
Eliminating Receive Livelock in an Interrupt-driven Kernel

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory

K. K. Ramakrishnan
AT&T Bell Laboratories

of once per revolution; first-generation LAN environ-Abstract
ments tend to generate a few hundred packets per
second for any single end-system. Although peopleMost operating systems use interface interrupts to
understood the need to reduce the cost of taking anschedule network tasks. Interrupt-driven systems can
interrupt, in general this cost was low enough thatprovide low overhead and good latency at low of-
any normal system would spend only a fraction of itsfered load, but degrade significantly at higher arrival
CPU time handling interrupts.rates unless care is taken to prevent several

The world has changed. Operating systems typi-pathologies. These are various forms of receive
cally use the same interrupt mechanisms to controllivelock, in which the system spends all its time
both network processing and traditional I/O devices,processing interrupts, to the exclusion of other neces-
yet many new applications can generate packetssary tasks. Under extreme conditions, no packets are
several orders of magnitude more often than a diskdelivered to the user application or the output of the
can generate seeks. Multimedia and other real-timesystem.
applications will become widespread. Client-serverTo avoid livelock and related problems, an operat-
applications, such as NFS, running on fast clients anding system must schedule network interrupt handling
servers can generate heavy RPC loads. Multicast andas carefully as it schedules process execution. We
broadcast protocols subject innocent-bystander hostsmodified an interrupt-driven networking implemen-
to loads that do not interest them at all. As a result,tation to do so; this eliminates receive livelock with-
network implementations must now deal with sig-out degrading other aspects of system performance.
nificantly higher event rates.We present measurements demonstrating the success

Many multi-media and client-server applicationsof our approach.
share another unpleasant property: unlike traditional
network applications (Telnet, FTP, electronic mail),

1. Introduction they are not flow-controlled. Some multi-media ap-
Most operating systems use interrupts to inter- plications want constant-rate, low-latency service;

nally schedule the performance of tasks related to I/O RPC-based client-server applications often use
events, and particularly the invocation of network datagram-style transports, instead of reliable, flow-
protocol software. Interrupts are useful because they controlled protocols. Note that whereas I/O devices
allow the CPU to spend most of its time doing useful such as disks generate interrupts only as a result of
processing, yet respond quickly to events without requests from the operating system, and so are in-
constantly having to poll for event arrivals. herently flow-controlled, network interfaces generate

Polling is expensive, especially when I/O events unsolicited receive interrupts.
are relatively rare, as is the case with disks, which The shift to higher event rates and non-flow-
seldom interrupt more than a few hundred times per controlled protocols can subject a host to congestive
second. Polling can also increase the latency of collapse: once the event rate saturates the system,
response to an event. Modern systems can respond to without a negative feedback loop to control the
an interrupt in a few tens of microseconds; to achieve sources, there is no way to gracefully shed load. If
the same latency using polling, the system would the host runs at full throughput under these con-
have to poll tens of thousands of times per second, ditions, and gives fair service to all sources, this at
which would create excessive overhead. For a least preserves the possibility of stability. But if
general-purpose system, an interrupt-driven design throughput decreases as the offered load increases,
works best. the overall system becomes unstable.

Most extant operating systems were designed to Interrupt-driven systems tend to perform badly
handle I/O devices that interrupt every few mil- under overload. Tasks performed at interrupt level,
liseconds. Disks tended to issue events on the order

by definition, have absolute priority over all other tions to customers. The rest of this paper con-
tasks. If the event rate is high enough to cause the centrates on host-based routing, since this simplifies
system to spend all of its time responding to inter- the context of the problem and allows easy perfor-
rupts, then nothing else will happen, and the system mance measurement.
throughput will drop to zero. We call this condition
receive livelock: the system is not deadlocked, but it 3. Requirements for scheduling network tasks
makes no progress on any of its tasks. Performance problems generally arise when a sys-

Any purely interrupt-driven system using fixed in- tem is subjected to transient or long-term input over-
terrupt priorities will suffer from receive livelock un- load. Ideally, the communication subsystem could
der input overload conditions. Once the input rate handle the worst-case input load without saturating,
exceeds the reciprocal of the CPU cost of processing but cost considerations often prevent us from build-
one input event, any task scheduled at a lower ing such powerful systems. Systems are usually
priority will not get a chance to run. sized to support a specified design-center load, and

Yet we do not want to lightly discard the obvious under overload the best we can ask for is controlled
benefits of an interrupt-driven design. Instead, we and graceful degradation.
should integrate control of the network interrupt han- When an end-system is involved in processing
dling sub-system into the operating system’s schedul- considerable network traffic, its performance depends
ing mechanisms and policies. In this paper, we critically on how its tasks are scheduled. The
present a number of simple modifications to the mechanisms and policies that schedule packet
purely interrupt-driven model, and show that they processing and other tasks should guarantee accept-
guarantee throughput and improve latency under able system throughput, reasonable latency and jitter
overload, while preserving the desirable qualities of (variance in delay), fair allocation of resources, and
an interrupt-driven system under light load. overall system stability, without imposing excessive

overheads, especially when the system is overloaded.
2. Motivating applications We can define throughput as the rate at which the

We were led to our investigations by a number of system delivers packets to their ultimate consumers.
specific applications that can suffer from livelock. A consumer could be an application running on the
Such applications could be built on dedicated single- receiving host, or the host could be acting as a router
purpose systems, but are often built using a general- and forwarding packets to consumers on other hosts.
purpose system such as UNIX , and we wanted to We expect the throughput of a well-designed system
find a general solution to the livelock problem. The to keep up with the offered load up to a point called
applications include: the Maximum Loss Free Receive Rate (MLFRR), and

• Host-based routing: Although inter-network at higher loads throughput should not drop below this
routing is traditionally done using special- rate.
purpose (usually non-interrupt-driven) router Of course, useful throughput depends not just on
systems, routing is often done using more con- successful reception of packets; the system must also
ventional hosts. Virtually all Internet transmit packets. Because packet reception and
‘‘firewall’’ products use UNIX or Windows

packet transmission often compete for the sameNT systems for routing [7, 13]. Much ex-
resources, under input overload conditions theperimentation with new routing algorithms is
scheduling subsystem must ensure that packet trans-done on UNIX [2], especially for IP multicast-
mission continues at an adequate rate.ing.

