Eliminating Receive Livelock in an Interrupt-driven Kernel

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory
K. K. Ramakrishnan
AT&T Bell Laboratories

Abstract

Most operating systems use interface interrupts to
schedule network tasks. Interrupt-driven systems can
provide low overhead and good latency at low of-
fered load, but degrade significantly at higher arrival
rates unless care is taken to prevent severa
pathologies. These are various forms of receive
livelock, in which the system spends al its time
processing interrupts, to the exclusion of other neces-
sary tasks. Under extreme conditions, no packets are
delivered to the user application or the output of the
system.

To avoid livelock and related problems, an operat-
ing system must schedule network interrupt handling
as carefully as it schedules process execution. We
modified an interrupt-driven networking implemen-
tation to do so; this eliminates receive livelock with-
out degrading other aspects of system performance.
We present measurements demonstrating the success
of our approach.

1. Introduction

Most operating systems use interrupts to inter-
nally schedule the performance of tasks related to 1/0
events, and particularly the invocation of network
protocol software. Interrupts are useful because they
allow the CPU to spend most of its time doing useful
processing, yet respond quickly to events without
constantly having to poll for event arrivals.

Polling is expensive, especialy when 1/O events
are relatively rare, as is the case with disks, which
seldom interrupt more than a few hundred times per
second. Polling can aso increase the latency of
response to an event. Modern systems can respond to
an interrupt in afew tens of microseconds; to achieve
the same latency using polling, the system would
have to poll tens of thousands of times per second,
which would create excessive overhead. For a
genera-purpose system, an interrupt-driven design
works best.

Most extant operating systems were designed to
handle 1/0 devices that interrupt every few mil-
liseconds. Disks tended to issue events on the order

of once per revolution; first-generation LAN environ-
ments tend to generate a few hundred packets per
second for any single end-system. Although people
understood the need to reduce the cost of taking an
interrupt, in general this cost was low enough that
any normal system would spend only a fraction of its
CPU time handling interrupts.

The world has changed. Operating systems typi-
caly use the same interrupt mechanisms to control
both network processing and traditional 1/0 devices,
yet many new applications can generate packets
several orders of magnitude more often than a disk
can generate seeks. Multimedia and other rea-time
applications will become widespread. Client-server
applications, such as NFS, running on fast clients and
servers can generate heavy RPC loads. Multicast and
broadcast protocols subject innocent-bystander hosts
to loads that do not interest them at al. As aresult,
network implementations must now deal with sig-
nificantly higher event rates.

Many multi-media and client-server applications
share another unpleasant property: unlike traditional
network applications (Telnet, FTP, electronic mail),
they are not flow-controlled. Some multi-media ap-
plications want constant-rate, low-latency service;
RPC-based client-server applications often use
datagram-style transports, instead of reliable, flow-
controlled protocols. Note that whereas 1/O devices
such as disks generate interrupts only as a result of
requests from the operating system, and so are in-
herently flow-controlled, network interfaces generate
unsolicited receive interrupts.

The shift to higher event rates and non-flow-
controlled protocols can subject a host to congestive
collapse: once the event rate saturates the system,
without a negative feedback loop to control the
sources, there is no way to gracefully shed load. If
the host runs at full throughput under these con-
ditions, and gives fair service to al sources, this at
least preserves the possibility of stability. But if
throughput decreases as the offered load increases,
the overall system becomes unstable.

Interrupt-driven systems tend to perform badly
under overload. Tasks performed at interrupt level,

by definition, have absolute priority over al other
tasks. If the event rate is high enough to cause the
system to spend al of its time responding to inter-
rupts, then nothing else will happen, and the system
throughput will drop to zero. We call this condition
receive livelock: the system is not deadlocked, but it
makes no progress on any of its tasks.

Any purely interrupt-driven system using fixed in-
terrupt priorities will suffer from receive livelock un-
der input overload conditions. Once the input rate
exceeds the reciprocal of the CPU cost of processing
one input event, any task scheduled at a lower
priority will not get a chance to run.

Y et we do not want to lightly discard the obvious
benefits of an interrupt-driven design. Instead, we
should integrate control of the network interrupt han-
dling sub-system into the operating system’s schedul-
ing mechanisms and policies. In this paper, we
present a number of simple modifications to the
purely interrupt-driven model, and show that they
guarantee throughput and improve latency under
overload, while preserving the desirable qualities of
an interrupt-driven system under light load.

2. Motivating applications

We were led to our investigations by a number of
specific applications that can suffer from livelock.
Such applications could be built on dedicated single-
purpose systems, but are often built using a general-
purpose system such as UNIX[, and we wanted to
find a general solution to the livelock problem. The
applications include:

» Host-based routing: Although inter-network
routing is traditionally done using special-
purpose (usually non-interrupt-driven) router
systems, routing is often done using more con-
ventional hosts. Virtually dl Internet
“firewall’”” products use UNIX or Windows
NTO systems for routing[7, 13]. Much ex-
perimentation with new routing algorithms is
done on UNIX [2], especially for IP multicast-
ing.

Passive network monitoring: network managers,
developers, and researchers commonly use
UNIX systems, with their network interfaces in
‘‘promiscuous mode,”’ to monitor traffic on a
LAN for debugging or statistics gathering [8].
Network file service: servers for protocols such
as NFS are commonly built from UNIX sys-
tems.

These applications (and others like them, such as
Web servers) are al potentially exposed to heavy,
non-flow-controlled loads. We have encountered
livelock in all three of these applications, have solved
or mitigated the problem, and have shipped the solu-

tions to customers. The rest of this paper con-
centrates on host-based routing, since this smplifies
the context of the problem and alows easy perfor-
mance measurement.

3. Requirementsfor scheduling network tasks

Performance problems generally arise when a sys-
tem is subjected to transient or long-term input over-
load. Ideally, the communication subsystem could
handle the worst-case input load without saturating,
but cost considerations often prevent us from build-
ing such powerful systems. Systems are usualy
sized to support a specified design-center load, and
under overload the best we can ask for is controlled
and graceful degradation.

