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Abstract

Web centralization and consolidation has created potential
single points of failure, e.g., in areas such as content host-
ing, name resolution, and certification. The "Decentralized
Web", led by open-source software implementations, attempts
to build decentralized alternatives. The InterPlanetary File
System (IPFS) is part of this effort and attempts to provide
a decentralized layer for object storage and retrieval. This
comes with challenges, though: Decentralization can increase
complexity, overhead, as well as compromise performance
and scalability. As the core maintainers of IPFS, we have
therefore begun to explore more hybrid approaches. This pa-
per reports on our experiences building three centralized com-
ponents within IPFS: (i) InterPlanetary Network Indexers,
which provides an alternative centralized method for content
indexing; (ii) Hydra Boosters, which are strategic DHT nodes
that assist IPFS in content routing; and (iii) HTTP Gateways,
which are a public access point for users to retrieve IPFS-
hosted content. Through this approach, we trade-off the level
of decentralization within IPFS in an attempt to gain certain
benefits of centralization. We evaluate the performance of
these components and demonstrate their ability to success-
fully address the challenges that IPFS faces.

1 Introduction

Driven by powerful economies of scale, the centralization
and consolidation of the web seems unstoppable [11, 19]. For
example, website administrators will often choose to rely on
large cloud platforms such as Amazon EC2, third-party DNS
providers like GoDaddy, content delivery networks such as
Akamai, and certificates issued by Let’s Encrypt. These are
well-engineered, performant services. Yet, they are also a
potential single point of failure. Disruptions and outages in
these centralized entities (e.g., a cloud platform) can result in
enormous financial losses, such as the reported loss of over
$60,000 per minute by Amazon’s eCommerce platform due
to an outage [13, 15, 29, 33].

The “Decentralized Web” is a response to this growing
concentration. The Decentralized Web refers to a group of
technologies that aim to decentralize control away from major
players. These technologies rely on open-source, community-
led software implementations that decentralize traditional web
functions, such as name lookup, object storage, and certifica-

tion. As anyone can use and contribute to the software, the
effort strives to reduce barriers to participation and reduce
current trends towards web consolidation [19]. Note, we draw
a clear distinction between decentralized, and distributed. Al-
though many web system implementations are distributed,
their control and operation remain centralized.

The InterPlanetary File System (IPFS) is part of this decen-
tralization effort. IPFS is a storage layer for the Decentralized
Web. It is a decentralized content-addressable object storage
and retrieval platform. IPFS is a community-driven, open-
source project, which covers 200 git repositories with 67809
stars and 12407 forks. In total, there are 83.5 K commits by
1352 code contributors, covering 400+ organizations includ-
ing universities, start-ups and large corporations.

IPFS has seen widespread uptake with more than 1 B web
client accesses and more than 250 k unique nodes participat-
ing in its peer-to-peer (P2P) network every week. Critically,
IPFS underpins various other Decentralized Web applications,
including social networking and discussion platforms (Dis-
cussify, Matters News), data storage solutions (Space, Peer-
gos, Temporal), content search (Almonit, Deece), messaging
(Berty), content streaming (Audius, Watchit), and e-commerce
(Ethlance, dClimate) [2].

Although these figures point to the success of IPFS, our
experience has shown that decentralization comes at a cost
(§2.2). Decentralization can increase complexity and over-
head due to the need to coordinate a large number of decen-
tralized entities. Consequently, performance can be compro-
mised, scalability can be challenging, and this can lead to a
less practical system. Measuring, managing and debugging
such systems is also more challenging. As part of the group
of core maintainers, our operational experience has identified
three key challenges faced by IPFS and similar systems:

1. Massive content publication: IPFS uses a distributed
hash table (DHT) for content indexing and publication.
However, our measurements show that publications can
take over 1 minute, hindering the publication of large
amounts of content. This is caused by the (i) decentral-
ized routing process of node discovery in the DHT; and
(ii) the need to replicate content indexing data across
many nodes to mitigate the impact of churn.

2. Content retrieval performance: IPFS’s overall retrieval
delay is approximately 3x slower than HTTPS. By de-
ploying a range of applications, we have found that
IPFS’s fully decentralized model is well suited to serving
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delay-tolerant objects like file hosting, yet struggles with
real-time applications such as live video streaming.

3. Adoption: The content-addressed IPFS protocols differ
from traditional location-based protocols. This makes
adoption difficult for both web developers and browser
manufacturers, who mostly do not support IPFS retrieval.
As IPFS retrievals tend to be slower than HTTPS, it also
makes it difficult to integrate HTTP and IPFS objects
within a single webpage. Further, full decentralization
means that all clients should ideally install the IPFS
node software. Yet, this requires technical skills, and
IPFS software is currently too heavyweight for mobile
devices. This presents barriers to adoption.

Our initial strategy was to tackle all these challenges in an
entirely decentralized manner. However, practical constraints
make this difficult, primarily driven by the inherent perfor-
mance issues associated with DHTs, and the limited resources
of (some) peers operating in the system. Thus, we have since
been experimenting with the introduction of centralized com-
ponents to complement the IPFS decentralized architecture.
We argue that this can be an effective middle-ground, while
decentralized technologies continue to be developed. The
idea is to tradeoff the degree of decentralization of IPFS in
order to attain potential benefits. Although this may result in
a more efficient system, this also means that IPFS is partially
centralized, raising certain issues which require exploration.
For example, users may interact exclusively with centralized
components during object retrieval, placing significant ad-
ditional power in the hands of operators. This brings risks
related to security, robustness, privacy, alongside raising philo-
sophical questions related to the role of centralization in the
Internet. Thus, we strive to design centralized components
that are optional, allowing the system to continue operation
even in the failure of centralized aspects (albeit with degraded
system properties). With this tussle in mind, we report on our
operational experiences at Protocol Labs in deploying a set
of three complementary centralized components within the
wider IPFS network.

First, we present the InterPlanetary Network Indexers.
These provide an alternative centralized method for content
indexing and lookup. Each Indexer acts as a server-based key
store, complementing the role of the fully decentralized DHT.
This avoids the overheads associated with peer-to-peer rout-
ing. Importantly, any entity can operate an Indexer with the
ability (and expectation) to synchronize indexing data, thereby
reducing the risks of consolidation. Second, we present the
Hydra Boosters, a small set of high-performance DHT nodes
that assist IPFS in content routing, content provision, and
peer routing. The Hydra Boosters are strategically spread
across the DHT key space and try to provide one-hop access
to data records. Third, we present the HTTP Gateways, a
set of proxy servers that offer an HTTP bridge into the IPFS
network. These help reduce barriers to adoption by allowing
clients to access IPFS content without installing the fully de-

centralized IPFS node software. Additionally, the centralized
gateways benefit from aggregation in demand, allowing us
to deploy caching of content in a way that was not possible
when operating in a fully decentralized fashion. No privileges
are required to establish these components, and anybody can
contribute to the effort.

The contributions are as follows:
1. We present the design and implementation of three new

centralized components deployed within the IPFS infras-
tructure. For each component, we explore the challenges
it addresses and how we have tackled those challenges.

