Napa: Powering Scalable Data Warehousing with Robust Query
Performance at Google

Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim) Chen, Ming Dai, Thanh
Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang, Yanlai Huang, Zhi (Adam) Li, Jianyi

Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao, Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S.
R., Vijayshankar Raman, Sourashis Roy, Mayank Singh Shishodia, Tianhang Sun, Ye (Justin)
Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali, Prasanna
Venkatasubramanian, Gensheng Zhang, Kefei Zhang, Yupu Zhang, Zeleng Zhuang, Goetz

Graefe, Divyakant Agrawal, Jeff Naughton, Sujata Kosalge, Hakan Hacigiimiis
Google Inc

napa-paper@google.com

ABSTRACT

Google services continuously generate vast amounts of application
data. This data provides valuable insights to business users. We need
to store and serve these planet-scale data sets under the extremely
demanding requirements of scalability, sub-second query response
times, availability, and strong consistency; all this while ingesting a

massive stream of updates from applications used around the globe.

We have developed and deployed in production an analytical data
management system, Napa, to meet these requirements. Napa is the
backend for numerous clients in Google. These clients have a strong
expectation of variance-free, robust query performance. At its core,
Napa’s principal technologies for robust query performance include
the aggressive use of materialized views, which are maintained

consistently as new data is ingested across multiple data centers.

Our clients also demand flexibility in being able to adjust their
query performance, data freshness, and costs to suit their unique
needs. Robust query processing and flexible configuration of client
databases are the hallmark of Napa design.

PVLDB Reference Format:

Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim)
Chen, Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo
Huang, Yanlai Huang, Zhi (Adam) Li, Jianyi Liang, Tao Lin, Li Liu, Yao
Liu, Xi Mao, Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S.

R., Vijayshankar Raman, Sourashis Roy, Mayank Singh

Shishodia, Tianhang Sun, Ye (Justin) Tang, Junichi Tatemura, Sagar
Trehan, Ramkumar Vadali, Prasanna Venkatasubramanian, Gensheng
Zhang, Kefei Zhang, Yupu Zhang, Zeleng Zhuang, Goetz Graefe, Divyakant
Agrawal, Jeff Naughton, Sujata Kosalge, Hakan Hacigiimiis. Napa:
Powering Scalable Data Warehousing with Robust Query Performance at
Google. PVLDB, 14(12): 2986-2998, 2021.

doi:10.14778/3476311.3476377

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476377

Most of the related work in this area takes advantage of full
flexibility to design the whole system without the need to support
a diverse set of preexisting use cases. In comparison, a particular
challenge we faced is that Napa needs to deal with hard constraints
from existing applications and infrastructure, so we could not do a
“green field” system, but rather had to satisfy existing constraints.
These constraints led us to make particular design decisions and
also devise new techniques to meet the challenges. In this paper, we
share our experiences in designing, implementing, deploying, and
running Napa in production with some of Google’s most demanding
applications.

1 INTRODUCTION

Google operates multiple services with more than a billion users
around the globe. When providing these services, Google services
rely on application data to provide better user experiences, to im-
prove quality of service, and for billing. Google business users in-
teract with this data through sophisticated analytical front-ends to
gain insights into their businesses. These front-ends issue complex
analytical queries over vast amounts of data and impose severe time
constraints. In some cases, agreed-upon query response time goals
are in the order of milliseconds. There are multiple petabytes of this
data and it is continuously updated by a massive planetary-scale
stream of updates. Users require the query results to be consistent
and fresh, and demand continuous availability in the face of data
center failures or network partitions. This paper describes Napa,
an analytical data storage system that meets these challenging
requirements.

There is a long history of innovations in OLAP (Online Analyti-
cal Processing) and Data Warehousing in the research literature and
in industry. The majority of this work addresses a particular subset
of requirements, such as scalability or high query performance
and, often, the goal is to find an optimal or competitive solution
while designing the whole solution from scratch. By contrast, when
designing Napa, we had to address a comprehensive set of require-
ments, and we did not have the flexibility to start with a completely
clean slate.

Napa was built to replace Mesa [19, 20], an earlier Google system.
Napa has been operational for multiple years now. It inherited many

https://doi.org/10.14778/3476311.3476377
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476377

petabytes of historical data from Mesa and onboarded many new
clients. While Mesa was built to serve a specific critical client with
extreme latency requirements, Napa has a much broader mandate.
We compare Mesa and Napa in the related work section; briefly,
in contrast to Mesa, Napa was designed to be used Google-wide
and to serve the diverse needs of many analytical applications. The
following key aspects of Napa are the bedrock principles of its
design and are aligned with our client requirements:

[Robust Query Performance] Consistent query performance is
critical to data analytics users. Our clients expect low query latency,
typically around a few hundreds of milliseconds, as well as low
variance in latency regardless of the query and data ingestion load.
Napa is able to guarantee robust query performance with consis-
tent results despite daunting requirements for scale and system
availability.

[Flexibility] While performance is important, our experience
shows that it is not the only criterion for our clients. For instance,
not all applications require millisecond response times, not all re-
quire the same freshness for ingested data, or for that matter, not
all clients are willing to pay for “performance at any cost” Clients
also require the flexibility to change system configurations to fit
their dynamic requirements.

[High-throughput Data Ingestion] All Napa functions, includ-
ing storage, materialized view maintenance, and indexing, must
be performed under a massive update load. Napa implements a
distributed table and view maintenance framework that is based on
the LSM-tree (Log-Structured Merge-Tree) paradigm [25]. LSM is
widely used in current generation of data warehouses and databases
primarily to efficiently integrate and incorporate constantly emerg-
ing data into already existing data. Napa scales LSM to meet the
challenges of Google’s operating environment.

Napa’s approach for robust query performance includes the
aggressive use of materialized views, which are maintained consis-
tently as new data is ingested across multiple data centers. This is
in contrast to current trends in other systems that achieve perfor-
mance by efficient scans of base data. Without indexed materialized
views, delivering robust sub-second response times for the majority
of our workloads is extremely difficult. The coverage of the materi-
alized views for a query workload determines query performance,
while the rate at which the views are refreshed affects freshness.
Combined, varying how much of the workload is covered by views
and how frequently they are refreshed provide levers by which
clients can choose different cost/performance tradeoffs.

We hope that the goals for Napa, the constraints we faced, the
decisions we made and techniques we developed, will be of general
interest.

2 NAPA’S DESIGN CONSTRAINTS

Napa serves many applications in Google that differ in their re-
quirements for three critical objectives (1) query performance, (2)
data freshness, and (3) cost. The ideal, of course, is to achieve the
highest query performance and highest data freshness at the lowest
possible cost. We will use query performance and query latency
interchangeably as for our purposes they are closely related (high

performance implies low latency). Data freshness is measured by
the time between when a row is added to a table to the time when
it is available for querying. Freshness requirements range from a
few minutes for freshness-sensitive clients to a couple of hours for
cost-conscious clients. Costs are primarily machine resource costs
that arise due to data processing — ingestion costs, background
maintenance operations, and query execution. Typically, ingestion
and maintenance costs dominate.

