly more overhead, with
Firecracker more than doubling the IO latency. Writes show
divergence in the implementation between Firecracker and
Cloud Hypervisor with the latter having significantly lower
write latency. The write latency of Firecracker and Cloud
Hypervisor have also be considered with care since neither
supports flush on write.

Tests with multiple MicroVMs showed no significant con-
tention: running multiple tests each with a dedicated disk,
both Firecracker and QEMU saw no degradation relative to a
single MicroVM.

Network performance tests were run with iperf3, measur-
ing bandwidth to and from the local host over a tap interface
with 1500 byte MTU. We measured both the performance of
a single stream as well as 10 concurrent streams. The results
are summarised in Table 1. The host (via the tap interface)
can achieve around 44Gb/s for a single stream and 46Gb/s
for 10 concurrent streams. Firecracker only achives around
15Gb/s for all scenarios while Cloud Hypervisor achieves
slight higher performance, likely due to a slight more op-
timised virtio implementation. The QEMU throughput is
roughly the same as for Could Hypervisor. While Firecracker
has a little lower throughput than the other VMMs we have
not seen this to be a limitation in our production environment.

As with block 10, performance scaled well, with up to 16
concurrent MicroVMs able to achieve the same bandwidth.

[VMM [IRX [ITX [10RX [I0TX |
loopback [44.14 | 44.14 | 46.92 [46.92
FC 1561 [1415 | 1513 | 14.87
Cloud HV [23.12 [2096 | 2253 | N/A
Qemu 2376 [2043 | 19.30 | 30.43

Table 1: iper£3 throughput in Gb/s for receiving (RX) in the
VM and transmitting (TX) from the VM for a single and ten
concurrent TCP streams.

We expect that there are significant improvements still pos-
sible to increase latency and throughput for both disk 10 and
networking. Some improvements, such as exposing parallel
disk IOs to the underlying storage devices, are likely to offer
significantly improved performance. Nevertheless, the virtio-
based approach we have taken with Firecracker will not yield
the near-bare-metal performance offered by PCI pass-through
(used in our standard EC2 instances); hardware is not yet up
to the task of supporting thousands of ephemeral VMs.

5.4 Does Firecracker Achieve Its Goals?

Using the six criteria from Section 2, we found that while
there is scope for improving Firecracker (as there is scope
for improving all software), it does meet our goals. We have
been running Lambda workloads in production on Firecracker
since 2018.

Isolation: The use of virtualization, along with side-channel
hardening, implementation in Rust, extensive testing and
validation makes us confident to run multiple workloads
from multiple tenants on the same hardware with Fire-
cracker.

Overhead and Density: Firecracker is able to run thousands
of MicroVMs on the same hardware, with overhead as
low a 3% on memory and negligible overhead on CPU.

Performance Block IO and network performance have some
scope for improvement, but are adequate for the needs
of Lambda and Fargate.

Compatibility: Firecracker MicroVMs run an unmodified
(although minimal) Linux kernel and userland. We have
not found software that does not run in a MicroVM, other
than software with specific hardware requirements.

Fast Switching: Firecracker MicroVMs boot with a produc-
tion kernel configuration and userland in as little as
150ms, and multiple MicroVMs can be started at the
same time without contention.

Soft Allocation: We have tested memory and CPU oversub-
scription ratios of over 20x, and run in production with
ratios as high as 10x, with no issues.

In response to this success, we have deployed Firecracker
in production in AWS Lambda, where it is being used suc-
cessfully to process trillions of events per month for millions
of different workloads.

6 Conclusion

In building Firecracker, we set out to create a VMM optimized
for serverless and container workloads. We have successfully
deployed Firecracker to production in Lambda and Fargate,
where it has met our goals on performance, density and se-
curity. In addition to the short-term success, Firecracker will
be the basis for future investments and improvements in the
virtualization space, including exploring new areas for virtu-
alization technology. We are excited to see Firecracker being
picked up by the container community, and believe that there
is a great opportunity to move from Linux containers to vir-
tualization as the standard for container isolation across the
industry.