2. Based on real-world operational data, we present an
evaluation of the three complementary components. We
demonstrate that these centralized components do bring
large benefits to IPFS, addressing the challenges dis-
cussed above.

3. We explore security, privacy, and other risks that could
arise from the centralized nature of these components.
We discuss the associated trade-offs that must be consid-
ered when designing hybrid solutions such as IPFS.

2 Background and Motivation

2.1 IPFS Fundamentals

We start by providing a brief overview of IPFS. We redirect
interested readers to [41] for full details.
Content Addressing. IPFS is a decentralized object store.
Much like prior information-centric networks, it uses self-
certifying hash-based Content Identifiers (CIDs) to decouple
content names from their storage location. When content
is added to IPFS, it is split into chunks and each chunk is
assigned its own CID, which is the result of hashing its content
and adding metadata. These CIDs are then used to construct
a Merkle Directed Acyclic Graph (DAG) of the file. The
root node of the DAG combines all the CIDs of its descendant
nodes and forms the final content CID, which allows for chunk
de-duplication and eliminates the need to store or transmit the
same content twice. Merkle DAGs are agnostic to where the
content is stored, so they do not need to be updated when a
file is replicated on or deleted from nodes in the network.
Peer Addressing. Each peer has a unique ID, generated as
a hash of its public key, and represented as a Multihash [7].
A multiaddress is then associated with each PeerID. Mul-
tiaddresses are a simple data structure that allows multiple
protocols and address types to be included for each peer.
Content Indexing. IPFS relies on a fully decentralized
Kademlia DHT for content indexing. The DHT does not store
content itself but, instead, hosts (i) peer records that map
PeerIDs to the multiaddresses that can be used to contact the
peer; and (ii) provider records that map the CIDs of content
to the PeerIDs of the peers who provide the content. This
indexing allows clients to map their desired content to a peer
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that can provide it and to discover the multiaddresses that can
be used to contact the peer.
Content Publication. To publish content, the host first gener-
ates a provider record that maps the CID to its own Peer ID. It
then pushes it to the DHT. To ensure availability, this record
is stored on the 20 closest peers in terms of their PeerIDs’
XOR distance from the SHA256 hash of the CID. Note, peers
retrieving the content can volunteer to become temporary or
permanent content providers by publishing a provider record
pointing to their own node on the DHT. By doing this, it
avoids the original source becoming a single point of failure.
Content Retrieval. Content retrieval involves four steps: con-
tent discovery, peer discovery, peer routing, and content ex-
change. Content discovery is the process of looking up the
provider record using the CID of the content. Before entering
the DHT lookup, the requesting peer asks all peers it is already
connected to for the desired content in an opportunistic fash-
ion, using a protocol called BitSwap [3]. If this initial attempt
is not successful, content discovery falls back to the DHT.
After getting the PeerID of the provider from the provider
record, peer discovery then involves querying the DHT and
retrieving the PeerID’s peer record. Recall, the peer record
contains the peer’s multiaddresses, listing the protocols and
physical addresses that can be used to reach the node. To
streamline this process, each IPFS node maintains a local ad-
dress book of up to 900 recently seen peers. Once the PeerID
is resolved to a peer record, the requesting node uses the list
of Multiaddresses to connect to the desired peer, a process
called peer routing. Finally, content exchange is carried out
using the Bitswap protocol. Importantly, all the above steps
take place across a fully decentralized infrastructure.

2.2 Challenges of Decentralization in IPFS

Our experience in operating the above decentralized setup has
highlighted three key challenges that we discuss in this paper.
Massive Content Publication. IPFS utilizes a Kademlia dis-
tributed hash table (DHT) for publishing and locating content.
Although Kademlia enables seamless distribution, this brings
additional overhead and high delay when compared against
simple centralized key stores (e.g., SplinterDB). To highlight
this, Figure 1 shows the content publication time as measured
in our experiments (detailed in §4.2). The overall publication
process across all regions takes 11.81s, 40.81s, and 66.73s
at the 50th, 90th, and 95th percentiles, respectively. This is
a clear cost of decentralization, which is not experienced by
well-resourced centralized database lookups The delay is dom-
inated by the DHT walk to find the nodes to publish provider
records to (covering 83.37% of the overall delay), due to the
need to distribute records to 20 different peers. Furthermore,
the IPFS DHT requires re-publication of records every 24
hours. In practice, this takes an excessive amount of time,
generates large traffic volumes, and consumes a substantial
amount of storage space for peers to store provider records.

Figure 1: CDF for content publication for each AWS region:
a) The overall publication duration, and b) the DHT walk.

Figure 2: CDF for content retrieval for each AWS region: a)
The overall retrieval duration, and b) the DHT walk.

Content Retrieval Performance. The decentralized nature
of IPFS results in slower content retrieval speeds compared
to well-resourced centralized systems. This is because all
content must first be mapped to an appropriate source, via
(several) routing hops in the DHT. Figure 2 shows the content
retrieval time measured in our experiments (detailed in §4.2).
The overall retrieval process across all regions takes 2.72
seconds, 4.03 seconds, and 4.42 seconds in the 50th, 90th, and
95th percentiles, respectively. This is slower than HTTP and
is not suitable for certain delay-sensitive applications, such as
live video streams. Moreover, the decentralization of storage
across many independent nodes hinders the aggregation of
demand, making it difficult to use techniques such as caching
to improve the retrieval of frequently accessed content.
Adoption. To access IPFS-hosted content, users must run the
IPFS node software, thereby participating in the storage and
distribution of files. This is vital for the self-scaling properties
of our decentralized setup, ensuring that no single node be-
comes overly powerful. However, setting up an IPFS node re-
quires specific skills, which is a barrier for some users. Due to
its footprint, the IPFS node software cannot yet run on mobile
devices. This is problematic because 58% of website traffic
comes from mobile devices, and approximately 92% of Inter-
net users access the web using their smartphone [4]. There are
also adoption challenges for web developers wishing to em-
bed IPFS-host content within traditional HTML/HTTP web-
sites. This is because IPFS retrievals tend to be slower than
HTTP, creating usability issues with mixing HTTP and IPFS-
hosted objects. Unfortunately, few browser implementations
can retrieve IPFS content, further disincentivizing integration.
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Figure 3: The publication and retrieval steps for Indexers. (1)
Content provider publishes announce message. (2) Indexer
synchronizes advertisements with the content provider. (3)
Retrieval client queries Indexer using CID or multihashes and
gets the provider record. (4) Retrieval client gets data from
content providers according to the provider record.

3 Design and Implementation

To tackle the above challenges, we have experimented with
deploying three new centralized elements to IPFS. These
are all open-source, allowing anybody to set them up and
contribute to IPFS. Through this, we strive to address the
above challenges. These centralized components are:

1. InterPlanetary Network Indexers provide an alternative
centralized approach to content indexing, complement-
ing the DHT. It primarily targets the massive content
publication challenge by making it faster to push new
provider records. It also enhances content retrieval per-
formance by making lookups faster.

2. Hydra Boosters introduce strategically placed reliable
routing nodes in the DHT, to improve performance in a
coordinated manner. This offloads work from the remain-
ing nodes. Thus, the primary goal of Hydra Boosters is
to enhance publication routing performance, as well as
retrieval performance. It does this in two ways: (i) by
hosting a large number of provider records in a stable
fashion; and (ii) by providing stable routing nodes with
the DHT.