Of the three objectives, query performance has additional chal-
lenges. The clients not only care about low query execution latency;
they also significantly care about predictable query performance,
i.e., low variance in query latency. As an example, external Google
reporting dashboards should continue to load with sub-second la-
tency irrespective of the rate of newly arriving data. In other words,
robust query performance is as important as raw query perfor-
mance. Additionally, the queries may contain joins of one or more
tables and are recurring in the sense that they are issued many
times with different parameters.

2.1 Clients Need Flexibility

Data
freshness

Resource Query
costs performance

Figure 1: Three-way tradeoffs offered by Napa to maintain
databases at an appropriate query performance, data fresh-
ness and cost.

Napa’s clients can be categorized as making a three-way tradeoff
between data freshness, resource costs, and query performance.
Some clients need high freshness, while others may want to opti-
mize for raw query performance or low costs.

An important consideration is the coupling of ingestion and
storage. Here “ingestion” refers to data being presented to Napa and
beginning its merge into the system, while “storage” refers to the
new data having been applied to the base table and all materialized
views it affects. One could couple ingestion to storage, meaning
new data cannot be ingested until it has been fully processed. One
could also couple new data with querying which would slow down
query performance. Neither of these are acceptable to our clients
as they lead to the following undesirable tradeoffs:

[Always sacrifice freshness] If ingestion is tightly coupled with
storage, the ingestion can only go as fast as storage bandwidth.
For example, an update in such a system will be committed only
after it has been applied to the table and all its views. This design
(used by Mesa) has the drawback that an additional view added
to a table would make ingestion slower. Systems built around this
design choice can offer high query performance but suffer from
slower ingestion and may be forced to serve relatively stale data.

[Sacrifice query performance or consistency] View generation
could be done opportunistically as part of querying such that on-
the-fly view materialization is used to speed up subsequent queries
(e.g., database cracking [21] and adaptive merging [17]). Asynchro-
nous lazy models of maintaining views also exist (e.g., [1]) but those
systems do not offer consistency between tables and their views.
These schemes are not of much help for our client use-cases. A con-
ceptual Napa system using this scheme could offer high freshness
but would fail to meet the requirements around robust and high
query performance.

As a result, Napa needs to provide clients the flexibility to tune
the system and meet their goals around data freshness, resource
costs, and query performance.

3 DESIGN CHOICES MADE BY NAPA

Query

Ingestion — Storage - Serving

Figure 2: Conceptual Napa design consisting of three com-
ponents.

Napa has to be highly scalable to process a stream of updates
while simultaneously serving millions of queries with good per-
formance. A key design choice in Napa is to rely on materialized
views for predictable and high query performance.

Napa’s high-level architecture consists of three main components
as shown in the figure above.

(1) Napa’s ingestion framework is responsible for committing
updates into the tables. These updates are called deltas in
Napa. The deltas written by the ingestion framework only
serve to satisfy the durability requirements of the ingestion
framework, and hence are write optimized. These deltas
need to be further consolidated before they can be applied
to tables and their associated views.

(2) The storage framework incrementally applies the updates to
tables and their views. Napa tables and their views are main-
tained incrementally as log-structured merge-forests [25].
Thus, each table is a collection of updates. Deltas are con-
stantly consolidated to form larger deltas; we call this pro-
cess “compaction.” The view maintenance layer transforms
table deltas into view deltas by applying the corresponding
SQL transformation. The storage layer is also responsible
for periodically compacting tables and views.

(3) Query serving is responsible for answering client queries.
The system performs merging of necessary deltas of the table
(or view) at query time. Note that query latency is a function
of the query time merge effort, so the faster the storage
subsystem can process updates, the fewer deltas need to be
merged at query time. F1 Query [27] is used as the query
engine for data stored in Napa. We provide more details for
query serving in Section 8.

Napa decouples ingestion from view maintenance, and view

maintenance from query processing. This decoupling provides
clients knobs to meet their requirements, allowing tradeoffs among

freshness, performance, and cost. Note that Napa requires the con-
sistency of the base tables and the views, so decoupling is a subtle
yet important design choice that ensures Napa can keep making
progress regardless of the performance of the individual compo-
nents. Ingestion depends only on initial run generation, i.e., com-
mitting the updates, but not on merging or on view maintenance.
Napa also provides clients with high level choices that translate
to selectively indexing data and limits the amount of merging at
query time.

As we discuss in the next section, with these design choices,
Napa clients can choose “low effort” to optimize for cost, accepting
reduced query performance. “Low effort” here means less aggres-
sive compactions so that there is higher merging effort at query
execution time. In a similar vein, low effort can also denote fewer
materialized views, or reduced freshness, while still maintaining
good query performance on queries that match the views. Similarly,
clients can also choose to optimize for good query performance by
paying for “higher effort,” which results in low fan-in merges at
query time, or can choose more targeted views.

3.1 Providing Flexibility to Clients

Users specify their requirements in terms of expected query perfor-
mance, data freshness, and costs. These requirements are translated
to internal database configurations such as the number of views,
quota limits on processing tasks, the maximum number of deltas
that can be opened during query processing, etc. These form a
configuration of a client database at a point in time. However, the
system is not static since data is constantly being ingested into the
tables and one needs a dynamic yet easy to understand indicator of
the database status in the context of the configuration generated
from client requirements.

To that end, Napa introduces the concept called Queryable Times-
tamp (QT) to provide clients with a live marker (just like an ad-
vancing timestamp). QT is the direct indicator of freshness since
[Now() - QT] indicates data delay. All data up to the QT timestamp
can be queried by the client. Since QT can only be advanced when
a required number of views have been generated with an upper-
bound on the number of deltas, there is a guarantee that data used
to serve query has met the conditions for delivering expected query
performance. Furthermore, the continual advancement and staying
within the freshness target of QT indicates the system is able to
apply updates to the tables and views within the cost constraints
specified in the database configuration. We discuss the QT concept
in more detail in Section 6.

We illustrate three categories of Napa clients and how the system
uses QT advancement criteria to tune Napa:

[Tradeoff freshness] Napa has a cost-conscious client that runs
a Google-wide internal experimental analysis framework. For this
client, good query performance and moderate costs are important,
even if the system needs lower data freshness. For this client, Napa’s
QT advancement criteria is contingent on maintaining a moderate
number of views and fewer deltas to merge at query execution
time. To keep the cost low, Napa’s execution framework uses fewer
worker tasks and cheaper opportunistic machine resources for view
maintenance. As a result, even though view maintenance occurs at

Pipelines

Publishes ¥

Per-database QT

Data Plane

Ingestion Framework

External Querying

Control Plane E U
' ! Mins old Months old |

ble Timest T :AA."AAl cee :
Queryable Timestamp (QT) Non-queryable |:| |:| |:| | | | :
Controller | delta :

_;:17:‘____._ """"" AT PP 22
Compaction and View Maintenance

Figure 3: Napa architecture showing the major system components.

a slower pace, and hence data freshness is impacted, Napa provides
this client good query performance at a moderate resource cost.

