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Abstract
F2FS is a Linux file system designed to perform well on
modern flash storage devices. The file system builds on
append-only logging and its key design decisions were
made with the characteristics of flash storage in mind.
This paper describes the main design ideas, data struc-
tures, algorithms and the resulting performance of F2FS.

Experimental results highlight the desirable perfor-
mance of F2FS; on a state-of-the-art mobile system, it
outperforms EXT4 under synthetic workloads by up to
3.1× (iozone) and 2× (SQLite). It reduces elapsed time
of several realistic workloads by up to 40%. On a server
system, F2FS is shown to perform better than EXT4 by
up to 2.5× (SATA SSD) and 1.8× (PCIe SSD).

1 Introduction
NAND flash memory has been used widely in various
mobile devices like smartphones, tablets and MP3 play-
ers. Furthermore, server systems started utilizing flash
devices as their primary storage. Despite its broad use,
flash memory has several limitations, like erase-before-
write requirement, the need to write on erased blocks se-
quentially and limited write cycles per erase block.

In early days, many consumer electronic devices di-
rectly utilized “bare” NAND flash memory put on a
platform. With the growth of storage needs, however,
it is increasingly common to use a “solution” that has
multiple flash chips connected through a dedicated con-
troller. The firmware running on the controller, com-
monly called FTL (flash translation layer), addresses
the NAND flash memory’s limitations and provides a
generic block device abstraction. Examples of such a
flash storage solution include eMMC (embedded mul-
timedia card), UFS (universal flash storage) and SSD
(solid-state drive). Typically, these modern flash stor-
age devices show much lower access latency than a hard

disk drive (HDD), their mechanical counterpart. When it
comes to random I/O, SSDs perform orders of magnitude
better than HDDs.

However, under certain usage conditions of flash stor-
age devices, the idiosyncrasy of the NAND flash media
manifests. For example, Min et al. [21] observe that fre-
quent random writes to an SSD would incur internal frag-
mentation of the underlying media and degrade the sus-
tained SSD performance. Studies indicate that random
write patterns are quite common and even more taxing to
resource-constrained flash solutions on mobile devices.
Kim et al. [12] quantified that the Facebook mobile ap-
plication issues 150% and WebBench register 70% more
random writes than sequential writes. Furthermore, over
80% of total I/Os are random and more than 70% of the
random writes are triggered with fsync by applications
such as Facebook and Twitter [8]. This specific I/O pat-
tern comes from the dominant use of SQLite [2] in those
applications. Unless handled carefully, frequent random
writes and flush operations in modern workloads can se-
riously increase a flash device’s I/O latency and reduce
the device lifetime.

The detrimental effects of random writes could be
reduced by the log-structured file system (LFS) ap-
proach [27] and/or the copy-on-write strategy. For exam-
ple, one might anticipate file systems like BTRFS [26]
and NILFS2 [15] would perform well on NAND flash
SSDs; unfortunately, they do not consider the charac-
teristics of flash storage devices and are inevitably sub-
optimal in terms of performance and device lifetime. We
argue that traditional file system design strategies for
HDDs—albeit beneficial—fall short of fully leveraging
and optimizing the usage of the NAND flash media.

In this paper, we present the design and implemen-
tation of F2FS, a new file system optimized for mod-
ern flash storage devices. As far as we know, F2FS is
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the first publicly and widely available file system that
is designed from scratch to optimize performance and
lifetime of flash devices with a generic block interface.1

This paper describes its design and implementation.

Listed in the following are the main considerations for
the design of F2FS:
• Flash-friendly on-disk layout (Section 2.1). F2FS
employs three configurable units: segment, section and
zone. It allocates storage blocks in the unit of segments
from a number of individual zones. It performs “clean-
ing” in the unit of section. These units are introduced
to align with the underlying FTL’s operational units to
avoid unnecessary (yet costly) data copying.
• Cost-effective index structure (Section 2.2). LFS
writes data and index blocks to newly allocated free
space. If a leaf data block is updated (and written to
somewhere), its direct index block should be updated,
too. Once the direct index block is written, again its in-
direct index block should be updated. Such recursive up-
dates result in a chain of writes, creating the “wandering
tree” problem [4]. In order to attack this problem, we
propose a novel index table called node address table.
• Multi-head logging (Section 2.4). We devise an effec-
tive hot/cold data separation scheme applied during log-
ging time (i.e., block allocation time). It runs multiple
active log segments concurrently and appends data and
metadata to separate log segments based on their antici-
pated update frequency. Since the flash storage devices
exploit media parallelism, multiple active segments can
run simultaneously without frequent management oper-
ations, making performance degradation due to multiple
logging (vs. single-segment logging) insignificant.
• Adaptive logging (Section 2.6). F2FS builds basically
on append-only logging to turn random writes into se-
quential ones. At high storage utilization, however, it
changes the logging strategy to threaded logging [23] to
avoid long write latency. In essence, threaded logging
writes new data to free space in a dirty segment without
cleaning it in the foreground. This strategy works well
on modern flash devices but may not do so on HDDs.
• fsync acceleration with roll-forward recovery
(Section 2.7). F2FS optimizes small synchronous writes
to reduce the latency of fsync requests, by minimizing
required metadata writes and recovering synchronized
data with an efficient roll-forward mechanism.

In a nutshell, F2FS builds on the concept of LFS
but deviates significantly from the original LFS proposal
with new design considerations. We have implemented
F2FS as a Linux file system and compare it with two

1F2FS has been available in the Linux kernel since version 3.8 and
has been adopted in commercial products.

state-of-the-art Linux file systems—EXT4 and BTRFS.
We also evaluate NILFS2, an alternative implementation
of LFS in Linux. Our evaluation considers two generally
categorized target systems: mobile system and server
system. In the case of the server system, we study the
file systems on a SATA SSD and a PCIe SSD. The results
we obtain and present in this work highlight the overall
desirable performance characteristics of F2FS.