3. HTTP Gateways provide an HTTP bridge into the IPFS
network. Its primary focus is on improving adoption,
by allowing access to IPFS without a full stack IPFS
installation. Further, gateways also serve as a centralized
point of request aggregation, enabling us to improve
content retrieval performance via caching.

Although Protocol Labs has built and deployed these com-
ponents, we emphasize that any stakeholder could adopt their
usage. As such, whereas each individual component is central-
ized, there can be many instantiations by different operators.
The rest of this section describes the components in detail.

3.1 InterPlanetary Network Indexers

Recall that the first challenge of decentralization in IPFS is
massive content publication. We define this as the ability for
providers to publish large numbers (i.e., millions) of objects
in an efficient fashion. This is currently difficult because
IPFS’s decentralized routing requires protocol exchange with

at least 20 nodes to publish each object. Thus, in contrast to
a centralized index, the overhead is dominated by the DHT
hops that must be undertaken to publish provider records.

Overview of Indexers. To address this issue, we have built
the InterPlanetary Network Indexers (aka “the Indexers”)
to complement the DHT. Put simply, an Indexer is a high-
performance keystore server that indexes provider records.
The provider records in the Indexers differ from those in the
DHT. They comprise the identity of the content provider, its
physical address, and the protocols required for retrieving the
data. As a result, there is no need to resolve the PeerID to a
physical address. Providers can push their provider records
directly to the Indexer, and clients can directly retrieve the
records from the Indexer using the appropriate CID. As this
can be done within a single protocol exchange, it substan-
tially reduces the overhead of storing provider records with
the decentralized DHT. Importantly, the Indexer is optimized
for bulk publication with certain requirements that publishers
must adhere to. Hence, it is recommended for large content
providers (and not for ordinary users) to publish via an In-
dexer. We emphasize that the Indexers do not replace the DHT
but, instead, complement it by offering an additional content
indexing approach. Figure 3 illustrates an overview of the
publication and retrieval process, as detailed below.

Preparation of Advertisements. Each provider is required to
record their own available content using a chain of immutable
advertisements. An advertisement is a data structure asserting
the publication or deletion of content by a given provider. An
advertisement may contain multiple provider records. Impor-
tantly, by constructing an immutable chain of advertisements,
it becomes possible for any Indexer to audit what content has
been provided over time by each provider. Note, to achieve
incremental verifiability, all advertisements are signed by the
provider. To publish content, the provider adds a new adver-
tisement to its chain and notifies the Indexers.

Sending Announcement Message. To notify the Indexers
of newly published content, the provider sends an announce-
ment message (Figure 3 (1)). An announcement message
contains the CID of the advertisement, and the publisher’s ad-
dress (where to retrieve the advertisement from). By default,
the announcement messages are sent via Gossipsub [42] (a
P2P protocol to broadcast messages to nodes in a network).
Through this, the providers gossip announcement messages
among all Indexers. The Indexers can also receive such mes-
sages via an HTTP RESTful API call. The announcement
messages can be shared among Indexers when configured
to do so: they can re-publish HTTP announcements to other
Indexers, and relay Gossipsub announcements.

Synchronize Advertisements. Once an Indexer receives an
announcement message from a provider, it connects to the
provider and traverses the advertisement chain to construct the
up-to-date provider records (i.e., advertisement synchroniza-
tion, Figure 3 (2)). Since the advertisements are immutable,
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the Indexers can recognize which portions of the chain are
new and only traverse those sections. Once the provider
records have been constructed, we use Pebble [8], a high-
performance key-value store, to index all records.

Note, unlike the IPFS DHT, which only allows one file to
be published at a time, the Indexers allow multiple provider
records to be packed into a single advertisement. Addition-
ally, content does not need to be repeatedly republished by
providers, because there is no time-to-live for records in In-
dexers. Instead, only changes (additions or removals) are pub-
lished, and the Indexers can reconstruct all provider records
based on the advertisement chain. This makes the Indexer
unsuitable for ephemeral publishers. Indexers must, therefore,
configure their own policies for the removal of stale content.
This design is based on our prior experiences with scalability
and is optimized for bulk publication, directly addressing the
previous massive publication challenge. Specifically, batching
large amounts of provider records within a single advertise-
ment makes it highly efficient to publish multiple objects at
once and avoids republishing unless changes occur.
Retrieval of Content. Clients that wish to retrieve provider
records interact with the Indexers via a RESTful HTTP query
API. The identities of Indexers are currently public, with a
default set distributed with client binaries. Clients can issue
queries containing a single CID or several CIDs. In both cases,
the Indexers return a list of provider records that match the
query (Figure 3(3)). Retrieval clients can then retrieve the con-
tent directly from the providers based on the provider records
(Figure 3(4)). To exploit the aggregation of queries at the
Indexers, they utilize a frontend server to perform caching on
the HTTP API calls. This caching stores frequently accessed
provider records, allowing these requests to be directly served
without querying the Indexer’s Pebble database. This further
reduces response latency and enhances overall performance.

3.2 Hydra Boosters

The second challenge of decentralization in IPFS pertains
to content retrieval performance. This is because the DHT
walk often needs to pass through multiple intermediate nodes,
which can take a considerable amount of time.
Overview of Hydra Boosters. To address this issue, we have
developed a set of Hydra Boosters. These are highly con-
nected DHT nodes, which offer “shortcuts” through the rout-
ing space to provider records. They also help address the
challenge of massive content publication, as they accelerate
routing for publishing records.

The Hydra Boosters consist of: (i) Hydra Head DHT nodes,
comprising thousands of virtual nodes in the DHT, such that
every other peer has at least one Hydra Head in its rout-
ing table; and (ii) A shared Hydra Database that stores all
provider records in the DHT and can be accessed by all Hy-
dra Heads. This allows Hydra Boosters to serve other peers
with the provider records immediately through the directly

connected Hydra Heads, thereby improving content retrieval
performance. Our key idea is that it does not require IPFS
itself to adopt any infrastructure that is hard-coded into the
protocol, or controlled by a few parties. Instead, Hydra Head
nodes operate at the same level as any other node in the net-
work, without any privileged status, making it a complement
to the regular content routing operation.

Hydra Heads. The Hydra Boosters introduce the concept
of Hydra Heads. Each head is perceived by other network
participants as a conventional, distinct peer without special
privileges. Each head has its own unique PeerID, routing
table, and peer store. However, these heads are strategically
positioned within the Kademlia XOR keyspace. The strategic
positioning strives to make sure every peer has at least one
Hydra Head within its 20-peer XOR proximity. If this goal is
achieved, every provider record should be stored on at least
one Hydra Head. Thus, giving the Hydra Boosters full vantage
on all provider records. To further accelerate performance,
records are stored in a distributed database shared across all
Hydra Heads. As a result, any DHT walk to find a provider
record will have a high chance of immediately getting the
result from the Hydra database through the nearest Hydra
Head in the routing table.