[Tradeoff query performance] Some Napa clients require fresh
answers but have low or moderate query performance demands.
For these clients, the QT advancement criteria is contingent on
fewer views, but there can be relatively more deltas that need to
be merged at query execution time. Since there are more deltas for
each table and view, the query performance is lower. The query
serving framework spends more time in I/O and collapses more
rows, which would have otherwise happened offline during view
maintenance and compaction. Napa’s execution framework directs
more workers for ingestion than view maintenance, since view
maintenance effort is low. Therefore, these clients are able to trade
query performance for better freshness and lower resource costs.

[Tradeoff costs] Napa has a client that powers Google external
dashboards. For this client good query performance and data fresh-
ness are of utmost importance, even at higher costs. For such clients,
Napa’s QT advancement criteria is contingent on numerous views
(sometimes 100s for a single table), and that the number of deltas
at merge time is very low to ensure shorter query execution time.
Napa uses a large number of worker tasks to ensure this QT criteria
can be met quickly by both faster ingestion and high throughput
view maintenance. This QT advancement criteria provides the client
the desired query performance and data freshness, however, at a
relatively high resource cost.

Such different categories of client requirements are part of the
system configuration and Napa uses these configurations as a guid-
ance to deliver the stipulated query performance, data freshness,
and resource costs.

3.2 Data Availability

Over the past decade, most services within Google are architected
to withstand data center scale outages that may result from cat-
astrophic failures or scheduled maintenance. Google services, in-
cluding Napa, provide the guarantee that the system remains op-
erational in spite of such outages. The underlying paradigm to
provide this level of fault-tolerance is to replicate client databases
at multiple data centers and ensure that the database replicas are
mutually consistent. A straightforward approach would be to ex-
ecute Napa ingestion activity as synchronous transactions using
a globally consistent transactional system, such as Google’s Span-
ner [7]. Instead, Napa uses an approach in which it decouples the

execution of data and metadata operations such that the data op-
erations are executed asynchronously at each of the replicas at a
data center and metadata operations are used periodically to ensure
that the replicas remain synchronized with each other. In particular,
relatively infrequent metadata operations use Spanner to ensure
the mutual consistency of all the replicas. The orchestration of the
synchronous and asynchronous mode of this highly distributed
machinery is a key innovation in Napa. The queryable timestamp
indicates a state at which all tables and views in a database are glob-
ally consistent across all data centers. Even though compaction and
view maintenance are carried out asynchronously at each replica,
the system moves from one consistent state to another.

4 SYSTEM ARCHITECTURE

Napa’s high-level architecture consists of data and control planes
as shown in Figure 3. The architecture is deployed at multiple data
centers to manage the replicas at each data center. The data plane
consists of ingestion, storage, and query serving. The control plane
is made up of a controller that coordinates work among the various
subsystems. The controller is also responsible for synchronizing and
coordinating metadata transactions across multiple data centers.
Napa clients create databases and tables along with their associated
schemas. The clients can optionally create materialized views for
each table.

Napa is built by leveraging the existing Google infrastructure
components, which reduced the overall development cost but posed
a challenge as some design choices had already been made for us.
For instance, Napa is built on Google’s Colossus File System [12, 14]
with its disaggregated storage infrastructure. Hence, a table in Napa
is a collection of files in Colossus. Napa uses Spanner for those
functions that require strict transaction semantics, e.g., metadata
management and storing system state. Napa uses F1 Query [27]
for query serving and large scale data processing, such as view
creation and maintenance. F1 Query is a prominent SQL-compliant
query processing system within Google and serves as the query
engine for data stored in Napa. F1 Query supports streaming and
batch processing, which means that the same system can be used
for interactive lookup queries as well as those that process large
amounts of data. Note that the alternative to not using existing
Google infrastructure was to develop these on our own, which
would have been prohibitive in terms of engineering costs, not to
mention the duplication of the effort.

Napa clients use ETL pipelines to insert data into their tables. The
ingestion framework can sustain very high load, such as tens of GB/s
of compressed data. Client data are delivered to any of the Napa
replicas and Napa ensures that the data ingestion is incorporated
at all the data centers. This significantly simplifies the design of
ingestion pipelines.

Napa excels at serving workloads where clients issue aggrega-
tion queries with complex filters, e.g., those powering dashboards.
As aresult, the storage and view maintenance framework is a key
component of Napa to maintain these aggregations. The storage
framework is responsible for compacting tables and incrementally
updating views. Compaction requires merging deltas, typically with
a high fan-in, to create larger deltas, which reduces merge opera-
tions during online querying. This is similar to the post-processing
in LSM-trees, where I/O spent by an offline process shifts work
away from online querying.

Query serving deals with the necessary caching, prefetching
and merging of deltas at run-time. The goal of query serving is
to serve queries with low latency and low variance. Low latency
is achieved by directing the queries to precomputed materialized
views as opposed to the base table, and parallel execution of queries.
Low variance is achieved by controlling the fan-in of the merges as
well as a range of other I/O reduction and tail tolerance techniques.

Napa relies on views as the main mechanism for good query
performance. Napa tables including the materialized views are
sorted, indexed, and range-partitioned by their (multi-part) primary
keys. This may be a surprising design choice given the recent trends
in the database community favoring scan-based query processing.
Napa’s choice is largely motivated by the strict latency and resource
requirements of its workloads, making it necessary to leverage
indexed key lookups. Most Napa queries can effectively be answered
by range-partitioned indexed tables. Note that range partitioning
comes with its set of issues, such as hotspotting and load balancing
due to temporal keys. For such cases, other partitioning schemes
are also being investigated, but these are beyond the scope of this
paper. The consequence of LSM and large-scale indexing means
that Napa heavily relies on merging and sorting performance for
efficiency. Hence, considerable effort was spent on speeding up
sorting, merging, and group-by operators.

The Napa controller schedules compaction and view update
tasks to keep the count of deltas for a table to a configurable value.
These storage tasks are needed to keep the Queryable Timestamp
(QT) as fresh as possible given the cost tradeoffs. The database QT
forms the basis of freshness of a database and is used by the query
system to provide robust query performance as described earlier.
Napa supports database freshness of near-real time to a few hours;
most clients require their databases to achieve approximately tens
of minutes of freshness. If the freshness falls out of the desired
range, the system continues to serve the client queries. However,
the served data in that case would be stale as compared to the
freshness requirements and administrative actions such as adjusting
the tradeoff by temporarily allowing higher cost may be needed
to bring the freshness back within the range. Napa has hundreds
of databases with hundreds to thousands of tables and views each
with a steady ingestion rate. Yet, the system is able to maintain all
these databases at the desired freshness, which is a testament to
the robustness of our design.

5 INGESTING TRILLIONS OF ROWS

The goal of the ingestion framework is to allow ingestion pipelines
to insert large volumes of the data into Napa without significant
overhead. Recall that one of Napa’s key techniques is to decouple
ingestion from view maintenance and indexing to provide clients
trade offs across freshness, query performance, and costs. The in-
gestion framework contributes to this design via two mechanisms
as is shown in Figure 4. First, the goal of the ingestion framework
is to accept data, perform minimal processing, and make it durable
without considering the pace of subsequent view maintenance. All
ingested rows are assigned a metadata timestamp for ordering, and
then marked as committed after other durability conditions, such
as replication, have been satisfied. Second, the ingestion framework
provides knobs to limit the peak machine costs by allowing config-
urations to increase or decrease the numbers of tasks that accept
data and perform the ingestion work of batching, aggregating, and
replicating.