When an end-system is involved in processing
considerable network traffic, its performance depends
critically on how its tasks are scheduled. The
mechanisms and policies that schedule packet
processing and other tasks should guarantee accept-
able system throughput, reasonable latency and jitter
(variance in delay), fair alocation of resources, and
overall system stability, without imposing excessive
overheads, especially when the system is overloaded.

We can define throughput as the rate at which the
system delivers packets to their ultimate consumers.
A consumer could be an application running on the
receiving host, or the host could be acting as a router
and forwarding packets to consumers on other hosts.
We expect the throughput of a well-designed system
to keep up with the offered load up to a point called
the Maximum Loss Free Receive Rate (MLFRR), and
at higher loads throughput should not drop below this
rate.

Of course, useful throughput depends not just on
successful reception of packets; the system must also
transmit packets. Because packet reception and
packet transmission often compete for the same
resources, under input overload conditions the
scheduling subsystem must ensure that packet trans-
mission continues at an adequate rate.

Many applications, such as distributed systems
and interactive multimedia, often depend more on
low-latency, low-jitter communications than on high
throughput. Even during overload, we want to avoid
long queues, which increases latency, and bursty
scheduling, which increases jitter.

When a host is overloaded with incoming network
packets, it must also continue to process other tasks,
S0 as to keep the system responsive to management
and control requests, and to allow applications to
make use of the arriving packets. The scheduling
subsystem must fairly allocate CPU resources among
packet reception, packet transmission, protocol

processing, other 1/O processing, system housekeep-
ing, and application processing.

A host that behaves badly when overloaded can
also harm other systems on the network. Livelock in
a router, for example, may cause the loss of control
messages, or delay their processing. This can lead
other routers to incorrectly infer link failure, causing
incorrect routing information to propagate over the
entire wide-area network. Worse, loss or delay of
control messages can lead to network instability, by
causing positive feedback in the generation of control
traffic [10].

4. Interrupt-driven scheduling and its
conseqguences

Scheduling policies and mechanisms significantly
affect the throughput and latency of a system under
overload. In an interrupt-driven operating system,
the interrupt subsystem must be viewed as a com-
ponent of the scheduling system, since it has a major
role in determining what code runs when. We have
observed that interrupt-driven systems have trouble
meeting the requirements discussed in section 3.

In this section, we first describe the characteristics
of an interrupt-driven system, and then identify three
kinds of problems causes by network input overload
in interrupt-driven systems:

* Receive livelocks under overload: delivered
throughput drops to zero while the input over-
load persists.

e Increased latency for packet delivery or for-
warding: the system delays the delivery of one
packet while it processes the interrupts for sub-
sequent packets, possibly of aburst.

» Starvation of packet transmission: even if the
CPU keeps up with the input load, strict priority
assignments may prevent it from transmitting
any packets.

4.1. Description of an interrupt-driven system

An interrupt-driven system performs badly under
network input overload because of the way in which
it prioritizes the tasks executed as the result of net-
work input. We begin by describing atypical operat-
ing system’s structure for processing and prioritizing
network tasks. We use the 4.2BSD [5] model for our
example, but we have observed that other operating
systems, such as VMS, DOS, and Windows NT,
and even several Ethernet chips, have similar charac-
teristics and hence similar problems.

When a packet arrives, the network interface sig-
nals this event by interrupting the CPU. Device in-
terrupts normally have a fixed Interrupt Priority
Level (IPL), and preempt all tasks running at a lower

IPL; interrupts do not preempt tasks running at the
same IPL. The interrupt causes entry into the as-
sociated network device driver, which does some in-
itial processing of the packet. 1n 4.2BSD, only buffer
management and data-link layer processing happens
at ‘‘device IPL.”” The device driver then places the
packet on a queue, and generates a software interrupt
to cause further processing of the packet. The
software interrupt is taken at a lower IPL, and so this
protocol processing can be preempted by subsequent
interrupts. (We avoid lengthy periods at high IPL, to
reduce latency for handling certain other events.)

The queues between steps executed at different
IPLs provide some insulation against packet losses
due to transient overloads, but typically they have
fixed length limits. When a packet should be queued
but the queue is full, the system must drop the packet.
The selection of proper queue limits, and thus the
allocation of buffering among layers in the system, is
critical to good performance, but beyond the scope of
this paper.

Note that the operating system’s scheduler does
not participate in any of this activity, and in fact is
entirely ignorant of it.

As a consequence of this structure, a heavy load
of incoming packets could generate a high rate of
interrupts at device IPL. Dispatching aninterrupt isa
costly operation, so to avoid this overhead, the net-
work device driver attempts to batch interrupts. That
is, if packets arrive in a burst, the interrupt handler
attempts to process as many packets as possible be-
fore returning from the interrupt. This amortizes the
cost of processing an interrupt over several packets.

Even with batching, a system overloaded with in-
put packets will spend most of its time in the code
that runs at device IPL. That is, the design gives
absolute priority to processing incoming packets. At
the time that 4.2BSD was developed, in the early
1980s, the rationale for this was that network adap-
ters had little buffer memory, and so if the system
failed to move a received packet promptly into main
memory, a subsequent packet might be lost. (Thisis
gtill a problem with low-cost interfaces.) Thus, sys
tems derived from 4.2BSD do minimal processing at
device IPL, and give this processing priority over al
other network tasks.

Modern network adapters can receive many back-
to-back packets without host intervention, either
through the use of copious buffering or highly
autonomous DMA engines. Thisinsulates the system
from the network, and eiminates much of the
rationale for giving absolute priority to the first few
steps of processing areceived packet.

4.2. Receive livelock

In an interrupt-driven system, receiver interrupts
take priority over all other activity. If packets arrive
too fast, the system will spend all of its time process-
ing receiver interrupts. It will therefore have no
resources left to support delivery of the arriving
packets to applications (or, in the case of a router, to
forwarding and transmitting these packets). The use-
ful throughput of the system will drop to zero.