Many applications, such as distributed systems• Passive network monitoring: network managers,
and interactive multimedia, often depend more ondevelopers, and researchers commonly use
low-latency, low-jitter communications than on highUNIX systems, with their network interfaces in
throughput. Even during overload, we want to avoid‘‘promiscuous mode,’’ to monitor traffic on a

LAN for debugging or statistics gathering [8]. long queues, which increases latency, and bursty
scheduling, which increases jitter.• Network file service: servers for protocols such

as NFS are commonly built from UNIX sys- When a host is overloaded with incoming network
tems. packets, it must also continue to process other tasks,

These applications (and others like them, such as so as to keep the system responsive to management
Web servers) are all potentially exposed to heavy, and control requests, and to allow applications to
non-flow-controlled loads. We have encountered make use of the arriving packets. The scheduling
livelock in all three of these applications, have solved subsystem must fairly allocate CPU resources among
or mitigated the problem, and have shipped the solu- packet reception, packet transmission, protocol

processing, other I/O processing, system housekeep- IPL; interrupts do not preempt tasks running at the
ing, and application processing. same IPL. The interrupt causes entry into the as-

A host that behaves badly when overloaded can sociated network device driver, which does some in-
also harm other systems on the network. Livelock in itial processing of the packet. In 4.2BSD, only buffer
a router, for example, may cause the loss of control management and data-link layer processing happens
messages, or delay their processing. This can lead at ‘‘device IPL.’’ The device driver then places the
other routers to incorrectly infer link failure, causing packet on a queue, and generates a software interrupt
incorrect routing information to propagate over the to cause further processing of the packet. The
entire wide-area network. Worse, loss or delay of software interrupt is taken at a lower IPL, and so this
control messages can lead to network instability, by protocol processing can be preempted by subsequent
causing positive feedback in the generation of control interrupts. (We avoid lengthy periods at high IPL, to
traffic [10]. reduce latency for handling certain other events.)

The queues between steps executed at different
IPLs provide some insulation against packet losses4. Interrupt-driven scheduling and its
due to transient overloads, but typically they haveconsequences
fixed length limits. When a packet should be queuedScheduling policies and mechanisms significantly
but the queue is full, the system must drop the packet.affect the throughput and latency of a system under
The selection of proper queue limits, and thus theoverload. In an interrupt-driven operating system,
allocation of buffering among layers in the system, isthe interrupt subsystem must be viewed as a com-
critical to good performance, but beyond the scope ofponent of the scheduling system, since it has a major
this paper.role in determining what code runs when. We have

Note that the operating system’s scheduler doesobserved that interrupt-driven systems have trouble
not participate in any of this activity, and in fact ismeeting the requirements discussed in section 3.
entirely ignorant of it.In this section, we first describe the characteristics

As a consequence of this structure, a heavy loadof an interrupt-driven system, and then identify three
of incoming packets could generate a high rate ofkinds of problems causes by network input overload
interrupts at device IPL. Dispatching an interrupt is ain interrupt-driven systems:
costly operation, so to avoid this overhead, the net-• Receive livelocks under overload: delivered
work device driver attempts to batch interrupts. Thatthroughput drops to zero while the input over-
is, if packets arrive in a burst, the interrupt handlerload persists.
attempts to process as many packets as possible be-• Increased latency for packet delivery or for-
fore returning from the interrupt. This amortizes thewarding: the system delays the delivery of one
cost of processing an interrupt over several packets.packet while it processes the interrupts for sub-

Even with batching, a system overloaded with in-sequent packets, possibly of a burst.
put packets will spend most of its time in the code• Starvation of packet transmission: even if the
that runs at device IPL. That is, the design givesCPU keeps up with the input load, strict priority

assignments may prevent it from transmitting absolute priority to processing incoming packets. At
any packets. the time that 4.2BSD was developed, in the early

1980s, the rationale for this was that network adap-
4.1. Description of an interrupt-driven system ters had little buffer memory, and so if the system

An interrupt-driven system performs badly under failed to move a received packet promptly into main
network input overload because of the way in which memory, a subsequent packet might be lost. (This is
it prioritizes the tasks executed as the result of net- still a problem with low-cost interfaces.) Thus, sys-
work input. We begin by describing a typical operat- tems derived from 4.2BSD do minimal processing at
ing system’s structure for processing and prioritizing device IPL, and give this processing priority over all
network tasks. We use the 4.2BSD [5] model for our other network tasks.
example, but we have observed that other operating Modern network adapters can receive many back-
systems, such as VMS , DOS, and Windows NT, to-back packets without host intervention, either
and even several Ethernet chips, have similar charac- through the use of copious buffering or highly
teristics and hence similar problems. autonomous DMA engines. This insulates the system

When a packet arrives, the network interface sig- from the network, and eliminates much of the
nals this event by interrupting the CPU. Device in- rationale for giving absolute priority to the first few
terrupts normally have a fixed Interrupt Priority steps of processing a received packet.
Level (IPL), and preempt all tasks running at a lower

priority. As a result, the first packet of the burst is4.2. Receive livelock
not delivered to the user until link-level processingIn an interrupt-driven system, receiver interrupts
has been completed for all the packets in the burst.take priority over all other activity. If packets arrive
The latency to deliver the first packet in a burst istoo fast, the system will spend all of its time process-
increased almost by the time it takes to receive theing receiver interrupts. It will therefore have no
entire burst. If the burst is made up of several inde-resources left to support delivery of the arriving
pendent NFS RPC requests, for example, this meanspackets to applications (or, in the case of a router, to
that the server’s disk sits idle when it could be doingforwarding and transmitting these packets). The use-
useful work.ful throughput of the system will drop to zero.