Peer ID Assignment. The main design challenge is to achieve
this optimal placement. To address this, it is necessary to de-
termine the total number of participating network peers and
generate an appropriate set of peer identities to cover the en-
tire keyspace. Initially, we considered relying on randomly
generated peer identities, but in practice, this resulted in an
uneven distribution. To mitigate this issue, we rely on the
"power of two choices" [31]. This relies on a biased random
algorithm and has been demonstrated to be effective at bal-
ancing loads when each load balancer has an incomplete or
delayed view. First, all Hydra Head PeerIDs are tracked in
an XOR trie. For each new head’s PeerID, two choices are
generated. The one that decreases the trie’s depth the least
is selected. This approach ensures an average depth of logN,
with a maximum depth of logN + log logN. Importantly, the
trie’s depth correlates with proximity to existing nodes. If a
new Hydra head node were inserted at depth D, then its closest
node is at a distance 2−D. Having all nodes at similar depths
means they are implicitly equidistant in the XOR metric.

Hydra Database. The Hydra Booster system stores recent
records in a shared Amazon DynamoDB key-value store. All
heads can access this database, allowing every individual
head to have full vantage on all provider records known by
any head. Importantly, recall our earlier distinction between
decentralized and distributed. Although DynamoDB is dis-
tributed, it sits under the control of Protocol Labs. Note, the
Hydra database is not related to the peer routing functionality
of Hydra heads. Thus, even if DynamoDB fails, the heads
can continue to assist with peer routing similarly to any other
node (although they cannot directly serve provider records).
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3.3 HTTP Gateways

The third challenge of decentralization in IPFS pertains to
adoption, particularly when compared to the simplicity of
browser-based access using HTTP. Accessing IPFS content
necessitates running an IPFS node, which requires technical
expertise. Further, due to the computational cost, the imple-
mentation is currently not compatible with mobile systems.
Additionally, due to the use of incompatible protocols, inte-
grating IPFS with conventional (HTML/HTTP) websites is
challenging. In part, this is also because IPFS experiences
longer retrieval delays than traditional client-server HTTP,
creating usability challenges for composing a webpage from
both HTTP and IPFS-hosted objects.
Overview of Gateways. To address this issue, we have de-
ployed a small set of gateway servers. A gateway works as a
simple HTTP bridge into the IPFS network. We implement
this as a Nginx web server front end, co-located with a full
IPFS node installation. Clients interact with a gateway by
issuing a GET request using the CID as a URL parameter. The
gateway then retrieves the requested object from the IPFS net-
work on behalf of the client before returning it via the HTTP
connection. Note, as our software is open-source, any entity
can deploy their own gateway. Indeed, other organizations
such as Cloudflare have done precisely that.
Caching. To exploit the centralized aggregation of demand,
and improve retrieval performance, we also enable caching on
the gateways. Specifically, we use Nginx’s default web cache
with a Least Recently Used replacement strategy. Thus, any
requested objects are cached within the default HTTP cache
of the gateways. The gateways also allow authorized third par-
ties to actively push content objects into its local object stores
(i.e., its node cache). To date, this is used by NFT.storage and
Web3.storage. Web3.storage stores over 40M objects, while
NFT.storage stores over 91M objects. This serves as a signif-
icant benefit of centralization: By aggregating user requests
within the gateways, we can serve popular objects from the
cache, avoiding repeatedly retrieving the same content from
the IPFS network (as the gateway only forwards a request
when it is not stored or cached locally). Alongside improv-
ing performance for the client, it also offloads unnecessary
requests from the remainder of the network.

4 Evaluation Methodology & Data

To explore the efficacy of the above centralized components
and their impact on IPFS’s decentralization efforts, we rely
on operational data collected from the components managed
by Protocol Labs. See Appendix A for ethics discussion.

4.1 InterPlanetary Network Indexer Data

The below IPNI datasets are obtained from the Indexer man-
aged by Protocol Labs (https://cid.contact).

Providers and Provider Records. Our first dataset covers
the indexed records in the Indexer’s data storage. As of
2023-04-24 UTC , the dataset consists of 173,998,039,712
(approximately 0.17 trillion) provider records.
Index Ingestion Performance Data. Our second dataset cov-
ers the performance of our Indexer. We collect data from the
operational logs of the Indexer. Because the Indexer processes
approximately 5.3 billion provider records per day, we take a
sample of advertisement synchronization operations covering
16,757,817 provider records on 2023-04-24.
Index Query Performance Data. Our third dataset covers the
Indexer query performance. The Indexer employs Amazon
CloudFront. Our dataset comprises HTTP requests made to
Amazon CloudFront, along with cache hit information and
the request complete time. The dataset covers a period of one
day, from 2023-04-18 09:05 UTC to 2023-04-19 09:05
UTC. During this time, 62,611,156 successful requests were
made, and 246.77 GB of traffic was served.

4.2 Hydra Boosters Data

Protocol Labs has deployed 135 Hydra Booster nodes on
Amazon ECS in the us-east-1 region. Each of these Hydras
has between 10 and 15 heads, resulting in a total of 2,015
Hydra heads.
Active Retrievals with Hydra Boosters. To evaluate the per-
formance benefit of the Hydra Boosters, we perform a set of
active measurements with the Hydra Boosters enabled. We
utilize six machines that are located in different regions on
Amazon AWS (see Table 1). On each machine, we run an
IPFS DHT server node (Kubo implementation v0.16.0).

In each iteration, we randomly select a single node to pub-
lish a new 0.5 MB object (CID) to the network. Subsequently,
all other nodes retrieve that object. Once all the nodes com-
plete this process, they disconnect to prevent the next retrieval
operation from being resolved through Bitswap. It is impor-
tant to note that this is the closest one can get to a controlled
test in the public IPFS network.
Active Retrievals without Hydra Boosters. To evaluate the
benefit of Hydra Boosters, it is also necessary to perform the
above measurements without the Hydra Boosters (as a base-
line). Therefore, we repeat the above active measurements,
whilst performing a controlled deactivation of Hydra Boost-
ers. Specifically, we unplug the common database from the
Hydra Boosters for a period of 7 days. We leave Hydra Heads
in the network but configure them to behave differently:

• ADD-PROVIDER queries are ignored. Since Hydra
Heads make about 10-15% of the network, this means
we are artificially decreasing the k-replication to 19 [30].

• GET-PROVIDER queries are answered with only closer
peers (i.e., no provider records) because the common
database is not there anymore.

The active retrieval experiment starts on 2022-11-25 15:27
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UTC to 2022-12-01 17:30 UTC. We have deployed the
change of unplugging the database from the Hydra Boost-
ers on 2022-12-01 17:30 UTC, thus the active retrieval ex-
periment without Hydra starts on 2022-12-01 17:30 UTC
to 2022-12-08 20:00 UTC. This gives us approximately 6
days of data with the Hydra Booster database, and 7 days
without it. Table 1 summarizes the number of retrievals from
each region before and after unplugging the database.

Retrieval Publication
with without with without

af_south_1 9590 12084 2579 3284
ap_southeast_2 10375 13143 2579 3282
eu_central_1 10180 13233 2578 3289
me_south_1 10183 12814 2579 3280
sa_east_1 10192 12904 2578 3291
us_west_1 10162 12821 2579 3286

Table 1: The number of retrievals and publications from each
region with and without the Hydra Boosters database.