The future is bright for MicroVMs, both in and out of the
cloud. Challenges remain in further optimizing performance
and density, building schedulers than can take advantage of
the unique capabilities of MicroVM-based isolation, and in
exploring alternative operating systems and programming
models for serverless computing. We expect that there is
much fruitful research to do at the VMM and hypervisor lev-
els. Directions we are interested in include: increasing density
(especially memory deduplication) without sacrificing isola-
tion against architectural and microarchitectural side-channel
attacks; compute hardware optimized for high-density multi-
tenancy; high-density host bypass for networking, storage and
accelerator hardware; reducing the size of the virtualization
trusted compute base; and dramatically reducing startup and
workload switching costs. The hardware, user expectations,
and threat landscape around running multitenant container
and function workloads are changing fast. Perhaps faster than
at any other point in the last decade. We are excited to con-
tinue to work with the research and open source communities
to meet these challenges.

7 Acknowledgements

The Firecracker team at AWS, and the open source commu-
nity, made Firecracker and this paper possible. Production
experience and feedback from the AWS Lambda and Fargate
teams was invaluable. Thanks to Tim Harris, Andy Warfield,
Radu Weiss and David R. Richardson for their valuable feed-
back on the paper.

References

[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat

(2]

(3]

[4

—_

(51

(6]

[7

—

(8]

(9]

[10]

[11]

[12]

Aditya, and Volker Hilt. Sand: Towards high-
performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923-935, 2018.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida Garcia, and Nicola Tuveri. Port
contention for fun and profit. JACR Cryptology ePrint
Archive, 2018:1060, 2018.

Jens Axboe. Fio: Flexible i/o tester, 2019. URL: https:
//github.com/axboe/fio/.

Microsoft Azure. Azure functions, 2019. URL:
https://azure.microsoft.com/en-us/services/
functions/.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37,
pages 164—-177. ACM, 2003.

Andrew Baumann, Dongyoon Lee, Pedro Fonseca,
Lisa Glendenning, Jacob R. Lorch, Barry Bond,
Reuben Olinsky, and Galen C. Hunt. Composing
os extensions safely and efficiently with bascule.
In Proceedings of the 8th ACM European Confer-
ence on Computer Systems, EuroSys ’13, pages
239-252, New York, NY, USA, 2013. ACM. URL:
http://doi.acm.org/10.1145/2465351.2465375,
doi:10.1145/2465351.2465375.

Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
FREENIX Track, volume 41, page 46, 2005.

Paolo Bonzini. Minimal x86 firmware for booting linux
kernels, 2019. URL: https://github.com/bonzini/
gboot.

Reto Buerki and Adrian-Ken Rueegsegger. Muen-an
x86/64 separation kernel for high assurance. University
of Applied Sciences Rapperswil (HSR), Tech. Rep, 2013.

Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. arXiv preprint arXiv:1811.05441, 2018.

Google Cloud. KNative, 2018. URL: https://cloud.

google.com/knative/.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian
Li, Shuvo Chatterjee, Christos Kozyrakis, Matei Za-
haria, and Keith Winstein. From laptop to lambda:

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Outsourcing everyday jobs to thousands of tran-
sient functional containers. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages
475-488, Renton, WA, July 2019. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
atcl9/presentation/fouladi.

Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Balasubramaniam, William Zeng, Rahul
Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads. In NSDI,
pages 363-376, 2017.

The Operstack Foundation. Kata Containers - The speed
of containers, the security of VMs, 2017. URL: https:
//katacontainers.io/.

Google. gvisor: Container runtime sandbox, November
2018. URL: https://github.com/google/gvisor.

Google. Google cloud functions, 2019. URL: https:
//cloud.google.com/functions/.