Following [11], we refer to this condition as
receive livelock: a state of the system where no useful
progress is being made, because some necessary
resource is entirely consumed with processing
receiver interrupts. When the input load drops suf-
ficiently, the system leaves this state, and is again
able to make forward progress. This is not a dead-
lock state, from which the system would not recover
even when the input rate drops to zero.

A system could behave in one of three ways as the
input load increases. In an idea system, the
delivered throughput aways matches the offered
load. In aredlizable system, the delivered throughput
keeps up with the offered load up to the Maximum
Loss Free Receive Rate (MLFRR), and then is rela-
tively constant after that. At loads above the
MLFRR, the system is still making progress, but it is
dropping some of the offered input; typically, packets
are dropped at a queue between processing steps that
occur at different priorities.

In a system prone to receive livelock, however,
throughput decreases with increasing offered load,
for input rates above the MLFRR. Receive livelock
occurs at the point where the throughput falls to zero.
A livelocked system wastes all of the effort it puts
into partially processing received packets, since they
are al discarded.

Receiver-interrupt batching complicates the situa-
tion dlightly. By improving system efficiency under
heavy load, batching can increase the MLFRR.
Batching can shift the livelock point but cannot, by
itself, prevent livelock.

In section 6.2, we present measurements showing
how livelock occurs in a practica situation. Ad-
ditional measurements, and a more detailed discus-
sion of the problem, are givenin [11].

4.3. Receive latency under overload

Although interrupt-driven designs are normally
thought of as a way to reduce latency, they can ac-
tually increase the latency of packet delivery. If a
burst of packets arrives too rapidly, the system will
do link-level processing of the entire burst before do-
ing any higher-layer processing of the first packet,
because link-level processing is done at a higher

priority. As a result, the first packet of the burst is
not delivered to the user until link-level processing
has been completed for al the packets in the burst.
The latency to deliver the first packet in a burst is
increased almost by the time it takes to receive the
entire burst. If the burst is made up of severa inde-
pendent NFS RPC requests, for example, this means
that the server’'s disk sits idle when it could be doing
useful work.

One of the authors has previously described ex-
periments demonstrating this effect [12].

4.4. Starvation of transmitsunder overload

In most systems, the packet transmission process
consists of selecting packets from an output queue,
handing them to the interface, waiting until the inter-
face has sent the packet, and then releasing the as-
sociated buffer.

Packet transmission is often done at a lower
priority than packet reception. This policy is super-
ficially sound, because it minimizes the probability of
packet loss when a burst of arriving packets exceeds
the available buffer space. Reasonable operation of
higher level protocols and applications, however, re-
quires that transmit processing makes sufficient
progress.

When the system is overloaded for long periods,
use of a fixed lower priority for transmission leads to
reduced throughput, or even complete cessation of
packet transmission. Packets may be awaiting trans-
mission, but the transmitting interface is idle. We
call thistransmit starvation.

Transmit starvation may occur if the transmitter
interrupts at a lower priority than the receiver; or if
they interrupt at the same priority, but the receiver’'s
events are processed first by the driver; or if trans-
mission completions are detected by polling, and the
polling is done at a lower priority than receiver event
processing.

This effect has aso been described
previously [12].

5. Avoiding livelock through better

scheduling

In this section, we discuss several techniques to
avoid receive livelocks. The techniques we discuss
in this section include mechanisms to control the rate
of incoming interrupts, polling-based mechanisms to
ensure fair alocation of resources, and techniques to
avoid unnecessary preemption.

5.1. Limiting theinterrupt arrival rate

We can avoid or defer receive livelock by limiting
the rate at which interrupts are imposed on the sys-
tem. The system checksto seeif interrupt processing
is taking more than its share of resources, and if so,
disables interrupts temporarily.

The system may infer impending livelock because
it is discarding packets due to queue overflow, or
because high-layer protocol processing or user code
are making no progress, or by measuring the fraction
of CPU cycles used for packet processing. Once the
system has invested enough work in an incoming
packet to the point where it is about to be queued, it
makes more sense to process that packet to comple-
tion than to drop it and rescue a subsequently-
arriving packet from being dropped at the receiving
interface, a cycle that could repeat ad infinitum.

When the system is about to drop a received
packet because an internal queue is full, this strongly
suggests that it should disable input interrupts. The
host can then make progress on the packets aready
queued for higher-level processing, which has the
side-effect of freeing buffers to use for subsequent
received packets. Meanwhile, if the receiving inter-
face has sufficient buffering of its own, additional
incoming packets may accumulate there for awhile.

We also need atrigger for re-enabling input inter-
rupts, to prevent unnecessary packet loss. Interrupts
may be re-enabled when internal buffer space be-
comes available, or upon expiration of atimer.

We may also want the system to guarantee some
progress for user-level code. The system can observe
that, over some interval, it has spent too much time
processing packet input and output events, and tem-
porarily disable interrupts to give higher protocol
layers and user processes time to run. On a processor
with a fine-grained clock register, the packet-input
code can record the clock value on entry, subtract
that from the clock value seen on exit, and keep a
sum of the deltas. If this sum (or a running average)
exceeds a specified fraction of the total elapsed time,
the kernel disables input interrupts. (Digital’s
GIGAswitchO system uses a similar
mechanism [15].)

On a system without a fine-grained clock, one can
crudely simulate this approach by sampling the CPU
state on every clock interrupt (clock interrupts typi-
cally preempt device interrupt processing). If the
system finds itself in the midst of processing inter-
rupts for a series of such samples, it can disable inter-
rupts for afew clock ticks.

5.2. Use of polling

Limiting the interrupt rate prevents system satura-
tion but might not guarantee progress; the system
must also fairly allocate packet-handling resources
between input and output processing, and between
multiple interfaces. We can provide fairness by care-
fully polling al sources of packet events, using a
round-robin schedule.