4.3 HTTP Gateway Data

Finally, we gather a dataset from the public IPFS gateway
(https://ipfs.io) managed by Protocol Labs. The dataset
comprises of all HTTP GET requests made on 2023-03-15
UTC+0. Each record in the dataset represents the request and
response details, covering remote IP address, request times-
tamp, user agent, HTTP referrer, request complete time, re-
sponse size, response latency, and cache hit/miss information.
In total, the dataset covers 69,339,954 successful requests
from 1,645,611 IP addresses, with response sizes equalling
91,869 GB.

5 Evaluation

We now assess the effectiveness of our centralized compo-
nents in addressing the challenges outlined in Section 2.2.
We focus on (i) The effectiveness of the Indexers in support-
ing massive content publication; (ii) The effectiveness of
the Indexers, the Hydra Boosters, and gateways in improving
content retrieval performance; (iii) The effectiveness of the
gateways in increasing the adoption of IPFS.

5.1 Challenge 1: Massive Content Publication

The first challenge of IPFS’s decentralization pertains to the
massive publication of objects. This is caused by the need
to traverse many decentralized routing hops and replicate
provider records to mitigate churn. To overcome this, we have
introduced the Indexer, a centralized key store. Therefore, we
start by evaluating the efficacy of our centralized components
in improving the publication process.
Indexer Adoption. We first investigate the adoption of In-
dexers by content providers, by checking the number of

provider records that have been uploaded to our Indexer
server. Figure 4a illustrates the total number of provider
records in the Indexer and IPFS DHT, alongside the number
of provider records offered by the top 100 content providers
in both sub-systems. We get the DHT data from our Hydra
Booster database, as discussed in §3.2. The Indexer stores
173,998,039,71 provider records, over 100x more than the
number stored in DHT. Additionally, we observe that the
top providers in the Indexer offer 100-1000x more provider
records than the top providers in the DHT, with most of them
hosting around 109 provider records. Initially, one might as-
sume that the Indexers have therefore eclipsed the DHT, and
created a fully centralized environment. Closer inspection
reveals a more nuanced situation though. Although the Index-
ers host many records, these are uploaded by just 604 major
providers, with most of them running NFT or storage services.
In contrast, 56k providers use the DHT, confirming the ma-
jority still choose to use the DHT. This confirms that large
content providers do see benefit in using the Indexer system,
while outside of these large providers, the remaining IPFS
users continue to publish via the DHT.

We further examine the adoption of Indexers by retrieval
clients. Our data shows that the Indexer receives 2.5k lookup
requests per second, while the IPFS DHT receives around 5k
(estimated using the number of GET-PROVIDER requests
received by Hydra Boosters). These statistics confirm that, al-
though the DHT plays a larger role, the Indexers successfully
support massive content publication activities by this small
number of major publishers. Overall, the results indicate that
the Indexer is fulfilling its intended purpose of supporting
massive content publications from large content providers
and that clients do have interest in such content.

Publication Performance. The above confirms the adoption.
We next assess if the Indexer indeed improves content publica-
tion performance. Figure 4b plots the CDF of advertisement
synchronization time for the Indexer and compares it with
the DHT publication time. We see that the advertisement syn-
chronization time is faster than the DHT publication time at
all percentiles. It is approximately twice as fast at the 50th
percentile. Unsurprisingly, this confirms that the performance
of the centralized Indexer is faster than the DHT publication.

However, an advertisement can contain multiple provider
records (see §3.1). This implies that the time taken by the
Indexer to index each provider record may be significantly
shorter than what is depicted in Figure 4b. To explore this, Fig-
ure 4c presents the relationship between the synchronization
time of advertisements and the number of provider records
in the advertisement. Indeed, we find that the majority of ad-
vertisements contain 16K to 20K provider records (compared
to 1 record for the DHT publications). Additionally, the syn-
chronization time of advertisements is almost agnostic to the
number of provider records, confirming that the Indexer is
well suited for bulk publication.
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Figure 4: (a) The number of provider records offered by the top 100 content providers in the Indexer and IPFS DHT, alongside
the total number of provider records in the Indexer and IPFS DHT; (b) CDF of the advertisement synchronization time for the
Indexer, and the DHT publication time of an IPFS node for comparison; (c) Advertisement synchronization time vs. the number
of provider records in the advertisement; (d) CDF of the content lookup time of the Indexer, and of the DHT for comparison.

Discussion & Takeaways. The above shows that Indexers ef-
fectively support massive content publication, with 604 large
content providers hosting provider records 100x more than
those in the DHT. Moreover, it offers a significantly faster
indexing speed of approximately 500µs per provider record.

However, the Indexers also introduce centralization that
brings certain trade-offs. Most noteworthy is the significant
monetary cost of operating Indexers. In our experience, an
Indexer server costs $5–10K in capital expenditure, with ap-
proximately $1K per month in operating expenditure. In con-
trast, IPFS’s original publication mechanism (via the DHT)
is designed such that the load is spread evenly (thereby re-
moving the need for individuals to host expensive hardware).
Moreover, the Indexer introduces a single point of failure as
centralized failures in the Indexer can make significant vol-
umes of provider records inaccessible. This is because some
provider records are only stored within Indexers and is not
replicated in IPFS DHT. We further discuss this in §6.

5.2 Challenge 2: Content Retrieval Performance

The second challenge of IPFS’s decentralization pertains to
content retrieval performance. This is driven by the need for
clients to perform distributed lookups across (many) nodes.
The Indexer, Hydra Boosters, and gateways are all geared
towards addressing this, by complementing the distributed
lookups and retrievals with centralized acceleration. We use
the content lookup time as a metric to evaluate content re-
trieval performance. It refers to the duration between the point
when the retrieval client launches a query and the point when
the content is found. Across the three components, this metric
corresponds to the time to get the first provider record in the
DHT walk; the request completion time in an Indexer query;
and the response latency in a gateway query.
Indexer Content Lookup Time. Figure 4d plots the CDF
of the content lookup time of the Indexer. We also plot the
content lookup time in a vanilla DHT lookup for comparison,
as measured in our Hydra Booster experiments (§4.2). As
expected, the Indexer’s overall content lookup time is signifi-
cantly shorter than the decentralized DHT lookup time. Our
Indexer servers achieve approximately 10x better performance

than the DHT lookup time at the 50th percentile.
One reason for the improvement is that the centralization

allows us to exploit caching in the Indexer server (§3.1). On
average, the cache hit rate is 65.22%. This means that the
majority of queries hit the Indexer’s cache, which is approx-
imately 100x faster than the DHT lookup time in the 50th
percentile. This is a significant benefit of centralization, as
it allows us to aggregate demand into a small set of central
points. Doing the same across our DHT is much less effective.
We also note that, even for the 34.78% of requests that result
in a cache miss, the content lookup times still outperform
the DHT, as shown by the black line in Figure 4d. The per-
formance around the 65th percentile is due to an optional
cascading lookup which makes the Indexer query the IPFS
DHT. Thus, even without the cache mechanism, the central-
ized Indexer still offers better content retrieval performance
than the DHT.
Hydra Booster Lookup Time. The Hydra Boosters also im-
prove content retrieval performance by shortening the DHT’s
provider record lookup. To evaluate this, recall that we per-
formed a controlled experiment running IPFS both with and
without the Hydra Booster active (see §4.2).

