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Abstract

Large-scale Transformer-based models trained for generation
tasks (e.g., GPT-3) have recently attracted huge interest, em-
phasizing the need for system support for serving models in
this family. Since these models generate a next token in an au-
toregressive manner, one has to run the model multiple times
to process an inference request where each iteration of the
model generates a single output token for the request. How-
ever, existing systems for inference serving do not perform
well on this type of workload that has a multi-iteration char-
acteristic, due to their inflexible scheduling mechanism that
cannot change the current batch of requests being processed;
requests that have finished earlier than other requests in a
batch cannot return to the client, while newly arrived requests
have to wait until the current batch completely finishes.

In this paper, we propose iteration-level scheduling, a new
scheduling mechanism that schedules execution at the gran-
ularity of iteration (instead of request) where the scheduler
invokes the execution engine to run only a single iteration of
the model on the batch. In addition, to apply batching and
iteration-level scheduling to a Transformer model at the same
time, we suggest selective batching, which applies batching
only to a selected set of operations. Based on these two tech-
niques, we have implemented a distributed serving system
called ORCA, with additional designs for scalability to models
with hundreds of billions of parameters. Our evaluation on a
GPT-3 175B model shows that ORCA can significantly out-
perform NVIDIA FasterTransformer in terms of both latency
and throughput: 36.9 x throughput improvement at the same
level of latency.

1 Introduction

Language generation tasks are becoming increasingly
paramount to many types of applications, such as chatbot [9,
52], summarization [41,45,54], code generation [13], and cap-
tion generation [65,66]. Moreover, recent works published by
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AI21 Labs [37], DeepMind [26,48], Google [15,21,63], Meta
Platforms [10,67], Microsoft [50], Microsoft & NVIDIA [59],
and OpenAl [12] have reported that every language process-
ing task, including translation [11, 17], classification [20, 53],
question-answering [32, 33,40] and more, can be cast as a
language generation problem and have shown great improve-
ments along this direction. The rise of generative models is
not limited to the language domain; the Al community has
also given growing interest to generation problems in other do-
mains such as image, video, speech, or a mixture of multiple
domains [19,38,51,62]. At the heart of generative models lies
the Transformer architecture [60] and its variants [15,47-49].
By relying on the attention mechanism [60], Transformer
models can learn better representations where each element
of the sequence may have a direct connection with every other
element, which was not possible in recurrent models [25].

To use generative models in real-world applications, we
often delegate the inference procedure to a separate service
responsible for ML inference serving. The growing demands
for this service, which should provide inference results for
client requests at low latency and high throughput, have fa-
cilitated the development of inference serving systems such
as Triton Inference Server [7] and TensorFlow Serving [42].
These systems can use a separately-developed DNN execution
engine to perform the actual tensor operations. For example,
we can deploy a service for language generation tasks by
using a combination of Triton and FasterTransformer [4], an
execution engine optimized for the inference of Transformer-
based models. In this case, Triton is mainly responsible for
grouping multiple client requests into a batch, while Faster-
Transformer receives the batch from Triton and conducts the
inference procedure in the batched manner.

Unfortunately, we notice that the existing inference sys-
tems, including both the serving system layer and the execu-
tion engine layer, have limitations in handling requests for
Transformer-based generative models. Since these models are
trained to generate a next token in an autoregressive manner,
one should run the model as many times as the number of to-
kens to generate, while for other models like ResNet [24] and
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BERT [18] a request can be processed by running the model
once. That is, in order to process a request to the generative
model, we have to run multiple iterations of the model; each
iteration generates a single output token, which is used as
an input in the following iteration. Such multi-iteration char-
acteristic calls into question the current design of inference
systems, where the serving system schedules the execution
of the engine at the granularity of request. Under this design,
when the serving system dispatches a batch of requests to
the engine, the engine returns inference results for the entire
batch at once after processing all requests within the batch.
As different client requests may require different numbers of
iterations for processing, requests that have finished earlier
than others in the batch cannot return to the client, resulting
in an increased latency. Requests arrived after dispatching the
batch also should wait for processing the batch, which can
significantly increase the requests’ queueing time.

In this paper, we propose to schedule the execution of the
engine at the granularity of iteration instead of request. In
particular, the serving system invokes the engine to run only a
single iteration of the model on the batch. As a result, a newly
arrived request can be considered for processing after waiting
for only a single iteration of the model. The serving system
checks whether a request has finished processing after every
return from the engine — hence the finished requests can also
be returned to the clients immediately.