In the remainder of this paper, Section 2 first describes
the design and implementation of F2FS. Section 3 pro-
vides performance results and discussions. We describe
related work in Section 4 and conclude in Section 5.

2 Design and Implementation of F2FS

2.1 On-Disk Layout
The on-disk data structures of F2FS are carefully laid
out to match how underlying NAND flash memory is or-
ganized and managed. As illustrated in Figure 1, F2FS
divides the whole volume into fixed-size segments. The
segment is a basic unit of management in F2FS and is
used to determine the initial file system metadata layout.

A section is comprised of consecutive segments, and
a zone consists of a series of sections. These units are
important during logging and cleaning, which are further
discussed in Section 2.4 and 2.5.

F2FS splits the entire volume into six areas:

• Superblock (SB) has the basic partition information
and default parameters of F2FS, which are given at the
format time and not changeable.
• Checkpoint (CP) keeps the file system status, bitmaps
for valid NAT/SIT sets (see below), orphan inode lists
and summary entries of currently active segments. A
successful “checkpoint pack” should store a consistent
F2FS status at a given point of time—a recovery point af-
ter a sudden power-off event (Section 2.7). The CP area
stores two checkpoint packs across the two segments (#0
and #1): one for the last stable version and the other for
the intermediate (obsolete) version, alternatively.
• Segment Information Table (SIT) contains per-
segment information such as the number of valid blocks
and the bitmap for the validity of all blocks in the “Main”
area (see below). The SIT information is retrieved to se-
lect victim segments and identify valid blocks in them
during the cleaning process (Section 2.5).
• Node Address Table (NAT) is a block address table to
locate all the “node blocks” stored in the Main area.
• Segment Summary Area (SSA) stores summary en-
tries representing the owner information of all blocks
in the Main area, such as parent inode number and its
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Figure 1: On-disk layout of F2FS.

node/data offsets. The SSA entries identify parent node
blocks before migrating valid blocks during cleaning.
• Main Area is filled with 4KB blocks. Each block is al-
located and typed to be node or data. A node block con-
tains inode or indices of data blocks, while a data block
contains either directory or user file data. Note that a sec-
tion does not store data and node blocks simultaneously.

Given the above on-disk data structures, let us illus-
trate how a file look-up operation is done. Assuming a
file “/dir/file”, F2FS performs the following steps:
(1) It obtains the root inode by reading a block whose lo-
cation is obtained from NAT; (2) In the root inode block,
it searches for a directory entry named dir from its data
blocks and obtains its inode number; (3) It translates the
retrieved inode number to a physical location through
NAT; (4) It obtains the inode named dir by reading the
corresponding block; and (5) In the dir inode, it identi-
fies the directory entry named file, and finally, obtains
the file inode by repeating steps (3) and (4) for file.
The actual data can be retrieved from the Main area, with
indices obtained via the corresponding file structure.

2.2 File Structure
The original LFS introduced inode map to translate an
inode number to an on-disk location. In comparison,
F2FS utilizes the “node” structure that extends the inode
map to locate more indexing blocks. Each node block
has a unique identification number, “node ID”. By using
node ID as an index, NAT serves the physical locations
of all node blocks. A node block represents one of three
types: inode, direct and indirect node. An inode block
contains a file’s metadata, such as file name, inode num-
ber, file size, atime and dtime. A direct node block con-
tains block addresses of data and an indirect node block
has node IDs locating another node blocks.

As illustrated in Figure 2, F2FS uses pointer-based file
indexing with direct and indirect node blocks to elim-
inate update propagation (i.e., “wandering tree” prob-
lem [27]). In the traditional LFS design, if a leaf data is
updated, its direct and indirect pointer blocks are updated
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Figure 2: File structure of F2FS.

recursively. F2FS, however, only updates one direct node
block and its NAT entry, effectively addressing the wan-
dering tree problem. For example, when a 4KB data is
appended to a file of 8MB to 4GB, the LFS updates two
pointer blocks recursively while F2FS updates only one
direct node block (not considering cache effects). For
files larger than 4GB, the LFS updates one more pointer
block (three total) while F2FS still updates only one.

An inode block contains direct pointers to the file’s
data blocks, two single-indirect pointers, two double-
indirect pointers and one triple-indirect pointer. F2FS
supports inline data and inline extended attributes, which
embed small-sized data or extended attributes in the
inode block itself. Inlining reduces space requirements
and improve I/O performance. Note that many systems
have small files and a small number of extended at-
tributes. By default, F2FS activates inlining of data if
a file size is smaller than 3,692 bytes. F2FS reserves 200
bytes in an inode block for storing extended attributes.

2.3 Directory Structure
In F2FS, a 4KB directory entry (“dentry”) block is com-
posed of a bitmap and two arrays of slots and names in
pairs. The bitmap tells whether each slot is valid or not.
A slot carries a hash value, inode number, length of a file
name and file type (e.g., normal file, directory and sym-
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bolic link). A directory file constructs multi-level hash
tables to manage a large number of dentries efficiently.

When F2FS looks up a given file name in a directory,
it first calculates the hash value of the file name. Then, it
traverses the constructed hash tables incrementally from
level 0 to the maximum allocated level recorded in the
inode. In each level, it scans one bucket of two or four
dentry blocks, resulting in an O(log(# of dentries)) com-
plexity. To find a dentry more quickly, it compares the
bitmap, the hash value and the file name in order.