Ingestion Timestamp
¥ x*

Ingestion Servers

Batching, —
Sorting 1 Metadata
Materialization

Replication

Figure 4: Napa ingestion is responsible for inserting updates
to a table

Clients deliver the data to be ingested to any one of the Napa
replicas and it is Napa’s responsibility to ensure that the data is
ingested at all the replicas to ensure availability. The ingestion
framework produces write-optimized deltas, in that they are small
and their physical sizes are limited by the memory buffer of servers.
These deltas are not immediately available for querying since there
are many of these deltas, which will slow down query serving
because it has to merge them. We refer to these deltas as unqueryable
and require that they be compacted before they can be queried.

6 QUERYABLE TIMESTAMP

The queryable timestamp (QT) of a table is a timestamp which
indicates the freshness of data that can be queried. If QT(table) =
X, all data that was ingested into the table before time X can be
queried by the client and the data after time X is not part of the
query results. In other words, the freshness of a table is [Now()
- QT]. QT acts as a barrier such that any data ingested after X is
hidden from client queries. The value of QT will advance from X
to Y once the data ingested in (Y-X) range has been optimized to
meet the query performance requirements. In turn, clients can use
Napa’s configuration options, and this single client visible metric
to tune freshness, query performance, and costs. For example, if
clients want high query performance and low costs, but can trade
off freshness, the system prioritizes using fewer machine resources
for view maintenance to reduce costs, and QT may progress slowly,
thus indicating reduced data freshness.

An important criterion to ensure good query performance is
to optimize the underlying data for reads and ensure views are
available to speed up the queries. A table in Napa is a collection of

Recent
Older Deltas Deltas Non-queryable Deltas
(00 == som s
1 minute each
1 day
1 month >1 day
< mm——- ~x deltas -=---------- > Freshness |
delay
QT now()

Figure 5: Queryable timestamp decouples query perfor-
mance from storage performance.

all of its delta files, each delta corresponding to updates received
for the table over a window of time, as indicated in the Figure 5.
The non-queryable deltas correspond to newly received updates
written by the ingestion framework in the most recent time window
(typically seconds). The largest deltas, on the other hand, span a
time window of weeks or even months. Each delta is sorted by its
keys, range partitioned, and has a local B-tree like index. These
deltas are merged as needed at query time. While Napa is a column
store, it has to manage the dual concerns of maintaining views
on the tables while achieving fast lookups. We borrow ideas from
row-stores such as B-trees and PAX [2] layouts in our physical
design to achieve these seemingly disparate goals.

Most client queries have tight latency constraints and this places
hard limits on the maximum number (say, x) of deltas that should
be opened and merged during query execution. In particular, the
queryable timestamp (QT) is the delta which forms x’s boundary,
counting from the oldest delta towards the newest. Typically, this
limit is a few tens of deltas, and is automatically configured de-
pending on the query performance requirements on the database.
An automated module dynamically adjusts this limit based on the
query workload; tables with a high query workload and stringent
query performance requirements have a lower limit but those with
lesser demanding query requirements have a higher limit. There
are some practical limitations on how large a number x can be
supported. As that number gets larger, queries start getting affected
by tail effects. Given that query time merging is quite expensive, by
keeping the number of deltas for a given database near constant,
Napa is able to provide robust query performance, i.e., a strong
guarantee that the variance in query latency is low.

QT is essentially dependent on the progress of background op-
erations such as compactions and incremental view maintenance.
The QT of the database is the minimum of the QT of all the tables
in the database. QT is also used to give clients a consistent view
of data across all Napa replicas. Each replica has a local value of
QT which is based on how fresh the data is in the local replica. The
global value of QT is computed from the local QT values based on
query serving availability requirements. For example, if we have
5 Napa replicas with the local QT values as 100, 90, 83, 75, 64 and
query serving requires a majority of replicas to be available, then
the new QT across all sites is set to 83 since the majority of the
replicas are up to date at least up to 83. Napa will use the replicas
whose QT is at least 83 to answer queries, as it is guaranteed that
queries to these replicas only need to read locally available deltas.

7 MAINTAINING VIEWS AT SCALE

S AT A

(a) Key aligned (b) Partially aligned c) Misaligned

Figure 6: Classes of views based on the commonality of the
view and base table key columns.

Napa’s storage subsystem is responsible for maintaining views
and compacting deltas. It is also responsible for ensuring data in-
tegrity, durability via replication across data centers, and handling
outages from individual machines to entire data centers.

When building Napa, our aim was to ensure that the storage
subsystem efficiently manages thousands of tables and views, rou-
tinely petabyte scale, even in the presence of data skew. While
Napa supports materialized views that are joins of multiple tables,
in the following, we discuss the challenges with views on single
tables. The skew in view maintenance happens in the process of
transforming the updates on the base tables into updates on the
views. The mapping of the base table key space to the view key
space may lead to discontinuities where most of the base table up-
dates may map to a narrow view key range resulting in skews. As
the QT of the database is determined by the slowest view or table,
the system has to adjust automatically to the variations in size and
aforementioned data skews to ensure that the QT is not susceptible
to the straggler views or tables. The storage subsystem also adjusts
to the cost budget by varying the number of views, tasks, and the
type of machine resources used. In particular, the key aspects of
the view maintenance framework includes the following:

[Use of F1 Query as a “data pump”] Napa’s design choice is to
use Google’s F1 Query [27] as a relational data pump to compact
tables and maintain views. The view maintenance uses the query
optimizer that can make good choices among alternative plans as
we show below in Section 7.1.

[Replanning to avoid data skews] The system can re-plan on
the fly if it detects data skews. For example, the first key of many
tables in Napa is a date column which has a few distinct values.
Even though the base table may have hundreds of key columns,
most of the key columns are mostly zero or have strong correlation
with another key. At our scale, the failure to detect skews would
mean that the view maintenance query may never finish resulting
in unbounded freshness delays. This is a direct benefit of Napa
using F1 Query as a data pump.

[Intelligence in the loop] A database can advance QT only if all
the tables and views have caught up. This means that the QT is
blocked by the slowest views and requires a fairly sophisticated
straggler mitigation. The Napa controller implements the intelli-
gence for tail mitigation. The principle techniques here are selecting
data centers for task execution based on the historical load, active
straggler task termination based on progress, and concurrent task
execution to bound the size of the tails.

7.1 Query optimizations challenges in View
Maintenance

Napa’s view maintenance process effectively exploits data proper-
ties in the input. View update queries have to solve unique opti-
mization challenges due to the amount of data processed and due to
specific data properties (e.g., cardinality, sparseness, correlations)
that complicate query processing at scale. Efficiently processing
large amounts of data means that one has to be careful to not de-
stroy beneficial data properties such as sortedness and partitioning,
which are hard to recreate.