Nevertheless, a noticeable challenge arises when we at-
tempt to apply batching and the iteration-level scheduling at
the same time. Unlike the canonical request-level scheduling,
the proposed scheduling can issue a batch of requests where
each request has so far processed a different number of tokens.
In such a case, the requests to the Transformer model cannot
be processed in the batched manner because the attention
mechanism calls for non-batchable tensor operations whose
input tensors have variable shapes depending on the number
of processed tokens.

To address this challenge, we suggest to apply batching
only to a selected set of operations, which we call selective
batching. By taking different characteristics of operations into
account, selective batching splits the batch and processes each
request individually for the Attention' operation while apply-
ing batching to other operations of the Transformer model.
We observe that the decision not to batch the executions of
the Attention operation has only a small impact on efficiency.
Since the Attention operation is not associated with any model
parameters, applying batching to Attention has no benefit of
reducing the amount of GPU memory reads by reusing the
loaded parameters across multiple requests.

Based on these techniques, we design and implement
ORCA, a distributed serving system for Transformer-based
generative models. In order to handle large-scale models,

'In some literature the Attention operation has an extended definition that
includes linear layers (QKV Linear and Attn Out Linear; Figure 1b). On the
other hand, we use a narrow definition as described in Figure 1b.

ORCA adopts parallelization strategies including intra-layer
and inter-layer model parallelism, which were originally de-
veloped by training systems [55, 58] for Transformer models.
We also devise a new scheduling algorithm for the proposed
iteration-level scheduling, with additional considerations for
memory management and pipelined execution across work-
ers.

We evaluate ORCA using OpenAl GPT-3 [12] models with
various configurations, scaling up to 341B of parameters. The
results show that ORCA significantly outperforms FasterTrans-
former [4], showing 36.9x throughput improvement at the
same level of latency. While we use a language model as
a driving example throughout the paper and conduct experi-
ments only on language models, generative models in other
domains can benefit from our approach as long as the mod-
els are based on the Transformer architecture and use the
autoregressive generation procedure [19,38,51, 62].

2 Background

We provide background on the inference procedure of
GPT [12,47], a representative example of Transformer-based
generative models that we use throughout this paper, and ML
inference serving systems.

Inference procedure of GPT. GPT is an autoregressive
language model based on one of architectural variants of
Transformer [60]. It takes text as input and produces new text
as output. In particular, the model receives a sequence of input
tokens and then completes the sequence by generating subse-
quent output tokens. Figure 1a illustrates a simplified compu-
tation graph that represents this procedure with a three-layer
GPT model, where nodes and edges indicate Transformer
layers and dependencies between the layers, respectively. The
Transformer layers are executed in the order denoted by the
numbers on the nodes, and the nodes that use the same set
of model parameters (i.e., nodes representing the same layer)
are filled with the same color.

The generated output token is fed back into the model to
generate the next output token, imposing a sequential, one-
by-one inference procedure. This autoregressive procedure of
generating a single token is done by running all the layers of
the model with the input, which is either a sequence of input
tokens that came from the client or a previously generated out-
put token. We define the run of all layers as an iteration of the
model. In the example shown in Figure 12, the inference pro-
cedure comprises three iterations. The first iteration (“iter 17)
takes all the input tokens (“I think this”) at once and generates
the next token (“is”). This iteration composes an initiation
phase, a procedure responsible for processing the input tokens
and generating the first output token. The next two iterations
(“iter 2” and “iter 3”), which compose an increment phase,
take the output token of the preceding iteration and generate
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Figure 1: Illustrations for GPT’s inference procedure, Transformer layer, and internal state usage.

the next token. In this case, “iter 3” is the last iteration because
it produces “<EOS>”, a special end-of-sequence token that
terminates output generation. Note that while the increment
phase comprises multiple iterations because each iteration
is only able to process a single token, the initiation phase is
typically implemented as a single iteration by processing all
the input tokens in parallel.

The original Transformer [60] employs two stacks of Trans-
former layers, while GPT’s architecture consists of a single
layer stack, namely decoder. Figure 1b shows a Transformer
layer used in GPT. Among the operations that compose the
Transformer layer, Attention is the essence that distinguishes
Transformer from other architectures. At a high level, the At-
tention operation computes a weighted average of the tokens
of interest so that each token in the sequence is aware of the
other. It takes three inputs, query, key, and value, computes dot
products of the query (for the current token) with all keys (for
the tokens of interest), applies Softmax on the dot products
to get weights, and conducts weighted average of all values
associated with the weights.