When large directories are preferred (e.g., in a server
environment), users can configure F2FS to initially allo-
cate space for many dentries. With a larger hash table at
low levels, F2FS reaches to a target dentry more quickly.

2.4 Multi-head Logging
Unlike the LFS that has one large log area, F2FS main-
tains six major log areas to maximize the effect of hot and
cold data separation. F2FS statically defines three levels
of temperature—hot, warm and cold—for node and data
blocks, as summarized in Table 1.

Direct node blocks are considered hotter than indi-
rect node blocks since they are updated much more fre-
quently. Indirect node blocks contain node IDs and are
written only when a dedicated node block is added or
removed. Direct node blocks and data blocks for direc-
tories are considered hot, since they have obviously dif-
ferent write patterns compared to blocks for regular files.
Data blocks satisfying one of the following three condi-
tions are considered cold:
• Data blocks moved by cleaning (see Section 2.5).
Since they have remained valid for an extended period
of time, we expect they will remain so in the near future.
• Data blocks labeled “cold” by the user. F2FS sup-
ports an extended attribute operation to this end.
• Multimedia file data. They likely show write-once
and read-only patterns. F2FS identifies them by match-
ing a file’s extension against registered file extensions.

By default, F2FS activates six logs open for writing.
The user may adjust the number of write streams to two
or four at mount time if doing so is believed to yield bet-
ter results on a given storage device and platform. If six
logs are used, each logging segment corresponds directly
to a temperature level listed in Table 1. In the case of four
logs, F2FS combines the cold and warm logs in each of
node and data types. With only two logs, F2FS allocates
one for node and the other for data types. Section 3.2.3
examines how the number of logging heads affects the
effectiveness of data separation.

F2FS introduces configurable zones to be compat-
ible with an FTL, with a view to mitigating the

Table 1: Separation of objects in multiple active seg-
ments.

Type Temp. Objects

Node
Hot Direct node blocks for directories

Warm Direct node blocks for regular files
Cold Indirect node blocks

Data

Hot Directory entry blocks
Warm Data blocks made by users

Cold
Data blocks moved by cleaning;
Cold data blocks specified by users;
Multimedia file data

garbage collection (GC) overheads.2 FTL algorithms are
largely classified into three groups (block-associative,
set-associative and fully-associative) according to the as-
sociativity between data and “log flash blocks” [24].
Once a data flash block is assigned to store initial data,
log flash blocks assimilate data updates as much as pos-
sible, like the journal in EXT4 [18]. The log flash
block can be used exclusively for a single data flash
block (block-associative) [13], for all data flash blocks
(fully-associative) [17], or for a set of contiguous data
flash blocks (set-associative) [24]. Modern FTLs adopt
a fully-associative or set-associative method, to be able
to properly handle random writes. Note that F2FS writes
node and data blocks in parallel using multi-head logging
and an associative FTL would mix the separated blocks
(in the file system level) into the same flash block. In or-
der to avoid such misalignment, F2FS maps active logs
to different zones to separate them in the FTL. This strat-
egy is expected to be effective for set-associative FTLs.
Multi-head logging is also a natural match with the re-
cently proposed “multi-streaming” interface [10].

2.5 Cleaning
Cleaning is a process to reclaim scattered and invalidated
blocks, and secures free segments for further logging.
Because cleaning occurs constantly once the underlying
storage capacity has been filled up, limiting the costs re-
lated with cleaning is extremely important for the sus-
tained performance of F2FS (and any LFS in general).
In F2FS, cleaning is done in the unit of a section.

F2FS performs cleaning in two distinct manners, fore-
ground and background. Foreground cleaning is trig-
gered only when there are not enough free sections, while
a kernel thread wakes up periodically to conduct cleaning
in background. A cleaning process takes three steps:

2Conducted by FTL, GC involves copying valid flash pages and
erasing flash blocks for further data writes. GC overheads depend
partly on how well file system operations align to the given FTL map-
ping algorithm.
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(1) Victim selection. The cleaning process starts first
to identify a victim section among non-empty sections.
There are two well-known policies for victim selection
during LFS cleaning—greedy and cost-benefit [11, 27].
The greedy policy selects a section with the smallest
number of valid blocks. Intuitively, this policy controls
overheads of migrating valid blocks. F2FS adopts the
greedy policy for its foreground cleaning to minimize the
latency visible to applications. Moreover, F2FS reserves
a small unused capacity (5% of the storage space by de-
fault) so that the cleaning process has room for adequate
operation at high storage utilization levels. Section 3.2.4
studies the impact of utilization levels on cleaning cost.

On the other hand, the cost-benefit policy is practiced
in the background cleaning process of F2FS. This policy
selects a victim section not only based on its utilization
but also its “age”. F2FS infers the age of a section by
averaging the age of segments in the section, which, in
turn, can be obtained from their last modification time
recorded in SIT. With the cost-benefit policy, F2FS gets
another chance to separate hot and cold data.
(2) Valid block identification and migration. After se-
lecting a victim section, F2FS must identify valid blocks
in the section quickly. To this end, F2FS maintains a va-
lidity bitmap per segment in SIT. Once having identified
all valid blocks by scanning the bitmaps, F2FS retrieves
parent node blocks containing their indices from the SSA
information. If the blocks are valid, F2FS migrates them
to other free logs.