In a pure polling system, the scheduler would in-
voke the device driver to ‘‘listen’” for incoming
packets and for transmit completion events. This
would control the amount of device-level processing,
and could also fairly allocate resources among event
sources, thus avoiding livelock. Simply polling at
fixed intervals, however, adds unacceptable latency
to packet reception and transmission.

Polling designs and interrupt-driven designs differ
in their placement of policy decisions. When the
behavior of tasks cannot be predicted, we rely on the
scheduler and the interrupt system to dynamically al-
locate CPU resources. When tasks can be expected
to behave in a predictable manner, the tasks them-
selves are better able to make the scheduling deci-
sions, and polling depends on voluntary cooperation
among the tasks.

Since a purely interrupt-driven system leads to
livelock, and a purely polling system adds unneces-
sary latency, we employ a hybrid design, in which the
system polls only when triggered by an interrupt, and
interrupts happen only while polling is suspended.
During low loads, packet arrivals are unpredictable
and we use interrupts to avoid latency. During high
loads, we know that packets are arriving at or near
the system’s saturation rate, so we use polling to en-
sure progress and fairness, and only re-enable inter-
rupts when no more work is pending.

5.3. Avoiding preemption

As we showed in section 4.2, receive livelock oc-
curs because interrupt processing preempts all other
packet processing. We can solve this problem by
making higher-level packet processing non-
preemptable. We observe that this can be done fol-
lowing one of two general approaches. do (almost)
everything at high IPL, or do (almost) nothing at high
IPL.

Following the first approach, we can modify the
4.2BSD design (see section 4.1) by eliminating the
software interrupt, polling interfaces for events, and
processing received packets to completion at device
IPL. Because higher-level processing occurs at
device IPL, it cannot be preempted by another packet
arrival, and so we guarantee that livelock does not
occur within the kernel’s protocol stack. We still

need to use a rate-control mechanism to ensure
progress by user-level applications.

In a system following the second approach, the
interrupt handler runs only long enough to set a** ser-
vice needed’’ flag, and to schedule the polling thread
if it is not already running. The polling thread runs at
zero IPL, checking the flags to decide which devices
need service. Only when the polling thread is done
does it re-enable the device interrupt. The polling
thread can be interrupted at most once by each
device, and so it progresses at full speed without in-
terference.

Either approach eliminates the need to queue
packets between the device driver and the higher-
level protocol software, although if the protocol stack
must block, the incoming packet must be queued at a
later point. (For example, this would happen when
the data is ready for delivery to a user process, or
when an IP fragment is received and its companion
fragments are not yet available.)

5.4. Summary of techniques

In summary, we avoid livelock by:

* Using interrupts only to initiate polling.

e Using round-robin polling to fairly allocate
resources among event sources.

e Temporarily disabling input when feedback
from a full queue, or a limit on CPU usage,
indicates that other important tasks are pending.

» Dropping packets early, rather than late, to
avoid wasted work. Once we decide to receive
apacket, we try to process it to completion.

We maintain high performance by

* Re-enabling interrupts when no work is pend-
ing, to avoid polling overhead and to keep
latency low.

* Letting the receiving interface buffer bursts, to
avoid dropping packets.

« Eliminating the IP input queue, and associated
overhead.

We observe, in passing, that inefficient code tends
to exacerbate receive livelock, by lowering the
MLFRR of the system and hence increasing the
likelihood that livelock will occur. Aggressive op-
timization, *‘fast-path’” designs, and remova of un-
necessary steps al help to postpone arrival of
livelock.

6. Livelock in BSD-based routers

In this section, we consider the specific example
of an IP packet router built using Digital UNIX
(formerly DEC OSF/1). We chose this application
because routing performance is easily measured.
Also, since firewalls typically use UNIX-based

routers, they must be livelock-proof in order to
prevent denial-of-service attacks.

Our goals were to (1) obtain the highest possible
maximum throughput; (2) maintain high throughput
even when overloaded; (3) allocate sufficient CPU
cycles to user-mode tasks; (4) minimize latency; and
(5) avoid degrading performance in other applica-
tions.

6.1. M easur ement methodol ogy

Our test configuration consisted of a router-under-
test connecting two otherwise unloaded Ethernets. A
source host generated |P/UDP packets at a variety of
rates, and sent them via the router to a destination
address. (The destination host did not exist; we
fooled the router by inserting a phantom entry into its
ARP table) We measured router performance by
counting the number of packets successfully for-
warded in a given period, yielding an average for-
warding rate.

The router-under-test was a DECstation]
3000/300 Alpha-based system running Digital UNIX
V3.2, with a SPECint92 rating of 66.2. We chose the
sowest available Alpha host, to make the livelock
problem more evident. The source host was a
DECstation 3000/400, with a SPECint92 rating of
74.7. We dlightly modified its kernel to allow more
efficient generation of output packets, so that we
could stress the router-under-test as much as possible.

In all the trials reported on here, the packet gener-
ator sent 10000 UDP packets carrying 4 bytes of
data. This system does not generate a precisely
paced stream of packets; the packet rates reported are
averaged over several seconds, and the short-term
rates varied somewhat from the mean. We calculated
the delivered packet rate by using the ‘‘netstat’’
program (on the router machine) to sample the output
interface count (** Opkts'’) before and after each trial.
We checked, using a network analyzer on the stub
Ethernet, that this count exactly reports the number of
packets transmitted on the output interface.

6.2. Measurements of an unmodified kernel
We started by measuring the performance of the
unmodified operating system, as shown in figure 6-1.
Each mark represents one trial. The filled circles
show kernel-based forwarding performance, and the
open sguares show performance using the screend
program [7], used in some firewalls to screen out un-
wanted packets. This user-mode program does one
system call per packet; the packet-forwarding path
includes both kernel and user-mode code. In this
case, screend was configured to accept all packets.