Figure 5a displays the content lookup time across all
probed AWS regions, with and without the Hydra Booster
database. We observe a clear performance improvement
in us-west-1, af-south-1, ap-southeast-2, sa-east-1,
and me-south-1, with the median improved by 36.5%,
25.1%, 16.4%, 11.7%, and 3.8% respectively. Although this
is not as impactful as the Indexer speedups, it still constitutes
a notable improvement. However, there is one outlier: the
Hydra Booster database provides no performance improve-
ments in eu-central-1. Our investigation suggests that this
is because the retrieval performance in Europe is already opti-
mized. As shown in Figure 5a, it is significantly better than in
other regions, leaving limited room for further improvement.
This suggests that the decentralization vs. centralization trade-
off may differ based on region, and raises questions about
whether such speed-ups warrant the high monetary cost.

We further investigate how these speedups are achieved.
Recall, the Hydra Boosters improve performance by: (i) the
strategic placement of stable Hydra Heads across the DHT
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Figure 5: (a) The content lookup time across all probed AWS regions with and without the Hydra database, the values at the top
refer to the medians; (b) Breakdown of the hop count per provider record lookup across all probed AWS regions with (left bar)
and without the Hydra database (right bar); (c) CDF of the content lookup time of the Gateway and of the DHT for comparison;
(d) Cache hit rate of the Gateway throughout the day, aggregated in 1-hour intervals.

hash space so that every peer has a Hydra Head in its 20-
proximity; and (ii) the storage of provider records in the
shared database, allowing many records to be retrieved within
one hop. To confirm this, we examine the closest neigh-
bors of each peer by taking a DHT routing table snapshot
[40]. Confirming our expectation, we find a total of 16,208
peers in the network, with 96.6% having at least one Hy-
dra Head in their 20-proximity. To quantify how this im-
pacts path length, Figure 5b shows the hop count of DHT
walks with and without the Hydra database. We separate the
data into each AWS region. With the hydras, many DHT
walks reach provider records within one hop. This is the case
for 41.45% in af-south-1, 27.81% in ap-southeast-2,
26.68% in eu-central-1, 29.79% in me-south-1, 17.04%
in sa-east-1, and 46.64% in us-west-1. In contrast, with-
out the Hydra database, under 5% in af-south-1 and 2% in
other regions of queries achieve single hop routing, and about
20% of DHT walks require three or more hops to access the
provider record in all regions.

Gateway Content Lookup Time. We finally inspect the gate-
way, which also improves retrieval performance by introduc-
ing centralized caching, circumventing the need to traverse
the DHT or Indexers. Figure 5c displays a comparison be-
tween the gateway content lookup time for IPFS node-stored
content and non-cached content. As a baseline, it also shows
the DHT content lookup time when retrieving from an IPFS
node, as obtained from our Hydra Booster data (§4.2). Note
that Nginx cached content is not plotted separately because
the latency is too short (near 0) to be plotted for comparison.

We see that introducing this centralized caching brings sig-
nificant retrieval performance benefits. At the 50th percentile,
the gateway achieves approximately 100x better performance
than the DHT. This is because most requests hit either the
Nginx cache or the node cache, as plotted in Figure 5d. On
average, the Nginx cache hit rate is 50.3% and the average
IPFS node storage hit rate is 27.6%. The gateway lookup time
for cached objects is just 24 ms at the 95th percentile.

That said, there is little improvement for the remaining
objects that are not cached. The non-cached content shows a
similar trend to DHT lookup in Figure 5c. This is not surpris-

ing since, for non-cached objects, the gateway’s co-located
IPFS node also needs to perform a DHT lookup. On top of
this, the co-located IPFS node needs to retrieve the content
and then forward it to the retrieval client, thus introducing
extra overhead (which causes the disparity between the non-
cached line and the DHT line). This highlights the complexity
of inter-linking these centralized components with the larger
(slower) decentralized system.
Discussion & Takeaways. The centralized Indexer, Hydra
Boosters, and gateways improve content retrieval performance
from different perspectives. The Indexer offers better content
lookup time in 90% of cases, while the gateway aggregates
user demand to provide better content retrieval via caching,
in 95% of cases compared to DHT lookup time. The Hydra
Boosters reduce the number of hops during DHT lookups to
achieve faster lookup times. Overall, deploying these com-
ponents successfully improves content retrieval performance
compared to our earlier fully decentralized design. That said,
the introduction of these components leads to clear trade-
offs, most notably between performance and privacy. As
centralized instances, they allow operators to monitor and
even censor usage. However, our experience and previous
research [10, 37] has shown that these attacks are still possi-
ble in DHTs, regardless of whether Indexers or gateways are
present. We further discuss this in §6.

5.3 Challenge 3: Adoption

Client Adoption. The gateways are our main mechanism to
improve adoption, by providing direct integration with HTTP.
Thus, we first inspect its success by measuring the number of
gateway users as a metric of adoption. For this, we categorize
all user-agents into three categories: desktop browsers, mobile
browsers, and other net tools [9] or libraries such as wget.
Access from both desktop browsers and mobile clients is
a crucial metric for evaluating improvements in adoption
because IPFS node is not yet implemented on mobile devices,
and setting up an IPFS on a desktop can be complicated.

Figure 6a depicts the number of requests, number of users
(we treat each IP address as an individual user), and total traf-
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fic served for different user-agents. Figure 6b also presents
a breakdown of the file types requested. Confirming up-
take, 771,977 users access the gateway from mobile clients,
776,286 from desktop user-agents, and 195,854 using net
tools. 31.8% of the total traffic and 18.8% of the total requests
come from mobile devices, whereas 32.9% of the total traf-
fic and 29.8% of the total requests originate from desktop
browsers. This suggests that our gateway has successfully
expanded access to IPFS.

For completeness, Figure 6b presents a breakdown of the
file types requested. Note, stream refers to media streaming.
We observe a wide range of object types. Excluding the un-
known objects, for desktop agents, the most popular type of
content is stream (20.47%) and json (12.99%). For mobile
agents, the most accessed is other content (26.42%) followed
by web content (14.57%). This confirms that the gateway has
been adopted for various applications and content types.

Web Developer Adoption. To assess the adoption of the gate-
way by traditional websites, we look into the HTTP referer.
This tells us from which website a request has been gener-
ated. We measure the number of requests with and without
a referral, as well as the number of users and the total traf-
fic served. The results show that 51.6% of the total traffic
and 29.8% of the total requests come from a referral website,
suggesting significant integration by web developers. This is
similar to the percentage of traffic (48.3%) without a referral
and lower than the requests (70.1%) without a referral. The
requests with a referer come from 1,312,066 users, while the
requests without a referer come from 405,087 users, which is
more than 3x fewer, confirming that the majority of users use
gateways due to integration with websites. This suggests that
the gateway has supported web developer adoption, with the
placement of IPFS-hosted objects in their pages.