For background cleaning, F2FS does not issue actual
I/Os to migrate valid blocks. Instead, F2FS loads the
blocks into page cache and marks them as dirty. Then,
F2FS just leaves them in the page cache for the kernel
worker thread to flush them to the storage later. This lazy
migration not only alleviates the performance impact on
foreground I/O activities, but also allows small writes
to be combined. Background cleaning does not kick in
when normal I/O or foreground cleaning is in progress.
(3) Post-cleaning process. After all valid blocks are mi-
grated, a victim section is registered as a candidate to
become a new free section (called a “pre-free” section
in F2FS). After a checkpoint is made, the section finally
becomes a free section, to be reallocated. We do this be-
cause if a pre-free section is reused before checkpointing,
the file system may lose the data referenced by a previous
checkpoint when unexpected power outage occurs.

2.6 Adaptive Logging
The original LFS introduced two logging policies, nor-
mal logging and threaded logging. In the normal log-
ging, blocks are written to clean segments, yielding

strictly sequential writes. Even if users submit many
random write requests, this process transforms them to
sequential writes as long as there exists enough free log-
ging space. As the free space shrinks to nil, however,
this policy starts to suffer high cleaning overheads, re-
sulting in a serious performance drop (quantified to be
over 90% under harsh conditions, see Section 3.2.5). On
the other hand, threaded logging writes blocks to holes
(invalidated, obsolete space) in existing dirty segments.
This policy requires no cleaning operations, but triggers
random writes and may degrade performance as a result.

F2FS implements both policies and switches between
them dynamically according to the file system status.
Specifically, if there are more than k clean sections,
where k is a pre-defined threshold, normal logging is ini-
tiated. Otherwise, threaded logging is activated. k is set
to 5% of total sections by default and can be configured.

There is a chance that threaded logging incurs undesir-
able random writes when there are scattered holes. Nev-
ertheless, such random writes typically show better spa-
tial locality than those in update-in-place file systems,
since all holes in a dirty segment are filled first before
F2FS searches for more in other dirty segments. Lee et
al. [16] demonstrate that flash storage devices show bet-
ter random write performance with strong spatial local-
ity. F2FS gracefully gives up normal logging and turns
to threaded logging for higher sustained performance, as
will be shown in Section 3.2.5.

2.7 Checkpointing and Recovery
F2FS implements checkpointing to provide a consistent
recovery point from a sudden power failure or system
crash. Whenever it needs to remain a consistent state
across events like sync, umount and foreground clean-
ing, F2FS triggers a checkpoint procedure as follows:
(1) All dirty node and dentry blocks in the page cache
are flushed; (2) It suspends ordinary writing activities
including system calls such as create, unlink and
mkdir; (3) The file system metadata, NAT, SIT and
SSA, are written to their dedicated areas on the disk; and
(4) Finally, F2FS writes a checkpoint pack, consisting of
the following information, to the CP area:
• Header and footer are written at the beginning and
the end of the pack, respectively. F2FS maintains in the
header and footer a version number that is incremented
on creating a checkpoint. The version number discrimi-
nates the latest stable pack between two recorded packs
during the mount time;
• NAT and SIT bitmaps indicate the set of NAT and SIT
blocks comprising the current pack;
• NAT and SIT journals contain a small number of re-
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cently modified entries of NAT and SIT to avoid frequent
NAT and SIT updates;
• Summary blocks of active segments consist of in-
memory SSA blocks that will be flushed to the SSA area
in the future; and
• Orphan blocks keep “orphan inode” information. If an
inode is deleted before it is closed (e.g., this can happen
when two processes open a common file and one process
deletes it), it should be registered as an orphan inode, so
that F2FS can recover it after a sudden power-off.

2.7.1 Roll-Back Recovery

After a sudden power-off, F2FS rolls back to the latest
consistent checkpoint. In order to keep at least one sta-
ble checkpoint pack while creating a new pack, F2FS
maintains two checkpoint packs. If a checkpoint pack
has identical contents in the header and footer, F2FS con-
siders it valid. Otherwise, it is dropped.

Likewise, F2FS also manages two sets of NAT and
SIT blocks, distinguished by the NAT and SIT bitmaps
in each checkpoint pack. When it writes updated NAT
or SIT blocks during checkpointing, F2FS writes them
to one of the two sets alternatively, and then mark the
bitmap to point to its new set.

If a small number of NAT or SIT entries are updated
frequently, F2FS would write many 4KB-sized NAT or
SIT blocks. To mitigate this overhead, F2FS implements
a NAT and SIT journal within the checkpoint pack. This
technique reduces the number of I/Os, and accordingly,
the checkpointing latency as well.

During the recovery procedure at mount time, F2FS
searches valid checkpoint packs by inspecting headers
and footers. If both checkpoint packs are valid, F2FS
picks the latest one by comparing their version numbers.
Once selecting the latest valid checkpoint pack, it checks
whether orphan inode blocks exist or not. If so, it trun-
cates all the data blocks referenced by them and lastly
frees the orphan inodes, too. Then, F2FS starts file sys-
tem services with a consistent set of NAT and SIT blocks
referenced by their bitmaps, after the roll-forward recov-
ery procedure is done successfully, as is explained below.

2.7.2 Roll-Forward Recovery

Applications like database (e.g., SQLite) frequently
write small data to a file and conduct fsync to guar-
antee durability. A naı̈ve approach to supporting fsync
would be to trigger checkpointing and recover data with
the roll-back model. However, this approach leads to
poor performance, as checkpointing involves writing all
node and dentry blocks unrelated to the database file.

Table 2: Platforms used in experimentation. Numbers
in parentheses are basic sequential and random perfor-
mance (Seq-R, Seq-W, Rand-R, Rand-W) in MB/s.