5000

e |
S °
o

% 4000) .0 .. |
S °
c ° .
g 3000 o° ’0. Without screend h
g ht °s,
3] 2000 M M ° |
3 | M With screend
2 1000 m O -
O o

0 | | 0 B oogm g

0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)
Figure 6-1: Forwarding performance of unmodified kernel

From these tests, it was clear that with screend
running, the router suffered from poor overload be-
havior at rates above 2000 packets/sec., and complete
livelock set in at about 6000 packets/sec. Even with-
out screend, the router peaked at 4700 packets/sec.,
and would probably livelock somewhat below the
maximum Ethernet packet rate of about 14,880
packets/second.

6.3. Why livelock occursin the 4.2BSD model

4.2BSD follows the model described in section
4.1, and depicted in figure 6-2. The device driver
runs at interrupt priority level (IPL) = SPLIMP, and
the IP layer runs via a software interrupt at IPL =
SPLNET, which is lower than SPLIMP. The queue
between the driver and the IP code is named
““ipintrg,’” and each output interface is buffered by a
gueue of its own. All queues have length limits;
excess packets are dropped. Device drivers in this
system implement interrupt batching, so at high input
rates very few interrupts are actually taken.

Digital UNIX follows a similar model, with the IP
layer running as a separately scheduled thread at IPL
=0, instead of as a software interrupt handler.

It is now quite obvious why the system suffers
from receive livelock. Once the input rate exceeds
the rate at which the device driver can pull new pack-
ets out of the interface and add them to the IP input
gueue, the IP code never runs. Thus, it never
removes packets from its queue (ipintrg), which fills
up, and all subsequent received packets are dropped.

The system’s CPU resources are saturated be-
cause it discards each packet after a lot of CPU time
has been invested in it a elevated IPL. This is
foolish; once a packet has made its way through the
device driver, it represents an investment and should
be processed to completion if at al possible. In a
router, this means that the packet should be trans-

mitted on the output interface. When the system is
overloaded, it should discard packets as early as pos-
sible (i.e., in the receiving interface), so that dis-
carded packets do not waste any resources.

6.4. Fixing the livelock problem

We solved the livelock problem by doing as much
work as possible in a kernel thread, rather than in the
interrupt handler, and by eiminating the IP input
gueue and its associated queue manipulations and
software interrupt (or thread dispatch)l. Once we
decide to take a packet from the receiving interface,
we try not to discard it later on, since this would
represent wasted effort.

We aso try to carefully ‘‘schedule’” the work
donein thisthread. It is probably not possible to use
the system’s real scheduler to control the handling of
each packet, so we instead had this thread use a poll-
ing technique to efficiently simulate round-robin
scheduling of packet processing. The polling thread
uses additional heuristics to help meet our perfor-
mance goals.

In the new system, the interrupt handler for an
interface driver does aimost no work at all. Instead,
it simple schedules the polling thread (if it has not
already been scheduled), recording its need for
packet processing, and then returns from the inter-
rupt. It does not set the device's interrupt-enable
flag, so the system will not be distracted with ad-
ditional interrupts until the polling thread has
processed al of the pending packets.

At boot time, the modified interface drivers
register themselves with the polling system, provid-

1This is not such a radical idea; Van Jacobson had al-
ready used it as a way to improve end-system TCP
performance [4].

Receive
interrupt
handler

ipintrq

Increasing interrupt priority level

Transmit
interrupt
handler

output
ifqueue

Figure 6-2: IPforwarding pathin 4.2BSD

ing callback procedures for handling received and
transmitted packets, and for enabling interrupts.
When the polling thread is scheduled, it checks al of
the registered devices to see if they have requested
processing, and invokes the appropriate callback
procedures to do what the interrupt handler would
have done in the unmodified kernel.

The received-packet callback procedures cal the
IP input processing routine directly, rather than plac-
ing received packets on a queue for later processing;
this means that any packet accepted from the inter-
face is processed as far as possible (e.g., to the output
interface queue for forwarding, or to a queue for
delivery to a process). If the system falls behind, the
interface’s input buffer will soak up packets for a
while, and any excess packets will be dropped by the
interface before the system has wasted any resources
onit.

The polling thread passes the callback procedures
a quota on the number of packets they are allowed to
handle. Once a callback has used up its quota, it
must return to the polling thread. This allows the
thread to round-robin between multiple interfaces,
and between input and output handling on any given
interface, to prevent a single input stream from
monopolizing the CPU.

Once all the packets pending at an interface have
been handled, the polling thread also invokes the
driver's interrupt-enable callback so that a sub-
sequent packet event will cause an interrupt.

6.5. Resultsand analysis

Figures 6-3 summarizes the results of our
changes, when screend is not used. Several different
kernel configurations are shown, using different mark
symbols on the graph. The modified kernel (shown
with square marks) slightly improves the MLFRR,
and avoids livelock at higher input rates.

The modified kernel can be configured to act as if
it were an unmodified system (shown with open
circles), although this seems to perform dlightly

worse than an actual unmodified system (filled
circles). The reasons are not clear, but may involve
dightly longer code paths, different compilers, or un-
fortunate changes in instruction cache conflicts.

6.6. Scheduling heuristics

Figure 6-3 shows that if the polling thread places
no quota on the number of packets that a callback
procedure can handle, when the input rate exceeds
the MLFRR the total throughput drops almost to zero
(shown with diamonds in the figure). This livelock
occurs because athough the packets are no longer
discarded at the IP input queue, they are still piling
up (and being discarded) at the queue for the output
interface. This queue is unavoidable, since there is
no guarantee that the output interface runs as fast as
the input interface.

Why does the system fail to drain the output
queue? If packets arrive too fast, the input-handling
callback never finishes its job. This means that the
polling thread never gets to call the output-handling
calback for the transmitting interface, which
prevents the release of transmitter buffer descriptors
for use in further packet transmissions. This is
similar to the transmit starvation condition identified
in section 4.4.

The result is actuadly worse in the no-quota
modified kernel, because in that system, packets are
discarded for lack of space on the output queue,
rather than on the IP input queue. The unmodified
kernel does less work per discarded packet, and
therefore occasionally discards them fast enough to
catch up with aburst of input packets.