One of the authors has previously described ex-Following [11], we refer to this condition as
periments demonstrating this effect [12].receive livelock: a state of the system where no useful

progress is being made, because some necessary
resource is entirely consumed with processing 4.4. Starvation of transmits under overload
receiver interrupts. When the input load drops suf- In most systems, the packet transmission process
ficiently, the system leaves this state, and is again consists of selecting packets from an output queue,
able to make forward progress. This is not a dead- handing them to the interface, waiting until the inter-
lock state, from which the system would not recover face has sent the packet, and then releasing the as-
even when the input rate drops to zero. sociated buffer.

A system could behave in one of three ways as the Packet transmission is often done at a lower
input load increases. In an ideal system, the priority than packet reception. This policy is super-
delivered throughput always matches the offered ficially sound, because it minimizes the probability of
load. In a realizable system, the delivered throughput packet loss when a burst of arriving packets exceeds
keeps up with the offered load up to the Maximum the available buffer space. Reasonable operation of
Loss Free Receive Rate (MLFRR), and then is rela- higher level protocols and applications, however, re-
tively constant after that. At loads above the quires that transmit processing makes sufficient
MLFRR, the system is still making progress, but it is progress.
dropping some of the offered input; typically, packets When the system is overloaded for long periods,
are dropped at a queue between processing steps that use of a fixed lower priority for transmission leads to
occur at different priorities. reduced throughput, or even complete cessation of

In a system prone to receive livelock, however, packet transmission. Packets may be awaiting trans-
throughput decreases with increasing offered load, mission, but the transmitting interface is idle. We
for input rates above the MLFRR. Receive livelock call this transmit starvation.
occurs at the point where the throughput falls to zero. Transmit starvation may occur if the transmitter
A livelocked system wastes all of the effort it puts interrupts at a lower priority than the receiver; or if
into partially processing received packets, since they they interrupt at the same priority, but the receiver’s
are all discarded. events are processed first by the driver; or if trans-

Receiver-interrupt batching complicates the situa- mission completions are detected by polling, and the
tion slightly. By improving system efficiency under polling is done at a lower priority than receiver event
heavy load, batching can increase the MLFRR. processing.
Batching can shift the livelock point but cannot, by This effect has also been described
itself, prevent livelock. previously [12].

In section 6.2, we present measurements showing
how livelock occurs in a practical situation. Ad- 5. Avoiding livelock through better
ditional measurements, and a more detailed discus- scheduling
sion of the problem, are given in [11].

In this section, we discuss several techniques to
avoid receive livelocks. The techniques we discuss

4.3. Receive latency under overload in this section include mechanisms to control the rate
Although interrupt-driven designs are normally of incoming interrupts, polling-based mechanisms to

thought of as a way to reduce latency, they can ac- ensure fair allocation of resources, and techniques to
tually increase the latency of packet delivery. If a avoid unnecessary preemption.
burst of packets arrives too rapidly, the system will
do link-level processing of the entire burst before do-
ing any higher-layer processing of the first packet,
because link-level processing is done at a higher

5.1. Limiting the interrupt arrival rate 5.2. Use of polling
We can avoid or defer receive livelock by limiting Limiting the interrupt rate prevents system satura-

the rate at which interrupts are imposed on the sys- tion but might not guarantee progress; the system
tem. The system checks to see if interrupt processing must also fairly allocate packet-handling resources
is taking more than its share of resources, and if so, between input and output processing, and between
disables interrupts temporarily. multiple interfaces. We can provide fairness by care-

The system may infer impending livelock because fully polling all sources of packet events, using a
it is discarding packets due to queue overflow, or round-robin schedule.
because high-layer protocol processing or user code In a pure polling system, the scheduler would in-
are making no progress, or by measuring the fraction voke the device driver to ‘‘listen’’ for incoming
of CPU cycles used for packet processing. Once the packets and for transmit completion events. This
system has invested enough work in an incoming would control the amount of device-level processing,
packet to the point where it is about to be queued, it and could also fairly allocate resources among event
makes more sense to process that packet to comple- sources, thus avoiding livelock. Simply polling at
tion than to drop it and rescue a subsequently- fixed intervals, however, adds unacceptable latency
arriving packet from being dropped at the receiving to packet reception and transmission.
interface, a cycle that could repeat ad infinitum. Polling designs and interrupt-driven designs differ

When the system is about to drop a received in their placement of policy decisions. When the
packet because an internal queue is full, this strongly behavior of tasks cannot be predicted, we rely on the
suggests that it should disable input interrupts. The scheduler and the interrupt system to dynamically al-
host can then make progress on the packets already locate CPU resources. When tasks can be expected
queued for higher-level processing, which has the to behave in a predictable manner, the tasks them-
side-effect of freeing buffers to use for subsequent selves are better able to make the scheduling deci-
received packets. Meanwhile, if the receiving inter- sions, and polling depends on voluntary cooperation
face has sufficient buffering of its own, additional among the tasks.
incoming packets may accumulate there for a while. Since a purely interrupt-driven system leads to

We also need a trigger for re-enabling input inter- livelock, and a purely polling system adds unneces-
rupts, to prevent unnecessary packet loss. Interrupts sary latency, we employ a hybrid design, in which the
may be re-enabled when internal buffer space be- system polls only when triggered by an interrupt, and
comes available, or upon expiration of a timer. interrupts happen only while polling is suspended.