A concrete example of a data property is the sort order of the
view to be updated vis-a-vis the base table. One approach is to
re-sort the view keys based on the view sort order regardless of the
base table sort order. Given our scale, this would be an expensive
processing proposition. Instead, it is beneficial to preserve input
sortedness as much as possible; exploit sortedness even if the view’s
sort order and the base table sort order only partially overlaps.
Similarly, changing the data partitioning property requires moving
data across the network, which typically also clobbers sort, and
should be avoided unless absolutely necessary. These ideas are
not new but rather extensions of “interesting orderings” in the
database literature [28], which is our motivation behind using a
SQL-compliant data processing system (i.e., F1 Query) as a relational
pump to maintain views. Broadly speaking, there are three classes
of views based on the cost of maintaining them as shown in Figure 6.

e The cheapest views to maintain in our framework are those
that share a prefix with the base table. For example, the
base table has keys (A, B, C), while the view is on (A, B).
In this case, the framework avoids sorting completely by
clustering the input based on common key prefix (i.e., A, B)
and aggregating in a streaming manner.

e The second class of views are those that have a partial prefix
with the base table but not a complete prefix. For example,
the base table has (A, B, C, D) while the view is on (A, B,
D). Even in this case, we are able to exploit the input sort
order by clustering the input base table on (A,B) and then
sorting on D for each of the groups of unique (A, B). Note
that clustering on a partial prefix here and in the above
example can result in skews, which needs to be detected and
remedied.

o The third class of views are those where the base table and
views do not share any prefix. For example, the base table
is (A, B, C, D) while the view is (D, C, A). There are few
opportunities for optimization and these views are the most
expensive in practice since they require both re-partitioning
and re-sorting.

Some views have a high aggregation reduction (even 100-1000x)
when compared with the base table and hence the view updates are
tiny compared to the original table update. There are also views
that are nearly the same size as the base table. For views with high
cardinality reduction, preserving the sort order is not paramount
since the output is small enough that it might be feasible to focus
exclusively on reducing the cardinality and re-sort the output if
needed. On the other hand, for cases where views have low aggre-
gation, i.e., the view is of similar size as the base table, sort and
merge efficiency becomes important. Thus, we spent considerable

1
1| F1 datacenter
I

|
1
I
—— Fi1 Server —————————> F1Worker !

query Partitioning Subqueries |

Metadata Server ———————— Delta Server i
i
Distributed cache i
i
i

Colossus Napa index Deltas

Figure 7: Mechanics of client query serving in Napa.

engineering effort in developing a state-of- the-art sort library for
Napa. The same library is employed across all Napa components
that sort data— from the ingestion servers to the sort operators
in F1 Query. The principal techniques in our sorting and merging
library are based on prior literature (e.g., [15, 22, 23]): normalized
keys for efficient comparisons, poor man’s normalized keys [15] for
cache efficiency, tree-of-losers priority queues [23] for a minimal
comparison count, and offset-value coding [22] for caching partial
comparisons. The key accomplishment has been to implement these
known techniques, tune the algorithms, and deploy the library for
Google-scale processing.

7.2 Mechanics of Compaction

Compaction combines multiple input deltas into a single output
delta. Compaction improves query performance and reduces storage
consumption by 1) sorting inputs together and 2) aggregating mul-
tiple updates to the same rows. Compacting asynchronously with
respect to querying both reduces merging work at query time and
leverages the compacted result across multiple queries. However,
compactions are expensive for high ingestion rate tables and they
reduce data freshness by delaying when data becomes queryable. As
mentioned earlier, the client’s configuration controls this tradeoff.
For example, a configuration that optimizes for query performance
will compact frequently such that the maximum number of deltas
merged at query time is less than 10, but such a configuration has
significant ingestion delay and high compaction costs.

Since the delta files are individually sorted, compaction is es-
sentially merge sorting. Unlike client queries where the fan-in of
the merge is kept small and bounded to avoid tail effects, it is
intentionally kept large during compaction so that the height of
the merge tree is small, thus minimizing key comparisons. A com-
paction query has a fan-in of up to a thousand inputs beyond which
the merge performance deteriorates. The merge process divides a
fixed memory budget among the various inputs. At a thousand or
so inputs, the memory per input stream is small. To add to that,
the merge process stops when one of the inputs is consumed. At
a thousand merge-way this happens 100x more frequently than
it would happen at 10-way merge. The combination of these two
effects make large merge-ways non-performant, which is remedied
by I/O prefetching.

8 ROBUST QUERY SERVING PERFORMANCE

For many Napa clients, obtaining query results within the order of
milliseconds is a critical requirement for their business use cases.

The strict latency requirement applies to tail cases (e.g. 99th per-
centile), for range lookups to petabyte sized tables, and even when
the underlying shared infrastructure fluctuates in performance and
availability. The section describes how the query serving subsystem
achieves robust performance, using Queryable Timestamp (QT),
materialized views, and a range of other techniques.

8.1 Reducing Data in the Critical Path

Napa uses multiple techniques to reduce the amount of data read to
answer queries on the critical path. Whenever possible, Napa uses
views to answer a query instead of the base table, since views with
aggregation functions may have significantly less data. When F1
workers read data from Delta Servers (as shown in Figure 7), filters
and partial aggregations are pushed down to minimize the amount
of bytes transferred to F1 workers via the network. This is critical
as F1 Query workers and Napa storage are not always collocated in
the same data center, and cross data center network transfers tend
to have larger variance in delay than intra-data center transfers.
Napa also relies on parallelism to reduce the amount of data each
subquery has to read. Napa maintains sparse B-tree indexes on
its stored data, and uses them to quickly partition an input query
into thousands of subqueries that satisfy the filter predicates. This
partitioning mechanism additionally looks at the latency budget and
availability of query serving resources to achieve good performance.

8.2 Minimizing Number of Sequential I/Os

Given the Google-scale datasets, and our reliance on shared and
disaggregated storage, it is common to hit high latency if meta-
data (e.g., data statistics, view definitions, delta metadata) or data
has to be read from disk or even SSDs. When a query is issued,
Napa uses the value of QT to decide the version of metadata to
be processed. The metadata in turns determines what data has to
be processed. Therefore, metadata reads are on the critical path
of query serving. Napa ensures all metadata can always be served
from memory without contacting the persistent storage. This is
achieved by affinity-based distributed metadata caching with peri-
odic background refreshes. A particular QT is delayed to wait for
the completion of periodic background refresh of metadata.

All data reads go through a transparent distributed data caching
layer through which file I/O operations pass. The distributed cache
is read-through and shares work on concurrent read misses of
the same data. Sharing work is critical for the efficiency of the
distributed cache: multiple Delta Servers often need to read an over-
lapping range of index files when processing different subqueries of
the same query, and the distributed data caching makes sure such
reads are processed only once.

The distributed caching layer significantly reduces the number
of I/Os but cannot eliminate them, as the total working set size for
Napa’s query serving is significantly larger than the aggregated
cache memory available. Therefore, Napa performs offline and on-
line prefetching to further reduce the number of sequential I/Os
in the critical path. Offline prefetching occurs as soon as data is
ingested for frequently queried tables, before QT advances to make
the new data available to query. Online prefetching starts when a
query arrives and is performed by a shadow query executor which
shares the data access pattern with the main query executor but

skips all query processing steps. Since the shadow query executor
skips processing, it runs ahead of the main query executor, achiev-
ing the effect of more accurate prefetching than disk readahead
based on past accesses.