6.6.1. Feedback from full queues

How does the modified system perform when the
screend program is used? Figure 6-4 compares the
performance of the unmodified kernel (filled circles)
and several modified kernels.

With the kernel modified as described so far
(squares), the system performs about as badly as the

6000

[[[
g 5000 — @ pOO0OmOm B0om m M |
Ju Polling (no quota) o
= . =
S 4000 H Polling (quota = 5) \j 2 —
& O No poll?r?g = O op % °
g 3000 @ Unmodified @ ®®® .% =
X
» oo @
2 2000 _ . " oo % -
§ K4 @ p
g 1000 —
0 | | | : |
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)
Figure 6-3: Forwarding performance of modified kernel, without using screend
3000 | | | |
B 2500 -
o
& 2000 ge o -
% ol Polling w/feedback
5 1500 0 c%‘ - M Polling, no feedback ~ —
3 & o ® Unmodified
& 1000 U .
5 L4 m
S | M
= 500 — O o U —
© . v o n0 O
0 | | | sl R0
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)

Figure 6-4: Forwarding performance of modified kernel, with screend

unmodified kernel. The problem is that, because
screend runs in user mode, the kernel must queue
packets for delivery to screend. When the system is
overloaded, this queue fills up and packets are
dropped. screend never gets a chance to run to drain
this queue, because the system devotes its cycles to
handling input packets.

To resolve this problem, we detect when the
screening queue becomes full and inhibit further in-
put processing (and input interrupts) until more queue
space is available. The result is shown with the gray
square marks in figure 6-4: no livelock, and much
improved pesk throughput. Feedback from the queue
state means that the system properly alocates CPU
resources to move packets all the way through the
system, instead of dropping them at an intermediate
point.

In these experiments, the polling quota was 10
packets, the screening queue was limited to 32 pack-
ets, and we inhibited input processing when the
queue was 75% full. Input processing is re-enabled
when the screening queue becomes 25% full. We
chose these high and low water marks arbitrarily, and

some tuning might help. We also set a timeout (ar-
bitrarily chosen as one clock tick, or about 1 msec)
after which input is re-enabled, in case the screend
program is hung, so that packets for other consumers
are not dropped indefinitely.

The same queue-state feedback technique could
be applied to other queues in the system, such as
interface output queues, packet filter queues (for use
in network monitoring) [9, 8], etc. The feedback
policies for these queues would be more complex,
since it might be difficult to determine if input
processing load was actually preventing progress at
these queues. Since the screend program is typically
run as the only application on a system, however, a
full screening queue is an unequivocal signal that too
many packets are arriving.

6.6.2. Choice of packet-count quota

To avoid livelock in the non-screend configura-
tion, we had to set a quota on the number of packets
processed per callback, so we investigated how sys-
tem throughput changes as the quota is varied.
Figure 6-5 shows the results; smaller quotas work

better. As the quota increases, livelock becomes
more of a problem.

When screend is used, however, the queue-state
feedback mechanism prevents livelock, and small
quotas dlightly reduce maximum throughput (by
about 5%). We believe that by processing more
packets per callback, the system amortizes the cost of
polling more effectively, but increasing the quota
could also increase worst-case per-packet latency.
Once the quota is large enough to fill the screening
gueue with a burst of packets, the feedback
mechanism probably hides any potential for improve-
ment.

Figure 6-6 shows the results when the screend
processisin use.

In summary, tests both with and without screend
suggest that a quota of between 10 and 20 packets
yields stable and near-optimum behavior, for the
hardware configuration tested. For other CPUs and
network interfaces, the proper value may differ, so
this parameter should be tunable.

7. Guaranteeing progress for user-level

ppr ocesses

The polling and queue-state feedback mechanisms
described in section 6.4 can ensure that all necessary
phases of packet processing make progress, even
during input overload. They are indifferent to the
needs of other activities, however, so user-level
processes could still be starved for CPU cycles. This
makes the system’s user interface unresponsive and
interferes with housekeeping tasks (such as routing
table maintenance).

We verified this effect by running a compute-
bound process on our modified router, and then
flooding the router with minimum-sized packetsto be
forwarded. The router forwarded the packets at the
full rate (i.e., as if no user-mode process were con-
suming resources), but the user process made no
measurable progress.

Since the root problem is that the packet-input
handling subsystem takes too much of the CPU, we
should be able to ameliorate that by simply measur-
ing the amount of CPU time spent handling received
packets, and disabling input handling if this exceeds a
threshold.

The Alpha architecture, on which we did these
experiments, includes a high-resolution low-overhead
counter register. This register counts every instruc-
tion cycle (in current implementations) and can be
read in one instruction, without any data cache
misses. Other modern RISC architectures support
similar counters; Intel’s Pentium is known to have
one as an unsupported feature.

We measure the CPU usage over a period defined
as several clock ticks (10 msec, in our current im-
plementation, chosen arbitrarily to match the
scheduler’s quantum). Once each period, a timer
function clears a running total of CPU cycles used in
the packet-processing code.

Each time our modified kernel begins its polling
loop, it reads the cycle counter, and reads it again at
the end of the loop, to measure the number of cycles
spent handling input and output packets during the
loop. (The quota mechanism ensures that this inter-
val isrelatively short.) This number is then added to
the running total, and if this total is above a
threshold, input handling is immediately inhibited.
At the end of the current period, a timer re-enables
input handling. Execution of the system’s idle thread
also re-enables input interrupts and clears the running
total.

By adjusting the threshold to be a fraction of the
total number of cycles in a period, one can control
fairly precisely the amount of CPU time spent
processing packets. We have not yet implemented a
programming interface for this control; for our tests,
we simply patched a kernel global variable represent-
ing the percentage allocated to network processing,
and the kernel automatically trandlates this to a num-
ber of cycles.