We may also want the system to guarantee some During low loads, packet arrivals are unpredictable
progress for user-level code. The system can observe and we use interrupts to avoid latency. During high
that, over some interval, it has spent too much time loads, we know that packets are arriving at or near
processing packet input and output events, and tem- the system’s saturation rate, so we use polling to en-
porarily disable interrupts to give higher protocol sure progress and fairness, and only re-enable inter-
layers and user processes time to run. On a processor rupts when no more work is pending.
with a fine-grained clock register, the packet-input
code can record the clock value on entry, subtract 5.3. Avoiding preemption
that from the clock value seen on exit, and keep a As we showed in section 4.2, receive livelock oc-
sum of the deltas. If this sum (or a running average) curs because interrupt processing preempts all other
exceeds a specified fraction of the total elapsed time, packet processing. We can solve this problem by
the kernel disables input interrupts. (Digital’s making higher-level packet processing non-
GIGAswitch system uses a similar preemptable. We observe that this can be done fol-
mechanism [15].) lowing one of two general approaches: do (almost)

On a system without a fine-grained clock, one can everything at high IPL, or do (almost) nothing at high
crudely simulate this approach by sampling the CPU IPL.
state on every clock interrupt (clock interrupts typi- Following the first approach, we can modify the
cally preempt device interrupt processing). If the 4.2BSD design (see section 4.1) by eliminating the
system finds itself in the midst of processing inter- software interrupt, polling interfaces for events, and
rupts for a series of such samples, it can disable inter- processing received packets to completion at device
rupts for a few clock ticks. IPL. Because higher-level processing occurs at

device IPL, it cannot be preempted by another packet
arrival, and so we guarantee that livelock does not
occur within the kernel’s protocol stack. We still

need to use a rate-control mechanism to ensure routers, they must be livelock-proof in order to
progress by user-level applications. prevent denial-of-service attacks.

In a system following the second approach, the Our goals were to (1) obtain the highest possible
interrupt handler runs only long enough to set a ‘‘ser- maximum throughput; (2) maintain high throughput
vice needed’’ flag, and to schedule the polling thread even when overloaded; (3) allocate sufficient CPU
if it is not already running. The polling thread runs at cycles to user-mode tasks; (4) minimize latency; and
zero IPL, checking the flags to decide which devices (5) avoid degrading performance in other applica-
need service. Only when the polling thread is done tions.
does it re-enable the device interrupt. The polling
thread can be interrupted at most once by each 6.1. Measurement methodology
device, and so it progresses at full speed without in- Our test configuration consisted of a router-under-
terference. test connecting two otherwise unloaded Ethernets. A

Either approach eliminates the need to queue source host generated IP/UDP packets at a variety of
packets between the device driver and the higher- rates, and sent them via the router to a destination
level protocol software, although if the protocol stack address. (The destination host did not exist; we
must block, the incoming packet must be queued at a fooled the router by inserting a phantom entry into its
later point. (For example, this would happen when ARP table.) We measured router performance by
the data is ready for delivery to a user process, or counting the number of packets successfully for-
when an IP fragment is received and its companion warded in a given period, yielding an average for-
fragments are not yet available.) warding rate.

The router-under-test was a DECstation
5.4. Summary of techniques 3000/300 Alpha-based system running Digital UNIX

In summary, we avoid livelock by: V3.2, with a SPECint92 rating of 66.2. We chose the
• Using interrupts only to initiate polling. slowest available Alpha host, to make the livelock

problem more evident. The source host was a• Using round-robin polling to fairly allocate
resources among event sources. DECstation 3000/400, with a SPECint92 rating of

74.7. We slightly modified its kernel to allow more• Temporarily disabling input when feedback
from a full queue, or a limit on CPU usage, efficient generation of output packets, so that we
indicates that other important tasks are pending. could stress the router-under-test as much as possible.

• Dropping packets early, rather than late, to In all the trials reported on here, the packet gener-
avoid wasted work. Once we decide to receive ator sent 10000 UDP packets carrying 4 bytes of
a packet, we try to process it to completion. data. This system does not generate a precisely

We maintain high performance by paced stream of packets; the packet rates reported are
• Re-enabling interrupts when no work is pend- averaged over several seconds, and the short-term

ing, to avoid polling overhead and to keep rates varied somewhat from the mean. We calculated
latency low.

the delivered packet rate by using the ‘‘netstat’’
• Letting the receiving interface buffer bursts, to program (on the router machine) to sample the output

avoid dropping packets.
interface count (‘‘Opkts’’) before and after each trial.

• Eliminating the IP input queue, and associated We checked, using a network analyzer on the stub
overhead.

Ethernet, that this count exactly reports the number of
We observe, in passing, that inefficient code tends

packets transmitted on the output interface.
to exacerbate receive livelock, by lowering the
MLFRR of the system and hence increasing the

6.2. Measurements of an unmodified kernellikelihood that livelock will occur. Aggressive op-
We started by measuring the performance of thetimization, ‘‘fast-path’’ designs, and removal of un-

unmodified operating system, as shown in figure 6-1.necessary steps all help to postpone arrival of
Each mark represents one trial. The filled circleslivelock.
show kernel-based forwarding performance, and the
open squares show performance using the screend

6. Livelock in BSD-based routers program [7], used in some firewalls to screen out un-
In this section, we consider the specific example wanted packets. This user-mode program does one

of an IP packet router built using Digital UNIX system call per packet; the packet-forwarding path
(formerly DEC OSF/1). We chose this application includes both kernel and user-mode code. In this
because routing performance is easily measured. case, screend was configured to accept all packets.
Also, since firewalls typically use UNIX-based