We finally check the top 100 referral sites (based on the
number of requests received) and manually label them with
their website category. Figure 6c displays the request volumes
among different referral types, the number of referral sites,
total traffic served, and user count. Note, the IPFS type con-
sists of IPFS official sites and tool sites such as the Gateway
Checker [6]. We see that NFT and online video are the most
common types of referral for the gateway, while other referral
types only account for a small fraction. The former is likely
because a large amount of NFT content is stored on IPFS,
whereas the latter may simply be an effort to offload traffic
from a developer’s own server. Figure 6d also displays the top
100 referral sites, ranked by the number of requests and the
number of users respectively. We observe a long-tail distri-
bution, with 70.23% of the requests originating from just 23
websites. The findings arguably point to a level of additional
centralization, with the majority of referred requests coming
from a small number of top websites.

Discussion & Takeaways. The gateways enhance the adop-
tion of IPFS for both clients and web developers, with a sig-

nificant number of users accessing IPFS through our gateway
on their mobile devices (which would not be possible with-
out it). Additionally, over half of the traffic to our gateway is
generated by referrals from existing HTML-based sites. The
introduction of this centralization, therefore, has clear benefits.
However, the use of such HTTP gateways does sacrifice the
end-to-end cryptographic validation of IPFS content, which
may enable man-in-the-middle attacks. Moreover, as central-
ized instances, gateways enable their operators to monitor
usage, raising privacy concerns. We further discuss these con-
cerns in §6. We also note that gateways may create other risks.
For example, ideally, nodes who retrieve content also volun-
teer to serve it for others. This enables self-scaling, naturally
creating more replicas of popular content. However, the use
of the gateways prevents this and may risk an over-reliance
on centralized elements. Thus, even though one can always
circumvent any gateway, a lack of decentralized participants
could hamper this in the longer term.

6 Discussion

The above solutions were introduced to mitigate challenges
related to content publication, retrieval, and system adoption.
This creates a trade-off, potentially undermining certain bene-
fits of decentralization. We explore this below.

6.1 Security

Hydra Booster Security. One concern regarding the Hydra
Boosters is that a centralized entity controlling multiple heads
might theoretically gain excessive influence over IPFS rout-
ing, leading to issues such as result poisoning and Eclipse
attacks [36]. However, we posit that these security concerns
are unlikely to manifest. First, it is difficult for false content
to be returned, as IPFS relies on self-validating CIDs. Addi-
tionally, while Hydra Boosters can supply the provider record,
they do not serve the content itself. Thus, the most severe
action Hydra Boosters could engage in is presenting a false
provider record, forcing another query. This means that such
an attack would only slow retrieval, rather than prevent it.

Second, as outlined in §3.2, the primary objective of the
Hydra Boosters is to achieve a uniform distribution of Hy-
dra heads. Our measurement (See Appendix B for details)
shows that the mean number of hydra heads within a peer’s
20-proximity is 2.36, and 99.5% peers have no more than five
peers in the 20-proximity. Given the presence of just a few
Hydra heads within 20-proximity, the ability to manipulate
routing or execute eclipse attacks is constrained. This is be-
cause peers connect to not just the Hydra heads, but also and
primarily to other peers. Thus, as long as the ordinary nodes
in the IPFS network continue to function as intended, the
routing of IPFS should remain resilient against potential dis-
ruption from Hydra Boosters. That said, the disruption would
inevitably lead to a performance decline. The performance
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Figure 6: (a) Number of requests, number of unique users, and total traffic served for different user-agents; (b) Breakdown of
requested file types for different user-agents; (c) Breakdown of referers for number of referral sites, the number of requests, total
traffic served, and user count of the different referral types across the top 100 sites ranked by requests count; (d) The requests
count and user count of the top 100 referer sites, ranked by request count and by user count, respectively.

impact, in this case, is similar to the situation where all Hydra
Boosters are inactive, a topic we discuss further in §6.2.
Gateway Security. The HTTP gateway sacrifices the end-to-
end cryptographic validation of content, which raises potential
man-the-middle attacks that IPFS strives to prevent. To over-
come this, retrieval client browsers could compute the hash
of the retrieved file to verify whether they have received the
correct content. However, this process entails the use of addi-
tional functionality in the browser, which may undermine the
goal of improving adoption.

6.2 Robustness

Hydra Booster Robustness. The robustness of the Hydra
Boosters could impact IPFS in two ways: (i) failing to return
provider records (e.g., due to the failure of the DynamoDB
instance); or (ii) failing to correctly participate in IPFS rout-
ing (e.g., due to failures on AWS EC2). Despite this, we
emphasize that the failure of either component will result in
IPFS peers falling back to the traditional decentralized model.
Thus, although performance will suffer, availability will not.
Confirming this, §5.2 demonstrated the scenario where Hydra
Boosters stop returning provider records. This situation mir-
rors the conditions that arise when DynamoDB experiences a
shutdown. Here, we observe a performance decrease by up to
36.5%, yet the content availability is not affected.

An additional risk is that the failure of the Hyrda Boosters
will negatively impact routing. To test this, we repeat the
methodology in §4.2, but prevent peers from utilizing any
Hydra Boosters for routing (detailed in Appendix B). We do
not observe any failed retrieval, indicating that the availability
of provider records remains unaffected even when the peers
do not interact with Hydra Boosters.
Indexer Robustness. When using the Indexers, the availabil-
ity of provider records is entirely dependent on the availability
of the Indexers. Unlike the DHT, which replicates provider
records across 20 peers, centralized failures in the Indexer
can make significant volumes of provider records inaccessible.
This is mitigated by the ability of Indexers to gossip announce-

ment messages among themselves. However, gossipsub (see
§3.1) offers no hard guarantees on real-time synchronization.
There are already 7 Indexers available for public use, and Pro-
tocol Labs is working on a protocol for automatic discovery of
alternative Indexers. As more stakeholders operate Indexers,
we hope the risk of Indexer unavailability decreases.

Briefly, it should be noted that the failure of an indexer does
not necessarily result in a permanent loss of provider records.
As explained in §3.1, Indexers obtain provider records from
the advertisement chain of content providers. Therefore,
provider records are inherently replicated by providers’ adver-
tisement chains. If an Indexer loses any provider records,
it can restore them by re-synchronizing with the original
providers, assuming such providers still wish to make their
content available.

6.3 Privacy

Another concern is that, as centralized instances, these com-
ponents may enable their operators to monitor usage. For
instance, the Indexers and gateways can monitor the queried
CIDs from the clients. Similarly, the Hydra Boosters can ob-
serve almost every DHT query in IPFS because most peers
are directly connected to a Hydra Head. This asymmetry of
power is a key concern and makes it necessary for clients to
trust the operators with their data. We conjecture that this is
one of the reasons why most IPFS clients use an instance of
these components operated by Protocol Labs. Despite this,
we acknowledge this is not a sustainable solution, with the
risk of Protocol Labs becoming an overly central dependency.
Although not discussed here, we also briefly note that the
Indexers use a double-hashing technique to make this moni-
toring more difficult [5].