C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consis-
tency. In Proceedings of the Twelfth ACM Sym-
posium on Operating Systems Principles, SOSP ’89,
pages 202-210, New York, NY, USA, 1989. ACM.
URL: http://doi.acm.org/10.1145/74850.74870,
doi:10.1145/74850.74870.

Brendan Gregg. Systems performance: enterprise and
the cloud. Pearson Education, 2014.

Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael
Schwarz, Ari Trachtenberg, Jason Hennessey, Alex
Ionescu, and Anders Fogh. Page cache attacks. arXiv
preprint arXiv:1901.01161, 2019. URL: https://
arxiv.org/abs/1901.01161.

Vipul Gupta, Swanand Kadhe, Thomas Courtade,
Michael W. Mahoney, and Kannan Ramchandran.
Oversketched newton: Fast convex optimization for
serverless systems, 2019. arXiv:1903.08857.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless comput-
ing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

Apache HttpClient. Thread interrupt flag leaking when
aborting httprequest during connection leasing stage,
2019. URL: https://issues.apache.org/jira/
browse/HTTPCLIENT-1958.

https://github.com/axboe/fio/
https://github.com/axboe/fio/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
http://doi.acm.org/10.1145/2465351.2465375
http://dx.doi.org/10.1145/2465351.2465375
https://github.com/bonzini/qboot
https://github.com/bonzini/qboot
https://cloud.google.com/knative/
https://cloud.google.com/knative/
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://katacontainers.io/
https://katacontainers.io/
https://github.com/google/gvisor
https://cloud.google.com/functions/
https://cloud.google.com/functions/
http://doi.acm.org/10.1145/74850.74870
http://dx.doi.org/10.1145/74850.74870
https://arxiv.org/abs/1901.01161
https://arxiv.org/abs/1901.01161
http://arxiv.org/abs/1903.08857
https://issues.apache.org/jira/browse/HTTPCLIENT-1958
https://issues.apache.org/jira/browse/HTTPCLIENT-1958

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Apache HttpCore.
httprequest after connection leasing, 2019.
https://issues.apache.org/jira/browse/
HTTPCORE-567.

Connection leak when aborting
URL:

Intel. Nemu: Modern hypervisor for the cloud, 2018.
URL: https://github.com/intel/nemu.

Intel. Cloud hypervisor, 2019. URL: https://github.

com/intel/cloud-hypervisor.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99%. In Proceedings of the 2017
Symposium on Cloud Computing, pages 445-451. ACM,
2017.

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neer-
aja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa,
Ion Stoica, and David A. Patterson. Cloud program-
ming simplified: A berkeley view on serverless com-
puting. Technical Report UCB/EECS-2019-3, EECS
Department, University of California, Berkeley, Feb
2019. URL: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2019/EECS-2019-3.html.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study
of dram disturbance errors. SIGARCH Comput.
Archit. News, 42(3):361-372, June 2014. URL:
https://doi.org/10.1145/2678373.2665726,
doi:10.1145/2678373.2665726.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: The linux virtual machine monitor.
In In Proc. 2007 Ottawa Linux Symposium (OLS *07),
2007.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

James Larisch, James Mickens, and Eddie Kohler. Alto:
lightweight vms using virtualization-aware managed
runtimes. In Proceedings of the 15th International Con-
ference on Managed Languages & Runtimes, page 8.
ACM, 2018.

Yiwen Li, Brendan Dolan-Gavitt, Sam Weber,
and Justin Cappos. Lock-in-pop: Securing privi-
leged operating system kernels by keeping on the

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

beaten path. 1In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 1-13, Santa
Clara, CA, 2017. USENIX Association. URL:
https://www.usenix.org/conference/atcl7/
technical-sessions/presentation/li-yiwen.