8.3 Combining Small I/Os

During query serving, Napa aggressively parallelizes the work by
partitioning the query into fine grained units and then parallelizing
1/0 calls across deltas and across queried columns. However, paral-
lelization comes with its own cost, especially with respect to tail
latency. Suppose each Napa query issues 1000 parallel I/Os to disk.
Napa’s 90th percentile latency would be affected by the underlying
disk storage’s 99.99th percentile latency, which is often much higher
than its 90th, 99th, and 99.9th percentile latency. To combat such
amplification on tail latency, Napa uses QT to limit the number of
queryable deltas. In addition, Napa also tries to combine small I/Os
as much as possible, by using the following two techniques: lazy
merging across deltas and size-based disk layout.

[Lazy merging across deltas] In a straightforward query plan,
Napa exposes itself as a data source with primary key to the query
optimizer. Each Delta Server, when processing a subquery, must
first merge rows across all deltas based on the full primary key.
When there are thousands (N) of subqueries and several tens (M)
of deltas, the number of parallel I/Os are in the order of tens of
thousands (N x M). However, due to the parallelism each subquery
reads very little data from most deltas. Meanwhile, a large fraction
of Napa queries require merging based on a subset of primary keys
in the subsequent phase of the query plan. In these cases, Napa
adapts the query plan to avoid cross-delta merging in Delta Server
and lets each Delta Server only process one delta, combining N x
M parallel I/Os into close to N parallel I/Os.

[Size-based disk layout] Napa uses a custom-built columnar stor-
age format supporting multiple disk layout options, which are ap-
plied based on delta sizes. The PAX layout [2], which can combine
all column accesses into one I/O for lookup queries, is applied to
small deltas. For large deltas, column-by-column layout is used that
is I/O efficient for scan queries but requires one I/O per column for
lookup queries. This size-based choice ensures that Napa receives
columnar storage benefits as well as reduces I/O operations.

8.4 Tolerating Tails and Failures

Napa is built on Google infrastructure which is prone to perfor-
mance and availability fluctuations due to its shared nature, es-
pecially at the tail. Napa adopts the principle of tolerating tail
latency, rather than eliminating it, because eliminating all sources
of variability for such a complex and interdependent system is in-
feasible [9]. For a non-streaming RPC, such as the RPC between
Metadata Server and Delta Server, Napa uses the mechanism of
hedging, which sends a secondary RPC identical to the original one
to a different server after a certain delay, and waits for the faster
reply. For a streaming RPC, such as the RPC between F1 worker and
Delta Server, Napa estimates its expected progress rate and requires
the server executing it periodically to report progress, together with
a continuation token. If the reported progress is below expectation
or the report is missing, the last continuation token would be used

25
520‘ e 50p ~90p « 99 - Avg
%1 |
15 (a)
©
_'10|
§ L
351 = == =
(e 17 ——— .
0 ——— — ——— —a——a——a
0 2 4 6 8

Num Views Added

e 50p #90p » 99p

6
5 (b)
Q —8
5 £ il
A S CD S
0 2 4 6 8

Number Of Deltas

Figure 8: Figure shows (a) query latency reduction with the increasing number of views, (b) number of deltas that a query is
allowed to span and the corresponding latency impact (lower is better).

to restart a new streaming RPC on a different server without losing
progress. Pushdown operators like filtering and partial aggrega-
tion need to be carefully handled in progress reporting as they can
significantly reduce the data size, causing progress reports to be
superficially low or even missing. Napa uses bytes processed before
filtering and partial aggregation as the progress rate metric and
periodically forces these operators to flushes its internal state to
generate a progress report with a continuation token.

For datacenter-wide issues which impact query serving but not
ingestion, the above tail tolerance mechanisms would kick in and
automatically reroute the queries to servers in a neighboring data
center. When ingestion is impacted, datacenter-local QT is delayed
in affected data centers and the query would be directly routed to
other data centers based on the local QT values.

9 PRODUCTION METRICS INSIGHTS

Napa manages thousands of tables and views in production, where
many tables are petabyte scale. It serves over a billion queries per
day and ingests trillions of rows. In this section we discuss how
Napa is able to provide robust query performance through three
techniques: (1) by more actively using views, Napa reduces raw
query performance and variance even at 99th percentile, (2) by
changing storage policies, Napa can reduce the number of deltas
and hence the tail latency, and (3) by decoupling ingesting, view
maintenance, and query execution; Napa can mitigate the impact
of infrastructure and workload changes on query performance.
We also describe the workload characteristics of three production
Napa clients who have differing freshness, query performance,
and cost requirements. All figures in this section are from actual
production data. We have normalized the units in the Y-axis of the
graphs below to preserve the confidentiality of our business data.
Note that we have chosen to only show those results where the
relative improvements of the various curves in the graphs are more
important than their absolute values.

9.1 Views and QT Help Achieve Robust Query
Performance

First, most client queries are aggregation queries, and materialized
views are typically at least an order of magnitude smaller than the
base tables from which they are derived. Reading from views not
only improves raw performance, but also improves tail latency as
their smaller size is more cache friendly, and requires less compute
resources, which reduces the chance of contention for query re-
sources. Figure 8(a) is an example of the client’s query latency at

different percentiles with respect to the number of views. For this
particular workload, by adding only two views, the client can im-
prove their average and 90th percentile query performance by 1.5x.
The most profound impact is at the 99th percentile query latency
which keeps improving as we add up to 8 views. Beyond 8 views
the query performance reaches a plateau as most queries are now
able to use views instead of the base table.

Second, latency can be improved by reducing the number of
deltas that have to be opened, read, and merged at query time.
Figure 8(b) shows that as we change storage policies to reduce the
number of deltas, the query latency improves significantly. For this
workload, optimizations to lazily merge across deltas described
in Section 8.3 cannot be applied because there are no subsequent
aggregations in the query, because of which it is critical to limit
the number of deltas. The biggest impact is at the 99th percentile
latency which reduces by more than 3.6x as the number of deltas is
changed from 8 to 2. The main reasons are: (1) fewer deltas means
there are less number of small, parallel IOs which are prone to cause
latency tails, (2) fewer deltas also means that data is premerged and
aggregated, and less processing is required at query time.

9.2 Handling Infrastructure Issues

Figure 9 shows that Napa is able to guarantee its clients stable
query performance even when the ingestion load changes or there
are infrastructure outages. Figure 9 shows the workload of a client
over a period of a few hours. Napa decouples ingestion from view
maintenance and querying which allows us to optimize for low
variance in query latency, in some cases by trading off data fresh-
ness. Figure 9(a) shows that the client continuously sends data to
Napa, with some variance in the input rate over the course of the
week. Figure 9(b) shows that the view maintenance performance
dropped for the duration between X and Y indicating an infrastruc-
ture issue which affected the tasks updating views. However, the
query serving latency remains near constant (Figure 9(d)) through-
out the whole duration. In this particular example, client queries
continued to be fast, however, for certain parts during the outage
data freshness was impacted, as seen in Figure 9(c) where the value
of delay is high.

9.3 Client Workloads

Figures 10(a)-(d) show how Napa provides clients the flexibility to
optimize for different performance and cost metrics. These produc-
tion clients have differing requirements as discussed below.