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

5000

1000

2000

3000

4000
O

ut
pu

t p
ac

ke
t r

at
e

(p
kt

s/
se

c)
Without screend

With screend

Figure 6-1: Forwarding performance of unmodified kernel

From these tests, it was clear that with screend mitted on the output interface. When the system is
running, the router suffered from poor overload be- overloaded, it should discard packets as early as pos-
havior at rates above 2000 packets/sec., and complete sible (i.e., in the receiving interface), so that dis-
livelock set in at about 6000 packets/sec. Even with- carded packets do not waste any resources.
out screend, the router peaked at 4700 packets/sec.,
and would probably livelock somewhat below the 6.4. Fixing the livelock problem
maximum Ethernet packet rate of about 14,880 We solved the livelock problem by doing as much
packets/second. work as possible in a kernel thread, rather than in the

interrupt handler, and by eliminating the IP input
6.3. Why livelock occurs in the 4.2BSD model queue and its associated queue manipulations and

14.2BSD follows the model described in section software interrupt (or thread dispatch) . Once we
4.1, and depicted in figure 6-2. The device driver decide to take a packet from the receiving interface,
runs at interrupt priority level (IPL) = SPLIMP, and we try not to discard it later on, since this would
the IP layer runs via a software interrupt at IPL = represent wasted effort.
SPLNET, which is lower than SPLIMP. The queue We also try to carefully ‘‘schedule’’ the work
between the driver and the IP code is named done in this thread. It is probably not possible to use
‘‘ipintrq,’’ and each output interface is buffered by a the system’s real scheduler to control the handling of
queue of its own. All queues have length limits; each packet, so we instead had this thread use a poll-
excess packets are dropped. Device drivers in this ing technique to efficiently simulate round-robin
system implement interrupt batching, so at high input scheduling of packet processing. The polling thread
rates very few interrupts are actually taken. uses additional heuristics to help meet our perfor-

Digital UNIX follows a similar model, with the IP mance goals.
layer running as a separately scheduled thread at IPL In the new system, the interrupt handler for an
= 0, instead of as a software interrupt handler. interface driver does almost no work at all. Instead,

It is now quite obvious why the system suffers it simple schedules the polling thread (if it has not
from receive livelock. Once the input rate exceeds already been scheduled), recording its need for
the rate at which the device driver can pull new pack- packet processing, and then returns from the inter-
ets out of the interface and add them to the IP input rupt. It does not set the device’s interrupt-enable
queue, the IP code never runs. Thus, it never flag, so the system will not be distracted with ad-
removes packets from its queue (ipintrq), which fills ditional interrupts until the polling thread has
up, and all subsequent received packets are dropped. processed all of the pending packets.

The system’s CPU resources are saturated be- At boot time, the modified interface drivers
cause it discards each packet after a lot of CPU time register themselves with the polling system, provid-
has been invested in it at elevated IPL. This is
foolish; once a packet has made its way through the
device driver, it represents an investment and should

1be processed to completion if at all possible. In a This is not such a radical idea; Van Jacobson had al-
ready used it as a way to improve end-system TCProuter, this means that the packet should be trans-
performance [4].

Receive
interrupt
handler

Transmit
interrupt
handler

IP
forwarding
layer

ipintrq

output
ifqueue

In
cr

ea
si

ng
 in

te
rr

up
t p

rio
rit

y
le

ve
l

Figure 6-2: IP forwarding path in 4.2BSD

ing callback procedures for handling received and worse than an actual unmodified system (filled
transmitted packets, and for enabling interrupts. circles). The reasons are not clear, but may involve
When the polling thread is scheduled, it checks all of slightly longer code paths, different compilers, or un-
the registered devices to see if they have requested fortunate changes in instruction cache conflicts.
processing, and invokes the appropriate callback
procedures to do what the interrupt handler would 6.6. Scheduling heuristics
have done in the unmodified kernel. Figure 6-3 shows that if the polling thread places

The received-packet callback procedures call the no quota on the number of packets that a callback
IP input processing routine directly, rather than plac- procedure can handle, when the input rate exceeds
ing received packets on a queue for later processing; the MLFRR the total throughput drops almost to zero
this means that any packet accepted from the inter- (shown with diamonds in the figure). This livelock
face is processed as far as possible (e.g., to the output occurs because although the packets are no longer
interface queue for forwarding, or to a queue for discarded at the IP input queue, they are still piling
delivery to a process). If the system falls behind, the up (and being discarded) at the queue for the output
interface’s input buffer will soak up packets for a interface. This queue is unavoidable, since there is
while, and any excess packets will be dropped by the no guarantee that the output interface runs as fast as
interface before the system has wasted any resources the input interface.
on it. Why does the system fail to drain the output

The polling thread passes the callback procedures queue? If packets arrive too fast, the input-handling
a quota on the number of packets they are allowed to callback never finishes its job. This means that the
handle. Once a callback has used up its quota, it polling thread never gets to call the output-handling
must return to the polling thread. This allows the callback for the transmitting interface, which
thread to round-robin between multiple interfaces, prevents the release of transmitter buffer descriptors
and between input and output handling on any given for use in further packet transmissions. This is
interface, to prevent a single input stream from similar to the transmit starvation condition identified
monopolizing the CPU. in section 4.4.