Arm Limited. Cache speculation side-
channels, version 2.4. Technical report, Oc-
tober 2018. URL: https://developer.
arm.com/support/arm-security-updates/
speculative-processor-vulnerability/

download-the-whitepaper.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

John DC Little. A proof for the queuing formula: L = A
w. Operations research, 9(3):383-387, 1961.

Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fa-
bien Gaud, Vivien Quéma, and Alexandra Fedorova.
The linux scheduler: a decade of wasted cores. In Pro-
ceedings of the Eleventh European Conference on Com-
puter Systems, page 1. ACM, 2016.

Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2109—
2122. ACM, 2018.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP *17,
pages 218-233, New York, NY, USA, 2017. ACM. URL:
http://doi.acm.org/10.1145/3132747.3132763,
do1:10.1145/3132747.3132763.

Ross Mcllroy, Jaroslav Sevcik, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay:
An analysis of side-channels and speculative execution.
CoRR, abs/1902.05178, 2019. URL: http://arxiv.
org/abs/1902.05178, arXiv:1902.05178.

OASIS. Virtual i/o device (virtio) version 1.0, March
2016.

OpenFaaS. OpenFaaS: Serverless Functions Made Sim-
ple , 2019. URL: https://www.openfaas.com/.

https://issues.apache.org/jira/browse/HTTPCORE-567
https://issues.apache.org/jira/browse/HTTPCORE-567
https://github.com/intel/nemu
https://github.com/intel/cloud-hypervisor
https://github.com/intel/cloud-hypervisor
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://doi.org/10.1145/2678373.2665726
http://dx.doi.org/10.1145/2678373.2665726
https://www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen
https://www.usenix.org/conference/atc17/technical-sessions/presentation/li-yiwen
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper
http://doi.acm.org/10.1145/3132747.3132763
http://dx.doi.org/10.1145/3132747.3132763
http://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
https://www.openfaas.com/

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: The case of
aes. In Proceedings of the 2006 The Cryptogra-
phers’ Track at the RSA Conference on Topics in Cryp-
tology, CT-RSA’06, pages 1-20, Berlin, Heidelberg,
2006. Springer-Verlag. URL: http://dx.doi.org/
10.1007/11605805_1,do1:10.1007/11605805_1.

K. Park, S. Baeg, S. Wen, and R. Wong. Active-
precharge hammering on a row induced failure in ddr3
sdrams under 3nm technology. In 2014 IEEE Inter-
national Integrated Reliability Workshop Final Report

(IIRW), pages 82-85, Oct 2014. doi:10.1109/IIRW.

2014.7049516.

Matthew Perron, Raul Castro Fernandez, David DeWitt,
and Samuel Madden. Starling: A scalable query engine
on cloud function services, 2019. arXiv:1911.11727.

Donald E. Porter, Silas Boyd-Wickizer, Jon Howell,
Reuben Olinsky, and Galen C. Hunt. Rethinking the
library os from the top down. SIGARCH Comput.
Archit. News, 39(1):291-304, March 2011. URL:
http://doi.acm.org/10.1145/1961295.1950399,
doi:10.1145/1961295.1950399.

The Chromium Projects. Site isolation de-
sign, 2018. URL: https://www.chromium.org/
developers/design-documents/site-isolation.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless
infrastructure. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 193-206, Boston, MA, 2019. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
nsdil9/presentation/pu.

Rusty Russell. Virtio: Towards a de-facto stan-
dard for virtual i/o devices. SIGOPS Oper.
Syst. Rev., 42(5):95-103, July 2008. URL:
http://doi.acm.org/10.1145/1400097.1400108,
doi:10.1145/1400097.1400108.

Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS °19, page 753-768, New York,
NY, USA, 2019. Association for Computing Machin-
ery.
3354252,d01:10.1145/3319535.3354252.

Amazon Web Services. AWS Fargate - Run contain-
ers without managing servers or clusters, 2018. URL:
https://aws.amazon.com/fargate/.

URL: https://doi.org/10.1145/3319535.