Since the Attention requires keys and values of all pre-
ceding tokens,” we consider the keys and values as internal
states that should be maintained across multiple iterations. A
naive, state-less inference procedure would take all tokens in
the sequence (including both the client-provided input tokens
and the output tokens generated so far) to recompute all the
keys and values at every iteration. To avoid such recomputa-
tion, fairseq [43] suggests incremental decoding, which saves
the keys and values for reuse in successive iterations. Other
systems for Transformer such as FasterTransformer [4] and
Megatron-LM [3] also do the same.

’Language models like GPT use causal masking, which means all pre-
ceding tokens are of interest and participate in the Attention operation.

Figure 1c illustrates the state usage pattern of Transformer,
along with LSTM [25] that also maintains internal states. The
main difference is that the size of the states (k for Attention
key and v for value) in Transformer increases with iteration,
whereas the size of the states (¢ for LSTM internal memory
and & for LSTM layer’s input/output) in LSTM remains con-
stant. When processing the token at index ¢, the Attention
operation takes all previous Attention keys k; 1,1 and values
V1 14—1 along with the current key k;; and value 1/1_1.3 There-
fore, the Attention operation should perform computation on
tensors of different shapes depending on the number of tokens
already processed.

Prior to the Attention operation, there are the layer normal-
ization operation (LayerNorm) and the QKV Linear (linear
and split operations to get the query, key and value). Opera-
tions performed after Attention are, in order, a linear operation
(Attn Out Linear), an add operation for residual connection
(Add), layer normalization operation (LayerNorm), the multi-
layer perceptron (MLP) operations, and the other residual
connection operation (Add).

ML inference serving systems. Growing demands for ML-
driven applications have made ML inference serving service
a critical workload in modern datacenters. Users (either the
end-user or internal microservices of the application) submit
requests to an inference service, and the service gives replies
on the requests based on a pre-defined ML model using its
provisioned resource, typically equipped with specialized ac-
celerators such as GPUs and TPUs. In particular, the service
runs a DNN model with input data to generate output for the

3k111:,,1 represents Attention keys of the /-th layer for tokens at indices
1 tot—1 while k;, is for the Attention key of the /-th layer for the token at
index ¢. Same for v; 1.,—1 and v,.
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Figure 2: Overall workflow of serving a generative language
model with existing systems.

request. Just like other services operating on datacenters, a
well-managed inference service should provide low latency
and high throughput within a reasonable amount of cost.

To meet such constraints, service operators often use ML
inference serving systems such as Triton Inference Server [7]
and TensorFlow Serving [42]. These systems can be seen as
an abstraction sitting atop underlying model execution en-
gines such as TensorRT [6], TVM [14], TensorFlow [8], and
many others [44,46], being agnostic to various kinds of ML
models, execution engines, and computing hardware. While
delegating the role of driving the main mathematical opera-
tions to the engines, serving systems are in charge of exposing
endpoints that receive inference requests, scheduling execu-
tions of the engine, and sending responses to the requests.
Accordingly, these systems focus on aspects such as batch-
ing the executions [7, 16,35,42,56], selecting an appropriate
model from multiple model variants [16,27,30,57], deploying
multiple models (each for different inference services) on the
same device [7,29,35,56], and so on.

Among the features and optimizations provided by serv-
ing systems, batching is a key to achieve high accelerator
utilization when using accelerators like GPUs. When we run
the execution engine with batching enabled, the input tensors
from multiple requests coalesce into a single, large input ten-
sor before being fed to the first operation of the model. Since
the accelerators prefer large input tensors over small ones to
better exploit the vast amount of parallel computation units,
the engine’s throughput is highly dependent on the batch size,
i.e., the number of inference requests the engine processes
together. Reusing the model parameters loaded from off-chip
memory is another merit in batched execution, especially
when the model involves memory-intensive operations.