Once all the packets pending at an interface have The result is actually worse in the no-quota
been handled, the polling thread also invokes the modified kernel, because in that system, packets are
driver’s interrupt-enable callback so that a sub- discarded for lack of space on the output queue,
sequent packet event will cause an interrupt. rather than on the IP input queue. The unmodified

kernel does less work per discarded packet, and
6.5. Results and analysis therefore occasionally discards them fast enough to

Figures 6-3 summarizes the results of our catch up with a burst of input packets.
changes, when screend is not used. Several different
kernel configurations are shown, using different mark 6.6.1. Feedback from full queues
symbols on the graph. The modified kernel (shown How does the modified system perform when the
with square marks) slightly improves the MLFRR, screend program is used? Figure 6-4 compares the
and avoids livelock at higher input rates. performance of the unmodified kernel (filled circles)

The modified kernel can be configured to act as if and several modified kernels.
it were an unmodified system (shown with open With the kernel modified as described so far
circles), although this seems to perform slightly (squares), the system performs about as badly as the

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

6000

1000

2000

3000

4000

5000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/

se
c)

Unmodified
No polling
Polling (quota = 5)
Polling (no quota)

Figure 6-3: Forwarding performance of modified kernel, without using screend

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

3000

500

1000

1500

2000

2500

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/

se
c)

Unmodified

Polling, no feedback

Polling w/feedback

Figure 6-4: Forwarding performance of modified kernel, with screend

unmodified kernel. The problem is that, because some tuning might help. We also set a timeout (ar-
screend runs in user mode, the kernel must queue bitrarily chosen as one clock tick, or about 1 msec)
packets for delivery to screend. When the system is after which input is re-enabled, in case the screend
overloaded, this queue fills up and packets are program is hung, so that packets for other consumers
dropped. screend never gets a chance to run to drain are not dropped indefinitely.
this queue, because the system devotes its cycles to The same queue-state feedback technique could
handling input packets. be applied to other queues in the system, such as

To resolve this problem, we detect when the interface output queues, packet filter queues (for use
screening queue becomes full and inhibit further in- in network monitoring) [9, 8], etc. The feedback
put processing (and input interrupts) until more queue policies for these queues would be more complex,
space is available. The result is shown with the gray since it might be difficult to determine if input
square marks in figure 6-4: no livelock, and much processing load was actually preventing progress at
improved peak throughput. Feedback from the queue these queues. Since the screend program is typically
state means that the system properly allocates CPU run as the only application on a system, however, a
resources to move packets all the way through the full screening queue is an unequivocal signal that too
system, instead of dropping them at an intermediate many packets are arriving.
point.

In these experiments, the polling quota was 10 6.6.2. Choice of packet-count quota
packets, the screening queue was limited to 32 pack- To avoid livelock in the non-screend configura-
ets, and we inhibited input processing when the tion, we had to set a quota on the number of packets
queue was 75% full. Input processing is re-enabled processed per callback, so we investigated how sys-
when the screening queue becomes 25% full. We tem throughput changes as the quota is varied.
chose these high and low water marks arbitrarily, and Figure 6-5 shows the results; smaller quotas work

better. As the quota increases, livelock becomes We measure the CPU usage over a period defined
more of a problem. as several clock ticks (10 msec, in our current im-

When screend is used, however, the queue-state plementation, chosen arbitrarily to match the
feedback mechanism prevents livelock, and small scheduler’s quantum). Once each period, a timer
quotas slightly reduce maximum throughput (by function clears a running total of CPU cycles used in
about 5%). We believe that by processing more the packet-processing code.
packets per callback, the system amortizes the cost of Each time our modified kernel begins its polling
polling more effectively, but increasing the quota loop, it reads the cycle counter, and reads it again at
could also increase worst-case per-packet latency. the end of the loop, to measure the number of cycles
Once the quota is large enough to fill the screening spent handling input and output packets during the
queue with a burst of packets, the feedback loop. (The quota mechanism ensures that this inter-
mechanism probably hides any potential for improve- val is relatively short.) This number is then added to
ment. the running total, and if this total is above a

Figure 6-6 shows the results when the screend threshold, input handling is immediately inhibited.
process is in use. At the end of the current period, a timer re-enables

In summary, tests both with and without screend input handling. Execution of the system’s idle thread
suggest that a quota of between 10 and 20 packets also re-enables input interrupts and clears the running
yields stable and near-optimum behavior, for the total.
hardware configuration tested. For other CPUs and By adjusting the threshold to be a fraction of the
network interfaces, the proper value may differ, so total number of cycles in a period, one can control
this parameter should be tunable. fairly precisely the amount of CPU time spent

processing packets. We have not yet implemented a
programming interface for this control; for our tests,7. Guaranteeing progress for user-level
we simply patched a kernel global variable represent-processes
ing the percentage allocated to network processing,The polling and queue-state feedback mechanisms
and the kernel automatically translates this to a num-described in section 6.4 can ensure that all necessary
ber of cycles.phases of packet processing make progress, even

Figure 7-1 shows how much CPU time is avail-during input overload. They are indifferent to the
able to a compute-bound user process, for several set-needs of other activities, however, so user-level
tings of the cycle threshold and various input rates.processes could still be starved for CPU cycles. This
The curves show fairly stable behavior as the inputmakes the system’s user interface unresponsive and
rate increases, but the user process does not get asinterferes with housekeeping tasks (such as routing
much CPU time as the threshold setting would imply.table maintenance).

Part of the discrepancy comes from system over-We verified this effect by running a compute-
head; even with no input load, the user process getsbound process on our modified router, and then
about 94% of the CPU cycles. Also, the cycle-limitflooding the router with minimum-sized packets to be
mechanism inhibits packet input processing but notforwarded. The router forwarded the packets at the
output processing. At higher input rates, before inputfull rate (i.e., as if no user-mode process were con-
is inhibited, the output queue fills enough to soak upsuming resources), but the user process made no
additional CPU cycles.measurable progress.