Our experiences within IPFS have also flagged that many
of these attacks are possible in the decentralized DHT routing
subsystem, agnostic to the presence of Indexers or gateways.
For instance, a well-placed node in the DHT can learn which
files are requested by a client during the routing process. By
performing a Sybil attack, a well-resourced adversary could
even gain global vantage on the routing process. Recent works
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also show that privacy attacks [10] and censorship [37] are
possible in the purely decentralized IPFS DHT. Despite that,
it is clear that greater decentralization reduces the vantage of
individual nodes, raising the barrier to such attacks.

6.4 Incentives

In previous subsections, we mention that issues with robust-
ness can be mitigated by multiple stakeholders running these
centralized components. This, however, requires a clear incen-
tive model to encourage third-party operators to contribute
their resources. To date, there are 7 Indexers and over 80 Gate-
ways, and the stakeholders running them typically have three
types of incentives: (i) Stakeholders that provide storage ser-
vices utilizing IPFS can benefit from running Indexers and/or
Gateways. These ease the discovery of their stored content,
broaden adoption, and improve their service’s performance.
Such stakeholders include NFT.storage, Web3.storage, DSS,
SXX, FilSwan, PikNik, Ken Labs, etc. (ii) Stakeholders that
provide other applications built on top of IPFS benefit from
running an Indexer and/or a Gateway to improve the stability
and performance of their service. Such stakeholders include
LeewayHertz, 4everland, Aragon, Pinata, etc. (iii) Stakehold-
ers that have a broader interest in decentralized web appli-
cations have a motivation to contribute to the environment
as it aligns with their long-term interests. Such stakeholders
include CloudFlare and Infura.

We acknowledge that none of the aforementioned reasons
provide formal incentives by design. It is yet to be determined
how wide uptake is among third-party stakeholders without
a formal incentive model in place. Our future plans involve
implementing incentive mechanisms, and there are several
potential options available [24].

7 Related Work

Decentralized Web. The IPFS network has grown alongside
other Decentralized Web technologies, particularly the "fedi-
verse". This is composed of server-based federated services,
such as Mastodon [32], Pleroma [23], and Diaspora [22]. The
service closest to IPFS is Nextcloud, which offers a federated
file storage platform that integrates IPFS with server-local
storage [1]. This functions similarly to IPFS gateways. How-
ever, IPFS can operate without gateways, while fediverse apps
rely entirely on the uptime of federated servers [32].
P2P Networks. There have been numerous P2P overlay ar-
chitectures, with dozens of DHT structures proposed, includ-
ing Chord [38], Tapestry [44], Koorde [26], Pastry [34], and
others [25]. Various applications have been built atop, such
as large-scale content delivery platforms [14] and decentral-
ized social networks [21], among others. Rather than creating
an entirely new system, IPFS uses the Kademlia DHT for
content indexing [30]. IPFS is built upon these technologies

and is currently one of the largest “Decentralized Web” tech-
nologies deployed in the world. BitTorrent, which also uses
Kademlia [14], is another example of a large-scale deploy-
ment. Note, as part of our decentralization efforts, IPFS aims
to be resistant to censorship, much like other platforms such
as Freenet [12] and Wuala [28]. These platforms achieve their
goal by storing encrypted content across a random subset of
peers. In contrast, IPFS follows a BitTorrent-like approach
where nodes store only the content they are interested in.
DHT Optimization. Various attempts have been made to en-
hance the performance and usability of DHTs by employing
caching [35], network-aware peer selection [27], and paral-
lelizing lookups [39]. We also take inspiration from prior
Information-Centric Networking designs that use DHTs for
content indexing [17, 18]. We build on these prior works with
our deployment of hydra boosters. These improve perfor-
mance while offloading traffic from the DHT.
P2P System Evaluations. Closest to our evaluation are stud-
ies that measure operational IPFS [41]. Moreover, in [20],
the authors measure DHT lookup latencies in the range of
tens of seconds, but it was not a controlled experiment. There
have been various performance evaluations of P2P systems.
For example, [16] and [43] evaluate BitTorrent’s implementa-
tion of Kademlia, to find a significant number of failed nodes
that adversely affected the lookup times. Further, Stutzbach
and Rejaie [39] model Kademlia’s performance and propose
several improvements. We borrow from these measurement
studies to inform our methodologies in §4.

8 Conclusion
This paper has presented our experiences of deploying three
centralized components within IPFS, namely Indexers, Hy-
dra Boosters, and Gateways. Using real-world operational
data, we have demonstrated their effectiveness in addressing
the challenges faced by IPFS: massive content publication,
content retrieval performance, and adoption. We have also
discussed trade-offs, related to security, privacy, and other
risks caused by the compromises of prior decentralization.
Overall, our findings highlight the persistent challenges that
exist in deploying operational decentralized systems with
tight performance constraints. Equally, we have highlighted
the challenges of overcoming traditional issues with central-
ized deployments (e.g., single points of failure and privacy).
Thus, we emphasize that developers must make judgment
calls about how to balance such trade-offs. In the future, we
plan to explore the remaining challenges discussed in §6. We
will continue working on the research and development of
decentralized protocols, and we hope that IPFS can eventually
perform similarly even without these centralized parts.
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A Ethics

All data used within this paper is collected as part of Pro-
tocol Lab’s operational activities. Although we observe IP
addresses, we do not attempt to map these back to personal
identities, as such analysis is not within the scope of this study.
The IPFS gateway data also contains user information, as it
covers requests from web clients. In all cases, we anonymize
IP addresses, and do not perform lookups on the CIDs to
infer the nature of the content exchanged. We perform no
per-user analysis, and focus only on overall system analysis.
All information is collected as part of our routine operations,
and in line with IPFS policies. This paper has not triggered
additional data collection.

B Additional Experiments

B.1 Hydra Heads in 20-Proximity

We examine the closest neighbors of each peer by taking a
DHT routing table snapshot [40]. Figure 7 shows the CDF of
the number of hydra heads in a peer’s 20-proximity.

Figure 7: CDF of the number of hydra heads in a peer’s 20-
proximity.

B.2 Active Retrieval Ignoring Hydra Boosters

We conduct another experiment using the same methodology
as described in §4.2. However, in this experiment, we utilize
modified IPFS nodes that disregards all Hydra heads. This
modification incurs minimal overhead since we possess a list
of the PeerIDs of all Hydra heads. This simulation mirrors
the conditions where a peer choose not to interact with any
Hydra head. The experiment starts on 2022-11-28 16:17
UTC to 2022-12-09 20:00 UTC. Table 2 list the number of
retrievals and publications from each region with modified

Retrieval Publication
af_south_1 7533 1674

ap_southeast_2 7800 1674
eu_central_1 8003 1677

me_south_1 7578 1674
sa_east_1 7529 1675
us_west_1 7886 1571

Table 2: The number of retrievals and publications from each
region with modified IPFS nodes that ignore Hydra Boosters.

Figure 8: The content lookup time across all probed AWS
regions with and ignoring the Hydra database, the values at
the top refer to the medians.

IPFS nodes that ignore Hydra Boosters. Figure 8 shows the
performance comparison by plotting the content lookup time
across all probed AWS regions with and ignoring the Hydra
database.
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