. (a) Ingestion Rate

(b) View Maintenance Performance

(c) Data Delay

(d) Query Latency

GOMMWWM\WWMMW

40
20

0
250 500

Minutes 750 1000

Figure 9: Napa’s decoupling means view maintenance backlog does not impact query performance.

[Client A: Tradeoff freshness] is an internal experimentation
and analysis application that wants moderate query performance
and low costs, but can tolerate lower freshness. It has tuned Napa
to have a moderate number of views and achieves reasonably good
query performance. Given that it has the highest ingestion rate, it
trades off data freshness to keep the costs moderate.

[Client B: Tradeoff query performance] is an application that
cares the most about low costs but can tolerate lower query per-
formance. This client uses Napa in a way that less effort is spent
on optimizing data for client queries. As a result this client has the
lowest resource costs (Figure 10(d)) even though it has a higher
ingestion rate than Client C.

[Client C: Tradeoff costs] is a critical external user-facing ap-
plication that has high freshness and high query performance re-
quirements, and is willing to pay high costs to achieve them. This
client has tuned Napa to have a large number of views and uses
frequent compactions to keep the number of deltas low. As a result,
this client has better data freshness (Figure 10(b)) and query perfor-
mance (compared to Client A and B), but has to pay the increased
resource costs even though its ingestion rate is lower than the other
two clients (Figure 10(c)).

10 RELATED WORK

There are numerous commercial offerings for analytical data man-
agement, e.g., from Teradata, Oracle, IBM, Microsoft, Snowflake,
Amazon, and many other companies. Technology advances on these
commercial systems include columnar storage, query optimization,
as well as multiple designs for write- and update-optimized index-
ing.

Cloud Offerings Traditional data analytics systems have evolved
from tight coupling of storage and compute to the disaggregated
model of decoupled storage and compute to take advantage of
the cloud computing paradigm. Amazon Aurora [30] decouples
the transaction and query processing layer from the storage layer.

Redshift [18] has support for materialized views that are not contin-
uously maintained. Snowflake [8] projects itself as a “virtual data
warehouse,” which can be spun up on demand and then brought
down, and it provides modern database innovations such as colum-
nar storage, vectorization and matching changes in query optimiza-
tion. Napa provides continuous ingestion and high performance
querying with tunable freshness. It further advances the idea of
disaggregation by decoupling its architectural components: inges-
tion, aggregation (i.e., derivation of updates in materialized views),
indexing and querying. As a result, the impact of a slowdown in
indexing on the query performance is minimized by either trading
off data freshness or incurring higher costs as shown in Section 9.
This improvement is achieved by bringing in the notion of freshness
as another tunable parameter to give Napa this unique capability.

Data analytics within Google An early attempt at building a
large scale data management system at Google was Tenzing [6],
which offered SQL over Map-Reduce [10] on data stored in Colos-
sus [12, 14] and Bigtable [4]. Dremel [24] is a scan-based querying
system that enabled large-scale querying of Google’s log data using
thousands of machines. Procella [5] is a recent scan-based system
that improves upon Dremel by using advanced storage format to
support filter expressions, zone maps, bitmaps, bloom filters, and
partitions and sorting by keys. In contrast to these prior systems,
Napa is a fully indexed system that is optimized for key lookups,
range scans, and efficient incremental maintenance of indexes on
tables and views. Napa can easily support both adhoc queries and
highly selective and less diverse queries. Early systems used sharded
MySQL, which over time forked into two systems. The data layer
forked off into Mesa [19, 20], while the query layer became F1
Query [27, 29].

Comparison with Mesa Napa is designed to be a drop-in replace-
ment to Mesa and hence is a multi-tenant, multi-homed, distributed,
globally-replicated data management system, which is used by
mission-critical applications within Google. Napa advances the
state of the art in terms of configuration of databases to meet the

10 20

30
Hours

(a) Ingestion

(b) Data Delay

(c) Query Latency

(d) Resource Cost

40 50

Figure 10: Production metrics from three client workloads (a) Ingestion load, (b) Data Delay, (c) Query Latency, (d) Resource

costs per ingested unit.

end client’s freshness, cost and query performance tradeoffs. Napa
has superior consistency semantics in that it provides a single
database-level queryable timestamp, which means that a user can
reference and query multiple tables and views in a consistent man-
ner. Napa also supports views with full SQL generality; a subset of
them can be continuously maintained. Mesa used a custom frame-
work for creating and maintaining materialized views and their
indexes. In contrast, Napa uses F1 Query, an SQL engine, both for
processing user queries and for maintaining tables, materialized
views, and indexes. Napa has made significant improvements over
Mesa in terms of query latency and cost of running the system.

LSM-based Indexing Systems B-trees [3, 16] are the principal
index structures in many traditional database management sys-
tems. Napa uses a variant of B+-trees that exploits the fact that
Napa tables have multi-part keys. Additionally, min/max keys (per-
column min/max values) are stored along with each non-leaf block
to enable effective pruning. Log-structured merge-trees (LSM) [25]
adapt B-tree indexes for high update rates. Napa belongs to a class
of LSM systems that trade high write throughput for fast reads.
Writes are written to level files which get compacted to form larger
level files. Reads merge these at run-time. The efficiency of the LSM
data structure is measured by “write amplification” or the number
of times an input row is written to disk (across all levels). Since
merging is a sequential process, we also use more sequential I/O as
opposed to issuing random I/Os. RocksDB [11] and PebblesDB [26],
based on LevelDB [13], are examples of write-intensive key-value
stores that use the LSM scheme.

11 CONCLUSION

Napa is an analytical data management system that serves criti-
cal Google dashboards, applications, and internal users. In some
ways, it is comparable to other relevant systems: high scalability,
and availability through replication and failover, high user query
load, and large data volumes. In other ways, it has a combination

of characteristics that is perhaps unique: relying on materialized
views to ensure that most queries are sub-second look-ups, main-
taining views while ingesting trillions of rows, and giving clients
the flexibility to tune the system for data freshness, query latency,
and costs.

Whereas current data management storage systems typically
rely on scans sped up by columnar storage, parallelism, and com-
pression, Napa relies heavily on views to guarantee robust query
performance. Views are optimized for continuous high-bandwidth
insertions using log-structured merge-forests. Napa provides clients
with flexible configurable parameters for query performance, fresh-
ness, and costs. The Queryable Timestamp (QT) provides a live
indicator of the client’s database production performance against
the said requirements. Napa’s configurability means that the same
system under different configurations can serve cost-conscious
clients as well as demands around high performance and freshness.

While Napa serves Google well, it continues to evolve in di-
mensions related to automatically suggesting views, making the
tuning efforts self-driven, and supporting emerging applications.
New challenges continue to emerge as new applications and users
are frequently added to the Napa ecosystem.