Target System Storage Devices

Mobile

CPU: Exynos 5410 eMMC 16GB:

Memory: 2GB 2GB partition:

OS: Linux 3.4.5 (114, 72, 12, 12)

Android: JB 4.2.2

Server

CPU: Intel i7-3770 SATA SSD 250GB:

Memory: 4GB (486, 471, 40, 140)

OS: Linux 3.14 PCIe (NVMe) SSD
960GB:

Ubuntu 12.10 server (1,295, 922, 41, 254)

F2FS implements an efficient roll-forward recovery
mechanism to enhance fsync performance. The key
idea is to write data blocks and their direct node blocks
only, excluding other node or F2FS metadata blocks. In
order to find the data blocks selectively after rolling back
to the stable checkpoint, F2FS remains a special flag in-
side direct node blocks.

F2FS performs roll-forward recovery as follows. If
we denote the log position of the last stable checkpoint
as N, (1) F2FS collects the direct node blocks having the
special flag located in N+n, while constructing a list of
their node information. n refers to the number of blocks
updated since the last checkpoint. (2) By using the node
information in the list, it loads the most recently written
node blocks, named N-n, into the page cache. (3) Then,
it compares the data indices in between N-n and N+n. (4)
If it detects different data indices, then it refreshes the
cached node blocks with the new indices stored in N+n,
and finally marks them as dirty. Once completing the
roll-forward recovery, F2FS performs checkpointing to
store the whole in-memory changes to the disk.

3 Evaluation
3.1 Experimental Setup
We evaluate F2FS on two broadly categorized target sys-
tems, mobile system and server system. We employ a
Galaxy S4 smartphone to represent the mobile system
and an x86 platform for the server system. Specifications
of the platforms are summarized in Table 2.

For the target systems, we back-ported F2FS from the
3.15-rc1 main-line kernel to the 3.4.5 and 3.14 kernel,
respectively. In the mobile system, F2FS runs on a state-
of-the-art eMMC storage. In the case of the server sys-
tem, we harness a SATA SSD and a (higher-speed) PCIe
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Table 3: Summary of benchmarks.
Target Name Workload Files File size Threads R/W fsync

Mobile
iozone Sequential and random read/write 1 1G 1 50/50 N
SQLite Random writes with frequent fsync 2 3.3MB 1 0/100 Y

Facebook-app Random writes with frequent fsync 579 852KB 1 1/99 Y
Twitter-app generated by the given system call traces 177 3.3MB 1 1/99 Y

Server

videoserver Mostly sequential reads and writes 64 1GB 48 20/80 N
fileserver Many large files with random writes 80,000 128KB 50 70/30 N
varmail Many small files with frequent fsync 8,000 16KB 16 50/50 Y

oltp Large files with random writes and fsync 10 800MB 211 1/99 Y

SSD. Note that the values in the parentheses denoted
under each storage device indicate the basic sequential
read/write and random read/write bandwidth in MB/s.
We measured the bandwidth through a simple single-
thread application that triggers 512KB sequential I/Os
and 4KB random I/Os with O DIRECT.

We compare F2FS with EXT4 [18], BTRFS [26] and
NILFS2 [15]. EXT4 is a widely used update-in-place
file system. BTRFS is a copy-on-write file system, and
NILFS2 is an LFS.

Table 3 summarizes our benchmarks and their charac-
teristics in terms of generated I/O patterns, the number
of touched files and their maximum size, the number of
working threads, the ratio of reads and writes (R/W) and
whether there are fsync system calls. For the mobile
system, we execute and show the results of iozone [22],
to study basic file I/O performance. Because mobile sys-
tems are subject to costly random writes with frequent
fsync calls, we run mobibench [8], a macro benchmark,
to measure the SQLite performance. We also replay two
system call traces collected from the “Facebook” and
“Twitter” application (each dubbed “Facebook-app” and
“Twitter-app”) under a realistic usage scenario [8].

For the server workloads, we make use of a synthetic
benchmark called Filebench [20]. It emulates various
file system workloads and allows for fast intuitive system
performance evaluation. We use four pre-defined work-
loads in the benchmark—videoserver, fileserver, varmail
and oltp. They differ in I/O pattern and fsync usage.

Videoserver issues mostly sequential reads and writes.
Fileserver pre-allocates 80,000 files with 128KB data
and subsequently starts 50 threads, each of which creates
and deletes files randomly as well as reads and appends
small data to randomly chosen files. This workload, thus,
represents a scenario having many large files touched by
buffered random writes and no fsync. Varmail creates
and deletes a number of small files with fsync, while
oltp pre-allocates ten large files and updates their data
randomly with fsync with 200 threads in parallel.

3.2 Results
This section gives the performance results and insights
obtained from deep block trace level analysis. We ex-
amined various I/O patterns (i.e., read, write, fsync and
discard3), amount of I/Os and request size distribution.
For intuitive and consistent comparison, we normalize
performance results against EXT4 performance. We note
that performance depends basically on the speed gap be-
tween sequential and random I/Os. In the case of the
mobile system that has low computing power and a slow
storage, I/O pattern and its quantity are the major per-
formance factors. For the server system, CPU efficiency
with instruction execution overheads and lock contention
become an additional critical factor.

3.2.1 Performance on the Mobile System
Figure 3(a) shows the iozone results of sequential
read/write (SR/SW) and random read/write (RR/RW)
bandwidth on a single 1GB file. In the SW case, NILFS2
shows performance degradation of nearly 50% over
EXT4 since it triggers expensive synchronous writes pe-
riodically, according to its own data flush policy. In
the RW case, F2FS performs 3.1× better than EXT4,
since it turns over 90% of 4KB random writes into
512KB sequential writes (not directly shown in the plot).
BTRFS also performs well (1.8×) as it produces se-
quential writes through the copy-on-write policy. While
NILFS2 transforms random writes to sequential writes, it
gains only 10% improvement due to costly synchronous
writes. Furthermore, it issues up to 30% more write re-
quests than other file systems. For RR, all file systems
show comparable performance. BTRFS shows slightly
lower performance due to its tree indexing overheads.