(51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

Amazon Web Services. Aws lambda - serverless
compute, 2018. URL: https://aws.amazon.com/
lambda/.

Amazon Web Services. Firecracker production host
setup recommendations, 2018. URL: https://github.
com/firecracker-microvm/firecracker/blob/
master/docs/prod-host-setup.md.

Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas,
Shivaram Venkataraman, Ion Stoica, Benjamin Recht,
and Jonathan Ragan-Kelley. numpywren: serverless
linear algebra, 2018. arXiv:1810.09679.

Julian Stecklina and Thomas Prescher. Lazyfp: Leaking
fpu register state using microarchitectural side-channels,
2018. arXiv:1806.07480.

Udo Steinberg and Bernhard Kauer. Nova: A
microhypervisor-based secure virtualization ar-
chitecture. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys *10, pages
209-222, New York, NY, USA, 2010. ACM. URL:
http://doi.acm.org/10.1145/1755913.1755935,
do1:10.1145/1755913.1755935.

Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi,
Bhushan Jain, William Jannen, Jitin John, Harry A.
Kalodner, Vrushali Kulkarni, Daniela Oliveira, and
Donald E. Porter. Cooperation and security isolation
of library oses for multi-process applications. In
Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 9:1—
9:14, New York, NY, USA, 2014. ACM. URL:
http://doi.acm.org/10.1145/2592798.2592812,

doi:10.1145/2592798.2592812.

Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul,
and Donald E. Porter. A study of modern linux api
usage and compatibility: What to support when you’re
supporting. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys "16, pages
16:1-16:16, New York, NY, USA, 2016. ACM. URL.:
http://doi.acm.org/10.1145/2901318.2901341,
doi:10.1145/2901318.2901341.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
Foreshadow-ng: Breaking the virtual memory abstrac-
tion with transient out-of-order execution. Technical
report, Technical report, 2018.

Dan Williams and Ricardo Koller. Unikernel
monitors: Extending minimalism outside of the
box. In 8th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 16), Denver,

http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1109/IIRW.2014.7049516
http://dx.doi.org/10.1109/IIRW.2014.7049516
http://arxiv.org/abs/1911.11727
http://doi.acm.org/10.1145/1961295.1950399
http://dx.doi.org/10.1145/1961295.1950399
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
http://doi.acm.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3319535.3354252
http://dx.doi.org/10.1145/3319535.3354252
https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1806.07480
http://doi.acm.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/1755913.1755935
http://doi.acm.org/10.1145/2592798.2592812
http://dx.doi.org/10.1145/2592798.2592812
http://doi.acm.org/10.1145/2901318.2901341
http://dx.doi.org/10.1145/2901318.2901341

CO, 2016. USENIX Association. URL: https: [61] Yuval Yarom and Katrina Falkner. Flush+reload:
//www.usenix.org/conference/hotcloudl6/ A high resolution, low noise, 13 cache side-channel
workshop-program/presentation/williams. attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719-732, San Diego, CA, August
2014. USENIX Association. URL: https://www.
usenix.org/conference/usenixsecurityl4/
technical-sessions/presentation/yarom.

[60] Dan Williams, Ricardo Koller, and Brandon Lum. Say
goodbye to virtualization for a safer cloud. In 10th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 18), 2018.

https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Introduction
	Specialization

	Choosing an Isolation Solution
	Evaluating the Isolation Options
	Linux Containers
	Language-Specific Isolation
	Virtualization

	The Firecracker VMM
	Device Model
	API
	Rate Limiters, Performance and Machine Configuration
	Security
	Jailer

	Firecracker In Production
	Inside AWS Lambda
	High-Level Architecture
	Firecracker In The Lambda Worker

	The Role of Multi-Tenancy
	Experiences Deploying and Operating Firecracker

	Evaluation
	Boot Times
	Memory overhead
	IO performance
	Does Firecracker Achieve Its Goals?

	Conclusion
	Acknowledgements