ACKNOWLEDGMENTS

Napa is the result of the efforts of many people, especially our
former and current team members. We thank the F1 Query and
EngProd teams, as well as the following for their immense contri-
butions to Napa: Alejandro Estrella Balderrama, Pablo Boserman,
Dennis Frostlander, Afief Halumi, Taihua He, Mingsheng Hong,
Rohit Khare, Sugeeti Kochhar, Ioannis Koltsidas, Lina Kulakova,
Romit Kusarye, Andrew Lamb, Ruocheng Li, Sandeep Mariserla,
Jeff Shute, Zhaozhe Song, Dao Tao, Dexin Wang, Chad Whipkey,
Adam Xu, Yin Ye, Lingyi You, David Zhou, Ed Zhou and Min Zhou.
We are also grateful to Ashish Gupta and Shiv Venkataraman for
providing strategic vision and guidance to the Napa team.

REFERENCES

[1] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakrishnan. 2009.

[2

[3

[4

l6

]
]

flaa

Asynchronous view maintenance for VLSD databases. In SIGMOD. Providence,
RI, 179-192.

A. Ailamaki, D. J. DeWitt, and M. D. Hill. 2002. Data page layouts for relational
databases on deep memory hierarchies. VLDBJ 11, 3 (2002), 198-215.

R. Bayer and E. M. Mccreight. 1972. Organization and Maintenance of Large
Ordered Indexes. In Software Pioneers. Vol. 1. Springer-Verlag, Berlin, Heidelberg,
173--189.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber. 2008. Bigtable: A Distributed Storage System
for Structured Data. ACM Trans. Comput. Syst. 26, 2 (2008), 4:1-4:26.

B. Chattopadhyay, P. Dutta, W. Liu, O. Tinn, A. McCormick, A. Mokashi, P. Harvey,
H. Gonzalez, D. Lomax, S. Mittal, R. Ebenstein, N. Mikhaylin, H.-C. Lee, X. Zhao,
T. Xu, L. Perez, F. Shahmohammadi, T. Bui, N. Mckay, S. Aya, V. Lychagina, and B.
Elliott. 2019. Procella: Unifying serving and analytical data at YouTube. PVLDB
12, 12 (2019), 2022-2034.

B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychagina, Y. Kwon,
and M. Wong. 2011. Tenzing: A SQL Implementation On The MapReduce Frame-
work. PVLDB 4, 12 (2011), 1318-1327.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

[o
[10

]
]

[11]

[12

(13

]
1

[14]

[15

[16

]
1

A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. 2013. Spanner: Google$
Globally Distributed Database. ACM Trans. Comput. Syst. 31, 3 (2013), 8:1-8:22.
B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J. Clay-
baugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q. Munir,
S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner. 2016. The
Snowflake Elastic Data Warehouse. In SIGMOD. San Francisco, CA, 215-226.

J. Dean and L. A. Barroso. 2013. The tail at scale. CACM 56, 2 (2013), 74-80.

J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large
Clusters. CACM 51, 1 (Jan. 2008), 107--113.

S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum. 2017.
Optimizing Space Amplification in RocksDB. In CIDR. Chaminade, CA, 9.

A. Fikes. 2010. Storage Architecture and Challenges. https://cloud.google.com/
files/storage_architecture_and_challenges.pdf.

S. Ghemawat and J. Dean. 2011. LevelDB. https://github.com/google/leveldb/.
S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The Google file system. In SOSP.
Bolton Landing, NY, 29-43.

Goetz Graefe. 2006. Implementing Sorting in Database Systems. ACM Comput.
Surv. 38, 3 (Sept. 2006), 10—es.

G. Graefe. 2011. Modern B-Tree Techniques. Foundational Trends in Databases 3,
4 (April 2011), 203-402.

[20

[28

[29

]

]

]

G. Graefe and H. A. Kuno. 2010. Adaptive indexing for relational keys. In ICDE
Workshop. Long Beach, CA, 69-74.

A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.
2015. Amazon Redshift and the Case for Simpler Data Warehouses. In SIGMOD.
Melbourne, Victoria, Australia, 1917-1923.

A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G. Dhoot, A. R.
Kumar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddigi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. 2014. Mesa: Geo-Replicated, Near
Real-Time, Scalable Data Warehousing. PVLDB 7, 12 (2014), 1259-1270.

A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Govind Dhoot,
A.R. Kumar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddigi, D. Jones,
J. Shute, A. Gubarev, S. Venkataraman, and D. Agrawal. 2016. Mesa: a geo-
replicated online data warehouse for Google’s advertising system. CACM 59, 7
(2016), 117-125.

S. Idreos, M. L. Kersten, and S. Manegold. 2007. Database Cracking. In CIDR.
Asilomar, CA, 68-78.

B. R. Iyer. 2005. Hardware assisted sorting in IBM’s DB2 DBMS. In COMOD. Goa,
India, 9.

D. E. Knuth. 1998. The Art of Computer Programming, Volume III: Sorting and
Searching, 2nd edition. Addison-Wesley-Longman, Boston, MA.

S. Melnik, A. Gubarev, J. Jing Long, G. Romer, S. Shivakumar, M. Tolton, and T.
Vassilakis. 2011. Dremel: interactive analysis of web-scale datasets. CACM 54, 6
(2011), 114-123.

P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. ONeil. 1996. The Log-Structured
Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351-385.

P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. 2017. PebblesDB: Build-
ing Key-Value Stores using Fragmented Log-Structured Merge Trees. In SOSP.
Shanghai, China, 497-514.

B. Samwel, J. Cieslewicz, B. Handy, J. Govig, P. Venetis, C. Yang, K. Peters, J.
Shute, D. Tenedorio, H. Apte, F. Weigel, D. Wilhite, J. Yang, J. Xu, J. Li, Z. Yuan,
C. Chasseur, Q. Zeng, I. Rae, A. Biyani, A. Harn, Y. Xia, A. Gubichev, A. El-Helw,
O. Erling, Z. Yan, M. Yang, Y. Wei, T. Do, C. Zheng, G. Graefe, S. Sardashti, A. M.
Aly, D. Agrawal, A. Gupta, and S. Venkataraman. 2018. F1 Query: Declarative

Querying at Scale. PVLDB 11, 12 (2018), 1835-1848.
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

1979. Access Path Selection in a Relational Database Management System. In
SIGMOD. Tucson, AZ, 23-34.

J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea,
K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H.
Apte. 2013. F1: A Distributed SQL Database That Scales. PVLDB 6, 11 (2013),
1068-1079.

A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Kr-
ishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational Databases.
In SIGMOD. ACM, Chicago, IL, 1041-1052.

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://github.com/google/leveldb/

	Abstract
	1 Introduction
	2 Napa's Design Constraints
	2.1 Clients Need Flexibility

	3 Design Choices Made By Napa
	3.1 Providing Flexibility to Clients
	3.2 Data Availability

	4 System Architecture
	5 Ingesting Trillions of Rows
	6 Queryable Timestamp
	7 Maintaining Views At Scale
	7.1 Query optimizations challenges in View Maintenance
	7.2 Mechanics of Compaction

	8 Robust Query Serving Performance
	8.1 Reducing Data in the Critical Path
	8.2 Minimizing Number of Sequential I/Os
	8.3 Combining Small I/Os
	8.4 Tolerating Tails and Failures

	9 Production Metrics Insights
	9.1 Views and QT Help Achieve Robust Query Performance
	9.2 Handling Infrastructure Issues
	9.3 Client Workloads

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