Figure 2 shows an overall workflow of serving a generative
language model with existing serving systems and execution
engines. The main component of the serving system (e.g., Tri-
ton [7]) is the scheduler, which is responsible for O creating
a batch of requests by retrieving requests from a queue and @
scheduling the execution engine (e.g., FasterTransformer [4])
to process the batch. The execution engine ® processes the
received batch by running multiple iterations of the model
being served and @ returns the generated text back to the
serving system. In Figure 2, the serving system schedules the
engine to process two requests (x1: “I think”, x>: “I love”) in

this is great | |<EOS>

you <EOS> - -

L1 | 1 |think |\ this is great
zo| I | love \ you - -

P

Figure 3: An illustration for a case where the requests have the
same input length but some requests finish earlier than others.
Shaded tokens represent input tokens. “-” denotes inputs and
outputs of extra computation imposed by the scheduling.

a batch and the engine generates “this is great” and “you” for
requests x1 and x», respectively.

3 Challenges and Proposed Solutions

In this section, we describe challenges in serving Transformer-
based generative models and propose two techniques:
iteration-level scheduling and selective batching.

C1: Early-finished and late-joining requests. One major
limitation of existing systems is that the serving system and
the execution engine interact with each other only when (1)
the serving system schedules the next batch on an idle engine;
or (2) the engine finishes processing the current batch. In
other words, these systems are designed to schedule execu-
tions at request granularity; the engine maintains a batch of
requests fixed until all requests in the batch finish. This can be
problematic in the serving of generative models, since each
request in a batch may require different number of iterations,
resulting in certain requests finishing earlier than the others.
In the example shown in Figure 3, although request x; finishes
earlier than request x1, the engine performs computation for
both “active” and “inactive” requests throughout all iterations.
Such extra computation for inactive requests (x, at iter 3 and
4) limits the efficiency of batched execution.

What makes it even worse is that this behavior prevents an
early return of the finished request to the client, imposing a
substantial amount of extra latency. This is because the engine
only returns the execution results to the serving system when
it finishes processing all requests in the batch. Similarly, when
a new request arrives in the middle of the current batch’s
execution, the aforementioned scheduling mechanism makes
the newly arrived request wait until all requests in the current
batch have finished. We argue that the current request-level
scheduling mechanism cannot efficiently handle workloads
with multi-iteration characteristic. Note that this problem of
early-finished and late-joining requests does not occur in the
training of language models; the training procedure finishes
processing the whole batch in a single iteration by using the
teacher forcing technique [64].
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Figure 4: System overview of ORCA. Interactions between
components represented as dotted lines indicate that the inter-
action takes place at every iteration of the execution engine.
x;j is the j-th token of the i-th request. Shaded tokens repre-
sent input tokens received from the clients, while unshaded
tokens are generated by ORCA. For example, request x| ini-
tially arrived with two input tokens (x11,x12) and have run
two iterations so far, where the first and second iterations gen-
erated x13 and x4, respectively. On the other hand, request
x3 only contains input tokens (x31,x372) because it has not run
any iterations yet.

S1: Iteration-level scheduling. To address the above limi-
tations, we propose to schedule executions at the granularity
of iteration. At high level, the scheduler repeats the follow-
ing procedure: (1) selects requests to run next; (2) invokes
the engine to execute one iteration for the selected requests;
and (3) receives execution results for the scheduled iteration.
Since the scheduler receives a return on every iteration, it can
detect the completion of a request and immediately return its
generated tokens to the client. For a newly arrived request, the
request gets a chance to start processing (i.e., the scheduler
may select the new request to run next) after execution of
the currently scheduled iteration, significantly reducing the
queueing delay. With iteration-level scheduling, the sched-
uler has a full control on how many and which requests are
processed in each iteration.

Figure 4 depicts the system architecture and the overall
workflow of ORCA using the iteration-level scheduling. ORCA
exposes an endpoint (e.g., HTTPS or gRPC) where inference
requests arrive at the system and responses to the requests
are sent out. The endpoint puts newly arrived requests in the
request pool, a component that manages all requests in the
system during their lifetime. The pool is monitored by the
scheduler, which is responsible for: selecting a set of requests
from the pool, scheduling the execution engine to run an it-
eration of the model on the set, receiving execution results
(i.e., output tokens) from the engine, and updating the pool
by appending each output token to the corresponding request.
The engine is an abstraction for executing the actual tensor
operations, which can be parallelized across multiple GPUs
spread across multiple machines. In the example shown in
Figure 4, the scheduler @ interacts with the request pool to

decide which requests to run next and @ invokes the engine
to run four selected requests: (xi,x2,x3,%4). The scheduler
provides the engine with input tokens of the requests sched-
uled for the first time. In this case, x3 and x4 have not run
any iterations yet, so the scheduler hands over (x3;,x3;) for
x3 and (xa1,X42,%43) for x4. The engine @ runs an iteration
of the model on the four requests and @ returns generated
output tokens (x15,%23,X33,%44), one for each scheduled re-
quest. Once a request has finished processing, the request pool
removes the finished request and notifies the endpoint to send
a response. Unlike the method shown in Figure 2 that should
run multiple iterations on a scheduled batch until finish of
all requests within the batch, ORCA’s scheduler can change
which requests are going to be processed at every iteration.
We describe the detailed algorithm about how to select the
requests at every iteration in Section 4.2.