Figure 3(b) gives SQLite performance measured in
transactions per second (TPS), normalized against that
of EXT4. We measure three types of transactions—

3A discard command gives a hint to the underlying flash storage
device that a specified address range has no valid data. This command
is sometimes called “trim” or “unmap”.
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Figure 4: Performance results on the server system.

insert, update and delete—on a DB comprised of 1,000
records under the write ahead logging (WAL) journal
mode. This journal mode is considered the fastest in
SQLite. F2FS shows significantly better performance
than other file systems and outperforms EXT4 by up to
2×. For this workload, the roll-forward recovery policy
of F2FS produces huge benefits. In fact, F2FS reduces
the amount of data writes by about 46% over EXT4 in
all examined cases. Due to heavy indexing overheads,
BTRFS writes 3× more data than EXT4, resulting in per-
formance degradation of nearly 80%. NILFS2 achieves
similar performance with a nearly identical amount of
data writes compared to EXT4.

Figure 3(c) shows normalized elapsed times to com-
plete replaying the Facebook-app and Twitter-app traces.
They resort to SQLite for storing data, and F2FS re-
duces the elapsed time by 20% (Facebook-app) and 40%
(Twitter-app) compared to EXT4.

3.2.2 Performance on the Server System
Figure 4 plots performance of the studied file systems
using SATA and PCIe SSDs. Each bar indicates normal-
ized performance (i.e., performance improvement if the
bar has a value larger than 1).

Videoserver generates mostly sequential reads and
writes, and all results, regardless of the device used, ex-
pose no performance gaps among the studied file sys-
tems. This demonstrates that F2FS has no performance

regression for normal sequential I/Os.
Fileserver has different I/O patterns; Figure 5 com-

pares block traces obtained from all file systems on the
SATA SSD. A closer examination finds that only 0.9%
of all write requests generated by EXT4 are for 512KB,
while F2FS has 6.9% (not directly shown in the plot).
Another finding is that EXT4 issues many small discard
commands and causes visible command processing over-
heads, especially on the SATA drive; it trims two thirds
of all block addresses covered by data writes and nearly
60% of all discard commands were for an address space
smaller than 256KB in size. In contrast, F2FS discards
obsolete spaces in the unit of segments only when check-
pointing is triggered; it trims 38% of block address space
with no small discard commands. These differences lead
to a 2.4× performance gain (Figure 4(a)).

On the other hand, BTRFS degrades performance by
8%, since it issues 512KB data writes in only 3.8% of all
write requests. In addition, it trims 47% of block address
space with small discard commands (corresponding to
75% of all discard commands) during the read service
time as shown in Figure 5(c). In the case of NILFS2,
as many as 78% of its write requests are for 512KB (Fig-
ure 5(d)). However, its periodic synchronous data flushes
limited the performance gain over EXT4 to 1.8×. On the
PCIe SSD, all file systems perform rather similarly. This
is because the PCIe SSD used in the study performs con-
current buffered writes well.
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Figure 5: Block traces of the fileserver workload according to the running time in seconds.

In the varmail case, F2FS outperforms EXT4 by 2.5×
on the SATA SSD and 1.8× on the PCIe SSD, respec-
tively. Since varmail generates many small writes with
concurrent fsync, the result again underscores the ef-
ficiency of fsync processing in F2FS. BTRFS perfor-
mance was on par with that of EXT4 and NILFS2 per-
formed relatively well on the PCIe SSD.

The oltp workload generates a large number of ran-
dom writes and fsync calls on a single 800MB database
file (unlike varmail, which touches many small files).
F2FS shows measurable performance advantages over
EXT4—16% on the SATA SSD and 13% on the PCIe
SSD. On the other hand, both BTRFS and NILFS2 per-
formed rather poorly on the PCIe drive. Fast com-
mand processing and efficient random writes on the PCIe
drive appear to move performance bottleneck points, and
BTRFS and NILFS2 do not show robust performance.

Our results so far have clearly demonstrated the rela-
tive effectiveness of the overall design and implementa-
tion of F2FS. We will now examine the impact of F2FS
logging and cleaning policies.

3.2.3 Multi-head Logging Effect
This section studies the effectiveness of the multi-head
logging policy of F2FS. Rather than presenting extensive
evaluation results that span many different workloads,

we focus on an experiment that captures the intuitions of
our design. The metric used in this section is the number
of valid blocks in a given dirty segment before cleaning.
If hot and cold data separation is done perfectly, a dirty
segment would have either zero valid blocks or the max-
imum number of valid blocks in a segment (512 under
the default configuration). An aged dirty segment would
carry zero valid blocks in it if all (hot) data stored in the
segment have been invalidated. By comparison, a dirty
segment full of valid blocks is likely keeping cold data.

In our experiment, we run two workloads simultane-
ously: varmail and copying of jpeg files. Varmail em-
ploys 10,000 files in total in 100 directories and writes
6.5GB of data. We copy 5,000 jpeg files of roughly
500KB each, hence resulting in 2.5GB of data written.
Note that F2FS statically classifies jpeg files as cold data.
After these workloads finish, we count the number of
valid blocks in all dirty segments. We repeat the experi-
ment as we vary the number of logs from two to six.