Measurement error could cause some additionalSince the root problem is that the packet-input
discrepancy. The cycle threshold is checked onlyhandling subsystem takes too much of the CPU, we
after handling a burst of input packets (for these ex-should be able to ameliorate that by simply measur-
periments, the callback quota was 5 packets). Withing the amount of CPU time spent handling received
the system forwarding about 5000 packets/second,packets, and disabling input handling if this exceeds a
handling such a burst takes about 1 msec, or aboutthreshold.
10% of the threshold-checking period.The Alpha architecture, on which we did these

The initial dips in the curves for the 50% and 75%experiments, includes a high-resolution low-overhead
thresholds probably reflect the cost of handling thecounter register. This register counts every instruc-
actual interrupts; these cycles are not counted againsttion cycle (in current implementations) and can be
the threshold, and at input rates below saturation,read in one instruction, without any data cache
each incoming packet may be handled fast enoughmisses. Other modern RISC architectures support
that no interrupt batching occurs.similar counters; Intel’s Pentium is known to have

one as an unsupported feature.

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

6000

1000

2000

3000

4000

5000

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/

se
c)

quota = 5 packets
quota = 10 packets
quota = 20 packets
quota = 100 packets
quota = infinity

Figure 6-5: Effect of packet-count quota on performance, no screend

0 120002000 4000 6000 8000 10000
Input packet rate (pkts/sec)

0

3000

500

1000

1500

2000

2500

O
ut

pu
t p

ac
ke

t r
at

e
(p

kt
s/

se
c)

quota = 5 packets
quota = 10 packets
quota = 20 packets
quota = 100 packets
quota = infinity

Figure 6-6: Effect of packet-count quota on performance, with screend

0 100002000 4000 6000 8000
Input packet rate (pkts/sec)

0

80

10

20

30

40

50

60

70

A
va

ila
bl

e
C

PU
 ti

m
e

(p
er

 c
en

t)

threshold 25 %

threshold 50 %

threshold 75 %

threshold 100 %

Figure 7-1: User-mode CPU time available using cycle-limit mechanism

With a cycle-limit imposed on packet processing, 7.1. Performance of end-system transport
the system is subjectively far more responsive, even protocols
during heavy input overload. This improvement, The changes we made to the kernel potentially
however, is mostly apparent for local users; any affect the performance of end-system transport
network-based interaction, such as Telnet, still suf- protocols, such as TCP and the UDP/RPC/XDR/NFS
fers because many packets are being dropped. stack. Since we have not yet applied our modifica-

tions to a high-speed network interface driver, such

as one for FDDI, we cannot yet measure this effect. When a congested router must drop a packet, its
(The test system can easily saturate an Ethernet, so choice of which packet to drop can have significant
measuring TCP throughput over Ethernet shows no effects. Our modifications do not affect which pack-
effect.) ets are dropped; we only change when they are

The technique of processing a received packet dropped. The policy was and remains ‘‘drop-tail’’;
directly from the device driver to the TCP layer, other policies might provide better results [3].
without placing the packet on an IP-level queue, was Some of our initial work on improved interface
used by Van Jacobson specifically to improve TCP driver algorithms is described in [1].
performance [4]. It should reduce the cost of receiv-
ing a packet, by avoiding the queue operations and 9. Summary and conclusions
any associated locking; it also should improve the Systems that behave poorly under receive over-
latency of kernel-to-kernel interactions (such as TCP load fail to provide consistent performance and good
acknowledgements and NFS RPCs). interactive behavior. Livelock is never the best

The technique of polling the interfaces should not response to overload. In this paper, we have shown
reduce end-system performance, because it is done how to understand system overload behavior and how
primarily during input overload. (Some implemen- to improve it, by carefully scheduling when packet
tations use polling to avoid transmit interrupts processing is done.
altogether [6].) During overload, the unmodified sys- We have shown, using measurements of a UNIX
tem would not make any progress on applications or system, that traditional interrupt-driven systems per-
transport protocols; the use of polling, queue-state form badly under overload, resulting in receive
feedback, and CPU cycle limits should give the livelock and starvation of transmits. Because such
modified system a chance to make at least some systems progressively reduce the priority of process-
progress. ing a packet as it goes further into the system, when

overloaded they exhibit excessive packet loss and
8. Related work wasted work. Such pathologies may be caused not

Polling mechanisms have been used before in only by long-term receive overload, but also by tran-
UNIX-based systems, both in network code and in sient overload from short-term bursty arrivals.
other contexts. Whereas we have used polling to We described a set of scheduling improvements
provide fairness and guaranteed progress, the pre- that help solve the problem of poor overload be-
vious applications of polling were intended to reduce havior. These include:

• Limiting interrupt arrival rates, to shed overloadthe overhead associated with interrupt service. This
does reduce the chances of system overload (for a • Polling to provide fairness
given input rate), but does not prevent livelock. • Processing received packets to completion

Traw and Smith [14, 16] describe the use of • Explicitly regulating CPU usage for packet
‘‘clocked interrupts,’’ periodic polling to learn of ar- processing
riving packets without the overhead of per-packet in- Our experiments showed that these scheduling
terrupts. They point out that it is hard to choose the mechanisms provide good overload behavior and
proper polling frequency: too high, and the system eliminate receive livelock. They should help both
spends all its time polling; too low, and the receive special-purpose and general-purpose systems.
latency soars. Their analysis [14] seems to ignore the
use of interrupt batching to reduce the interrupt- Acknowledgements
service overhead; however, they do allude to the pos-

We had help both in making measurements and in
sibility of using a scheme in which an interrupt

understanding system performance from many
prompts polling for other events.

people, including Bill Hawe, Tony Lauck, John
The 4.3BSD operating system [5] apparently used

Poulin, Uttam Shikarpur, and John Dustin. Venkata
a periodic polling technique to process received

Padmanabhan, David Cherkus, and Jeffry Yaplee
characters from an eight-port terminal interface, if the

helped during manuscript preparation.
recent input rate increased above a certain threshold.