Figure 7-1 shows how much CPU time is avail-
able to a compute-bound user process, for several set-
tings of the cycle threshold and various input rates.
The curves show fairly stable behavior as the input
rate increases, but the user process does not get as
much CPU time as the threshold setting would imply.

Part of the discrepancy comes from system over-
head; even with no input load, the user process gets
about 94% of the CPU cycles. Also, the cycle-limit
mechanism inhibits packet input processing but not
output processing. At higher input rates, before input
is inhibited, the output queue fills enough to soak up
additional CPU cycles.

Measurement error could cause some additiona
discrepancy. The cycle threshold is checked only
after handling a burst of input packets (for these ex-
periments, the callback quota was 5 packets). With
the system forwarding about 5000 packets/second,
handling such a burst takes about 1 msec, or about
10% of the threshold-checking period.

Theinitial dipsin the curves for the 50% and 75%
thresholds probably reflect the cost of handling the
actual interrupts; these cycles are not counted against
the threshold, and at input rates below saturation,
each incoming packet may be handled fast enough
that no interrupt batching occurs.

6000 T | | | |
- <& quota = infinity
§ 5000 @ quota= 100 packets ff mO00mOn @0m o O —
Ju W quota = 20 packets P4 ?r o+, 2 r g 4
2 4000 |~ + quota= 10 packets —
& O quota= 5 packets #
—~ 3000 — —
Ejgé * ean®, s n
8 2000} . " it RE W .
5 *
=3
= 1000 — 2 3 —
© % 0 %0 et e o
0 | | L QOO &y YD b O
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)
Figure 6-5: Effect of packet-count quota on performance, no screend
3000
| HTER AP R o sWY
o | %% % g Mm M Mm
g 2500
i v
& 2000 » -
& & < quota = infinity
E 1500 — @ quota = 100 packets —
é B quota = 20 packets
o 1000 |~ + quota = 10 packets —
3 [0 quota= 5 packets
3 5001 —
0 I I I I I
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)
Figure 6-6: Effect of packet-count quota on performance, with screend
80—+ | | | |
2 70~ —
o threshold 25 %
o 60— _
=
GEJ 50 — —
= B—a——m 81 threshold 50 %
5 40— —
o
O 30+]
L
8 201 —
B @ threshold 75 %
Z 10— _
<
0 | NN DN o reshold 100%
0 2000 4000 6000 8000 10000
Input packet rate (pkts/sec)
Figure 7-1: User-mode CPU time available using cycle-limit mechanism
With a cycle-limit imposed on packet processing, 7.1. Performance of end-system transport
the system is subjectively far more responsive, even protocols
during heavy input overload. This improvement, The changes we made to the kernel potentially
however, is mostly apparent for local users, any affect the performance of end-system transport
network-based interaction, such as Telnet, still suf- protocols, such as TCP and the UDP/RPC/XDR/NFS
fers because many packets are being dropped. stack. Since we have not yet applied our modifica-

tions to a high-speed network interface driver, such

as one for FDDI, we cannot yet measure this effect.
(The test system can easily saturate an Ethernet, so
measuring TCP throughput over Ethernet shows no
effect.)

The technique of processing a received packet
directly from the device driver to the TCP layer,
without placing the packet on an IP-level queue, was
used by Van Jacobson specifically to improve TCP
performance [4]. It should reduce the cost of receiv-
ing a packet, by avoiding the queue operations and
any associated locking; it also should improve the
latency of kernel-to-kernel interactions (such as TCP
acknowledgements and NFS RPCs).

The technique of polling the interfaces should not
reduce end-system performance, because it is done
primarily during input overload. (Some implemen-
tations use polling to avoid transmit interrupts
altogether [6].) During overload, the unmodified sys-
tem would not make any progress on applications or
transport protocols; the use of polling, queue-state
feedback, and CPU cycle limits should give the
modified system a chance to make at least some
progress.

8. Related work

Polling mechanisms have been used before in
UNIX-based systems, both in network code and in
other contexts. Whereas we have used polling to
provide fairness and guaranteed progress, the pre-
vious applications of polling were intended to reduce
the overhead associated with interrupt service. This
does reduce the chances of system overload (for a
given input rate), but does not prevent livelock.

Traw and Smith[14, 16] describe the use of
“‘clocked interrupts,”’ periodic polling to learn of ar-
riving packets without the overhead of per-packet in-
terrupts. They point out that it is hard to choose the
proper polling frequency: too high, and the system
spends al its time polling; too low, and the receive
latency soars. Their analysis[14] seemsto ignore the
use of interrupt batching to reduce the interrupt-
service overhead; however, they do allude to the pos-
sibility of using a scheme in which an interrupt
prompts polling for other events.

The 4.3BSD operating system [5] apparently used
a periodic polling technique to process received
characters from an eight-port terminal interface, if the
recent input rate increased above a certain threshold.
The intent seems to have been to avoid losing input
characters (the device had little buffering available)
but one could view this as a sort of livelock-
avoidance strategy. Several router implementations
use polling as their primary way to schedule packet
processing.

When a congested router must drop a packet, its
choice of which packet to drop can have significant
effects. Our modifications do not affect which pack-
ets are dropped; we only change when they are
dropped. The policy was and remains ‘‘drop-tail’’;
other policies might provide better results[3].

Some of our initial work on improved interface
driver algorithmsis described in [1].

9. Summary and conclusions

Systems that behave poorly under receive over-
load fail to provide consistent performance and good
interactive behavior. Livelock is never the best
response to overload. In this paper, we have shown
how to understand system overload behavior and how
to improve it, by carefully scheduling when packet
processing is done.

We have shown, using measurements of a UNIX
system, that traditional interrupt-driven systems per-
form badly under overload, resulting in receive
livelock and starvation of transmits. Because such
systems progressively reduce the priority of process-
ing a packet as it goes further into the system, when
overloaded they exhibit excessive packet loss and
wasted work. Such pathologies may be caused not
only by long-term receive overload, but aso by tran-
sient overload from short-term bursty arrivals.