Figure 6 gives the result. With two logs, over 75%
of all segments have more than 256 valid blocks while
“full segments” with 512 valid blocks are very few. Be-
cause the two-log configuration splits only data segments
(85% of all dirty segments, not shown) and node seg-
ments (15%), the effectiveness of multi-head logging is
fairly limited. Adding two more logs changes the picture
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Figure 6: Dirty segment distribution according to the
number of valid blocks in segments.

somewhat; it increases the number of segments having
fewer than 256 valid blocks. It also slightly increases the
number of nearly full segments.

Lastly, with six logs, we clearly see the benefits of
hot and cold data separation; the number of pre-free
segments having zero valid blocks and the number of
full segments increase significantly. Moreover, there are
more segments having relatively few valid blocks (128
or fewer) and segments with many valid blocks (384 or
more). An obvious impact of this bimodal distribution is
improved cleaning efficiency (as cleaning costs depend
on the number of valid blocks in a victim segment).

We make several observations before we close this
section. First, the result shows that more logs, allow-
ing finer separation of data temperature, generally bring
more benefits. However, in the particular experiment we
performed, the benefit of four logs over two logs was
rather insignificant. If we separate cold data from hot
and warm data (as defined in Table 1) rather than hot
data from warm and cold data (default), the result would
look different. Second, since the number of valid blocks
in dirty segments will gradually decrease over time, the
left-most knee of the curves in Figure 6 will move up-
ward (at a different speed according to the chosen log-
ging configuration). Hence, if we age the file system,
we expect that multi-head logging benefits will become
more visible. Fully studying these observations is be-
yond the scope of this paper.

3.2.4 Cleaning Cost

We quantify the impact of cleaning in F2FS in this sec-
tion. In order to focus on file system level cleaning cost,
we ensure that SSD level GC does not occur during ex-
periments by intentionally leaving ample free space in
the SSD. To do so, we format a 250GB SSD and obtain
a partition of (only) 120GB.
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Figure 7: Relative performance (upper) and write am-
plification factor (lower) of the first ten runs. Four lines
capture results for different file system utilization levels.

After reserving 5% of the space for overprovisioning
(Section 2.5), we divide remaining capacity into “cold”
and “hot” regions. We build four configurations that re-
flect different file system utilization levels by filling up
the two regions as follows: 80% (60 (cold):20 (hot)),
90% (60:30), 95% (60:35) and 97.5% (60:37.5). Then,
we iterate ten runs of experiments where each run ran-
domly writes 20GB of data in 4KB to the hot region.

Figure 7 plots results of the first ten runs in two met-
rics: performance (throughput) and write amplification
factor (WAF).4 They are relative to results obtained on
a clean SSD. We make two main observations. First,
higher file system utilization leads to larger WAF and
reduced performance. At 80%, performance degrada-
tion and WAF increase were rather minor. On the third
run, the file system ran out of free segments and there
was a performance dip. During this run, it switched to
threaded logging from normal logging, and as the result,
performance stabilized. (We revisit the effects of adap-
tive, threaded logging in Section 3.2.5.) After the third
run, nearly all data were written via threaded logging, in
place. In this case, cleaning is needed not for data, but

4Iterating 100 runs would not reveal further performance drops.
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Figure 8: Worst-case performance drop ratio under file system aging.

for recording nodes. As we raised utilization level from
80% to 97.5%, the amount of GC increased and the per-
formance degradation became more visible. At 97.5%,
the performance loss was about 30% and WAF 1.02.

The second observation is that F2FS does not dramat-
ically increase WAF at high utilization levels; adaptive
logging plays an important role of keeping WAF down.
Note that threaded logging incurs random writes whereas
normal logging issues sequential writes. While random
writes are relatively expensive and motivates append-
only logging as a preferred mode of operation in many
file systems, our design choice (of switching to threaded
logging) is justified because: cleaning could render very
costly due to a high WAF when the file system is frag-
mented, and SSDs have high random write performance.
Results in this section show that F2FS successfully con-
trols the cost of cleaning at high utilization levels.

Showing the positive impact of background cleaning is
not straightforward because background cleaning is sup-
pressed during busy periods. Still, We measured over
10% performance improvement at a 90% utilization level
when we insert an idle time of ten minutes or more be-
tween runs.

3.2.5 Adaptive Logging Performance
This section delves into the question: How effective is the
F2FS adaptive logging policy with threaded logging? By
default, F2FS switches to threaded logging from normal
logging when the number of free sections falls below 5%
of total sections. We compare this default configuration
(“F2FS adaptive”) with “F2FS normal”, which sticks to
the normal logging policy all the time. For experiments,
we design and perform the following two intuitive tests
on the SATA SSD.
• fileserver test. This test first fills up the target stor-
age partition 94%, with hundreds of 1GB files. The test
then runs the fileserver workload four times and mea-
sures the performance trends (Figure 8(a)). As we repeat

experiments, the underlying flash storage device as well
as the file system get fragmented. Accordingly, the per-
formance of the workload is supposed to drop. Note that
we were unable to perform this test with NILFS2 as it
stopped with a “no space” error report.

EXT4 showed the mildest performance hit—17% be-
tween the first and the second round. By comparison,
BTRFS and F2FS (especially F2FS normal) saw a se-
vere performance drop of 22% and 48% each, as they
do not find enough sequential space. On the other hand,
F2FS adaptive serves 51% of total writes with threaded
logging (not shown in the plot) and successfully lim-
ited performance degradation in the second round to 22%
(comparable to BTRFS and not too far from EXT4). As
the result, F2FS maintained the performance improve-
ment ratio of two or more over EXT4 across the board.
All the file systems were shown to sustain performance
beyond the second round.

Further examination reveals that F2FS normal writes
27% more data than F2FS adaptive due to foreground
cleaning. The large performance hit on BTRFS is due
partly to the heavy usage of small discard commands.