Most of K. K. Ramakrishnan’s work on this paper
The intent seems to have been to avoid losing input

was done while he was an employee of Digital
characters (the device had little buffering available)

Equipment Corporation.
but one could view this as a sort of livelock-
avoidance strategy. Several router implementations
use polling as their primary way to schedule packet
processing.

[13] Marcus J. Ranum and Frederick M. Avolio. AReferences
Toolkit and Methods for Internet Firewalls. In Proc.[1] Chran-Ham Chang, R. Flower, J. Forecast,
Summer 1994 USENIX Conference, pages 37-44.H. Gray, W. R. Hawe, A. P Nadkarni,
Boston, June, 1994.K. K. Ramakrishnan, U. N. Shikarpur, and
[14] Jonathan M. Smith and C. Brendan S. Traw.K. M. Wilde. High-performance TCP/IP and UDP/IP
Giving Applications Access to Gb/s Networking.Networking in DEC OSF/1 for Alpha AXP. Digital
IEEE Network 7(4):44-52, July, 1993.Technical Journal 5(1):44-61, Winter, 1993.

[15] Robert J. Souza, P. G. Krishnakumar, Cüneyt[2] Domenico Ferrari, Joseph Pasquale, and George
M. Özveren, Robert J.Simcoe, Barry A. Spinney,C. Polyzos. Network Issues for Sequoia 2000. Se-
Robert E. Thomas, and Robert J. Walsh. GIGAs-quoia 2000 Technical Report 91/6, University of Cal-
witch: A High-Performance Packet Switching Plat-ifornia, Berkeley, December, 1991.
form. Digital Technical Journal 6(1):9-22, Winter,[3] Sally Floyd and Van Jacobson. Random Early
1994.Detection gateways for Congestion Avoidance.
[16] C. Brendan S. Traw and Jonathan M. Smith.Trans. Networking 1(4):397-413, August, 1993.
Hardware/Software Organization of a High-[4] Van Jacobson. Efficient Protocol Implemen-
Performance ATM Host Interface. IEEE Journal ontation. Notes from SIGCOMM ’90 Tutorial on
Selected Areas in Communications 11(2):240-253,‘‘Protocols for High-Speed Networks’’. 1990.
February, 1993.

[5] Samuel J. Leffler, Marshall Kirk McCusick,
Michael J. Karels, and John S. Quarterman. The

Jeffrey Mogul received an S.B. from the Massa-Design and Implementation of the 4.3BSD UNIX
chusetts Institute of Technology in 1979, and hisOperating System. Addison-Wesley, Reading, MA,
M.S. and Ph.D. degrees from Stanford University in1989.
1980 and 1986. Since 1986, he has been a researcher[6] Rick Macklem. Lessons Learned Tuning The
at Digital’s Western Research Laboratory, working4.3BSD Reno Implementation of the NFS Protocol.
on network and operating systems issues for high-In Proc. Winter 1991 USENIX Conference, pages
performance computer systems. He is the author or53-64. Dallas, TX, January, 1991.
co-author of several Internet Standards, an associate

[7] Jeffrey C. Mogul. Simple and Flexible Datagram
editor of Internetworking: Research and Experience,Access Controls for Unix-based Gateways. In Proc.
and was Program Chair for the Winter 1994 USENIXSummer 1989 USENIX Conference, pages 203-221.
Conference.Baltimore, MD, June, 1989.

Address for correspondence: Digital Equipment
[8] Jeffrey C. Mogul. Efficient Use Of Workstations

Corp. Western Research Lab, 250 University Ave.,for Passive Monitoring of Local Area Networks. In
Palo Alto, CA, 94301 (mogul@wrl.dec.com)Proc. SIGCOMM ’90 Symposium on Communica-

K. K. Ramakrishnan is a Member of Technicaltions Architectures and Protocols, pages 253-263.
Staff at AT&T Bell Laboratories. He holds a B.S.ACM SIGCOMM, Philadelphia, PA, September,
from Bangalore University in India in 1976, an M.S.1990.
from the Indian Institute of Science in 1978, and a[9] Jeffrey C. Mogul, Richard F. Rashid, Michael
Ph.D. from the University of Maryland in 1983. Un-J. Accetta. The Packet Filter: An Efficient
til 1994, he was a Consulting Engineer at Digital.Mechanism for User-Level Network Code. In
Ramakrishnan’s research interests are in performanceSOSP11, pages 39-51. Austin, Texas, November,
analysis and design of algorithms for computer net-1987.
works and distributed systems. He is a technical[10] Radia Perlman. Fault-Tolerant Broadcast of
editor for IEEE Network Magazine and is a memberRouting Information. Computer Networks
of the Internet Research Task Force’s End-End7(6):395-405, December, 1983.
Research Group.

[11] K. K. Ramakrishnan. Scheduling Issues for In-
Address for correspondence: AT&T Bellterfacing to High Speed Networks. In Proc.

Laboratories, 600 Mountain Ave., Murray Hill, NJ,Globecom ’92 IEEE Global Telecommunications
07974 (kkrama@research.att.com)Conf., pages 622-626. Orlando, FL, December,

1992. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Com-

[12] K. K. Ramakrishnan. Performance Considera- pany, Ltd.
tions in Designing Network Interfaces. IEEE Journal Windows NT is a trademark of Microsoft, Inc.

GIGAswitch, VMS, and DECstation are trademarks ofon Selected Areas in Communications 11(2):203-219,
Digital Equipment Corporation.February, 1993.