We described a set of scheduling improvements
that help solve the problem of poor overload be-
havior. Theseinclude:

e Limiting interrupt arrival rates, to shed overload

« Polling to provide fairness

* Processing received packets to completion

» Explicitly regulating CPU usage for packet

processing
Our experiments showed that these scheduling
mechanisms provide good overload behavior and
eliminate receive livelock. They should help both
special-purpose and general-purpose systems.

Acknowledgements

We had help both in making measurements and in
understanding system performance from many
people, including Bill Hawe, Tony Lauck, John
Poulin, Uttam Shikarpur, and John Dustin. Venkata
Padmanabhan, David Cherkus, and Jeffry Yaplee
helped during manuscript preparation.

Most of K. K. Ramakrishnan’s work on this paper
was done while he was an employee of Digita
Equipment Corporation.

References

[1] Chran-Ham Chang, R. Flower, J. Forecast,

H. Gray, W. R. Hawe, A. P Nadkarni,

K. K. Ramakrishnan, U. N. Shikarpur, and

K. M. Wilde. High-performance TCP/IP and UDP/IP
Networking in DEC OSF/1 for Alpha AXP. Digital
Technical Journal 5(1):44-61, Winter, 1993.

[2] Domenico Ferrari, Joseph Pasquale, and George
C. Polyzos. Network Issues for Sequoia 2000. Se-
guoia 2000 Technical Report 91/6, University of Cal-
ifornia, Berkeley, December, 1991.

[3] Sally Floyd and Van Jacobson. Random Early
Detection gateways for Congestion Avoidance.
Trans. Networking 1(4):397-413, August, 1993.

[4] Van Jacobson. Efficient Protocol Implemen-
tation. Notesfrom SIGCOMM ’90 Tutoria on
“‘Protocols for High-Speed Networks”. 1990.

[5] Samuel J. Leffler, Marshall Kirk McCusick,
Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.3BSD UNIX
Operating System. Addison-Wesley, Reading, MA,
1989.

[6] Rick Macklem. Lessons Learned Tuning The
4.3BSD Reno Implementation of the NFS Protocol.
In Proc. Winter 1991 USENIX Conference, pages
53-64. Dallas, TX, January, 1991.

[7] Jeffrey C. Mogul. Simple and Flexible Datagram
Access Controls for Unix-based Gateways. In Proc.
Summer 1989 USENIX Conference, pages 203-221.
Baltimore, MD, June, 1989.

[8] Jeffrey C. Mogul. Efficient Use Of Workstations
for Passive Monitoring of Local AreaNetworks. In
Proc. SGCOMM 90 Symposium on Communica-
tions Architectures and Protocols, pages 253-263.
ACM SIGCOMM, Philadelphia, PA, September,
1990.

[9] Jeffrey C. Mogul, Richard F. Rashid, Michael
J. Accetta. The Packet Filter: An Efficient
Mechanism for User-Level Network Code. In
OSP11, pages 39-51. Austin, Texas, November,
1987.

[10] Radia Perlman. Fault-Tolerant Broadcast of
Routing Information. Computer Networks
7(6):395-405, December, 1983.

[11] K. K. Ramakrishnan. Scheduling Issuesfor In-
terfacing to High Speed Networks. In Proc.
Globecom’ 92 |EEE Global Telecommunications
Conf., pages 622-626. Orlando, FL, December,
1992.

[12] K. K. Ramakrishnan. Performance Considera-
tionsin Designing Network Interfaces. |EEE Journal
on Selected Areas in Communications 11(2):203-219,
February, 1993.

[13] Marcus J. Ranum and Frederick M. Avolio. A
Toolkit and Methods for Internet Firewalls. In Proc.
Summer 1994 USENIX Conference, pages 37-44.
Boston, June, 1994.

[14] Jonathan M. Smith and C. Brendan S. Traw.
Giving Applications Access to Gb/s Networking.
| EEE Network 7(4):44-52, July, 1993.

[15] Robert J. Souza, P. G. Krishnakumar, Clineyt
M. Ozveren, Robert J.Simcoe, Barry A. Spinney,
Robert E. Thomas, and Robert J. Walsh. GIGAs
witch: A High-Performance Packet Switching Plat-
form. Digital Technical Journal 6(1):9-22, Winter,
1994.

[16] C. Brendan S. Traw and Jonathan M. Smith.
Hardware/Software Organization of a High-
Performance ATM Host Interface. |EEE Journal on
Selected Areas in Communications 11(2):240-253,
February, 1993.

Jeffrey Mogul received an S.B. from the Massa-
chusetts Institute of Technology in 1979, and his
M.S. and Ph.D. degrees from Stanford University in
1980 and 1986. Since 1986, he has been a researcher
at Digital’s Western Research Laboratory, working
on network and operating systems issues for high-
performance computer systems. He is the author or
co-author of severa Internet Standards, an associate
editor of Internetworking: Research and Experience,
and was Program Chair for the Winter 1994 USENIX
Conference.

Address for correspondence: Digital Equipment
Corp. Western Research Lab, 250 University Ave,,
Palo Alto, CA, 94301 (mogul @wrl.dec.com)

K. K. Ramakrishnan is a Member of Technica
Staff at AT&T Bell Laboratories. He holds a B.S.
from Bangalore University in Indiain 1976, an M.S.
from the Indian Institute of Science in 1978, and a
Ph.D. from the University of Maryland in 1983. Un-
til 1994, he was a Consulting Engineer at Digital.
Ramakrishnan’ s research interests are in performance
analysis and design of algorithms for computer net-
works and distributed systems. He is a technical
editor for IEEE Network Magazine and is a member
of the Internet Research Task Force's End-End
Research Group.

Address for correspondence: AT&T Bell
Laboratories, 600 Mountain Ave., Murray Hill, NJ,
07974 (kkrama@research.att.com)

UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Com-
pany, Ltd.

Windows NT is atrademark of Microsoft, Inc.

GIGAswitch, VMS, and DECstation are trademarks of
Digital Equipment Corporation.