• iozone test. This test first creates sixteen 4GB files
and additional 1GB files until it fills up the device ca-
pacity (∼100%). Then it runs iozone to perform 4KB
random writes on the sixteen 4GB files. The aggregate
write volume amounts to 512MB per file. We repeat this
step ten times, which turns out to be quite harsh, as both
BTRFS and NILFS2 failed to complete with a “no space”
error. Note that from the theoretical viewpoint, EXT4,
an update-in-place file system, would perform the best
in this test because EXT4 issues random writes without
creating additional file system metadata. On the other
hand, a log-structured file system like F2FS may suffer
high cleaning costs. Also note that this workload frag-
ments the data in the storage device, and the storage per-
formance would suffer as the workload triggers repeated
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device-internal GC operations.
Under EXT4, the performance degradation was about

75% (Figure 8(b)). In the case of F2FS normal, as ex-
pected, the performance drops to a very low level (of less
than 5% of EXT4 from round 3) as both the file system
and the storage device keep busy cleaning fragmented ca-
pacity to reclaim new space for logging. F2FS adaptive
is shown to handle the situation much more gracefully; it
performs better than EXT4 in the first few rounds (when
fragmentation was not severe) and shows performance
very similar to that of EXT4 as the experiment advances
with more random writes.

The two experiments in this section reveal that adap-
tive logging is critical for F2FS to sustain its performance
at high storage utilization levels. The adaptive logging
policy is also shown to effectively limit the performance
degradation of F2FS due to fragmentation.

4 Related Work
This section discusses prior work related to ours in three
categories—log-structured file systems, file systems tar-
geting flash memory, and optimizations specific to FTL.

4.1 Log-Structured File Systems (LFS)
Much work has been done on log-structured file systems
(for HDDs), beginning with the original LFS proposal
by Rosenblum et al. [27]. Wilkes et al. proposed a hole
plugging method in which valid blocks of a victim seg-
ment are moved to holes, i.e., invalid blocks in other
dirty segment [30]. Matthews et al. proposed an adap-
tive cleaning policy where they choose between a normal
logging policy and a hole-plugging policy based on cost-
benefit evaluation [19]. Oh et al. [23] demonstrated that
threaded logging provides better performance in a highly
utilized volume. F2FS has been tuned on the basis of
prior work and real-world workloads and devices.

A number of studies focus on separating hot and cold
data. Wang and Hu [28] proposed to distinguish active
and inactive data in the buffer cache, instead of writing
them to a single log and separating them during clean-
ing. They determine which data is active by monitoring
access patterns. Hylog [29] adopts a hybrid approach; it
uses logging for hot pages to achieve high random write
performance, and overwriting for cold pages to reduce
cleaning cost.

SFS [21] is a file system for SSDs implemented based
on NILFS2. Like F2FS, SFS uses logging to eliminate
random writes. To reduce the cost of cleaning, they sep-
arate hot and cold data in the buffer cache, like [28],
based on the “update likelihood” (or hotness) measured

by tracking write counts and age per block. They use
iterative quantization to partition segments into groups
based on measured hotness.

Unlike the hot/cold data separation methods that resort
to run-time monitoring of access patterns [21, 28], F2FS
estimates update likelihood using information readily
available, such as file operation (append or overwrite),
file type (directory or regular file) and file extensions.
While our experimental results show that the simple ap-
proach we take is fairly effective, more sophisticated run-
time monitoring approaches can be incorporated in F2FS
to fine-track data temperature.

NVMFS is an experimental file system assuming
two distinct storage media: NVRAM and NAND flash
SSD [25]. The fast byte-addressable storage capacity
from NVRAM is used to store hot and meta data. More-
over, writes to the SSD are sequentialized as in F2FS.

4.2 Flash Memory File Systems
A number of file systems have been proposed and im-
plemented for embedded systems that use raw NAND
flash memories as storage [1, 3, 6, 14, 31]. These file
systems directly access NAND flash memories while ad-
dressing all the chip-level issues such as wear-leveling
and bad block management. Unlike these systems, F2FS
targets flash storage devices that come with a dedicated
controller and firmware (FTL) to handle low-level tasks.
Such flash storage devices are more commonplace.

Josephson et al. proposed the direct file system
(DFS) [9], which leverages special support from host-run
FTL, including atomic update interface and very large
logical address space, to simplify the file system design.
DFS is however limited to specific flash devices and sys-
tem configurations and is not open source.

4.3 FTL Optimizations
There has been much work aiming at improving random
write performance at the FTL level, sharing some design
strategies with F2FS. Most FTLs use a log-structured up-
date approach to overcome the no-overwrite limitation of
flash memory. DAC [5] provides a page-mapping FTL
that clusters data based on update frequency by monitor-
ing accesses at run time. To reduce the overheads of large
page mapping tables, DFTL [7] dynamically loads a por-
tion of the page map into working memory on demand
and offers the random-write benefits of page mapping for
devices with limited RAM.

Hybrid mapping (or log block mapping) is an exten-
sion of block mapping to improve random writes [13, 17,
24]. It has a smaller mapping table than page mapping



USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  285

while its performance can be as good as page mapping
for workloads with substantial access locality.

5 Concluding Remarks
F2FS is a full-fledged Linux file system designed for
modern flash storage devices and is slated for wider
adoption in the industry. This paper describes key de-
sign and implementation details of F2FS. Our evaluation
results underscore how our design decisions and trade-
offs lead to performance advantages, over other existing
file systems. F2FS is fairly young—it was incorporated
in Linux kernel 3.8 in late 2012. We expect new opti-
mizations and features will be continuously added to the
file system.
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