C2: Batching an arbitrary set of requests. When we try
to use the iteration-level scheduling in practice, one major
challenge that we are going to face is batching. To achieve
high efficiency, the execution engine should be able to process
any selected set of requests in the batched manner. Without
batching, one would have to process each selected request
one by one, losing out on the massively parallel computation
capabilities of GPUs.

Unfortunately, there is no guarantee that even for a pair of
requests (x;,x;), for the next iteration, their executions can be
merged and replaced with a batched version. There are three
cases for a pair of requests where the next iteration cannot
be batched together: (1) both requests are in the initiation
phase and each has different number of input tokens (e.g.,
x3 and x4 in Figure 4); (2) both are in the increment phase
and each is processing a token at different index from each
other (x; and x,); or (3) each request is in the different phase:
initiation or increment (x; and x3). Recall that in order to
batch the execution of multiple requests, the execution of each
request must consist of identical operations, each consuming
identically-shaped input tensors. In the first case, the two
requests cannot be processed in a batch because the “length”
dimension of their input tensors, which is the number of input
tokens, are not equal. The requests in the second case have
difference in the tensor shape of Attention keys and values
because each processes token at different index, as shown in
Figure 1c. For the third case, we cannot batch the iterations of
different phases because they take different number of tokens
as input; an iteration of the initiation phase processes all input
tokens in parallel for efficiency, while in the increment phase
each iteration takes a single token as its input (we assume the
use of fairseq-style incremental decoding [43]).

Batching is only applicable when the two selected requests
are in the same phase, with the same number of input tokens
(in case of the initiation phase) or with the same token index
(in case of the increment phase). This restriction significantly
reduces the likelihood of batching in real-world workloads,
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Figure 5: An illustration of ORCA execution engine running
a Transformer layer on a batch of requests with selective
batching. We only depict the QKV Linear, Attention, and
Attention Out Linear operations for simplicity.

because the scheduler should make a wish for the presence
of two requests eligible for batching at the same time. The
likelihood further decreases exponentially as the batch size
increases, making it impractical to use a large batch size that
can pull out better throughput without compromising latency.

S2: Selective batching. We propose selective batching, a
technique for batched execution that allows high flexibility in
composing requests as a batch. Instead of processing a batch
of requests by “batchifying” all tensor operations composing
the model, this technique selectively apply batching only to a
handful of operations.

The main problem regarding batching described above is
that the three aforementioned cases® correspond to irregu-
larly shaped input (or state) tensors, which cannot be coa-
lesced into a single large tensor and fed into a batch opera-
tion. In the canonical batching mechanism, at each iteration,
a Transformer layer takes a 3-dimensional input tensor of
shape [B, L, H] generated by concatenating multiple [L, H] in-
put tensors of requests in a batch, where B is the batch size,
L is the number of tokens processed together, and H is the
hidden size of the model. For example, in Figure 3, “iter 1”
(initiation phase) takes an input tensor of shape [2,2, H| and
“iter 2” (increment phase) takes a tensor of shape [2,1,H].
However, when the scheduler decides to run an iteration on
batch (x1,x2,x3,x4) in Figure 4, the inputs for requests in the
initiation phase (x3 : [2,H] and x4 : [3,H]) cannot coalesce
into a single tensor of shape [B, L, H] because x3 and x4 have
different number of input tokens, 2 and 3.

Interestingly, not all operations are incompatible with such
irregularly shaped tensors. Operations such as non-Attention
matrix multiplication and layer normalization can be made to
work with irregularly shaped tensors by flattening the tensors.

4We use the first case as a driving example, but the argument can be
similarly applied to the other two cases.

For instance, the aforementioned input tensors for x3 and x4
can compose a 2-dimensional tensor of shape [Y L, H] =[5, H]
without an explicit batch dimension. This tensor can be fed
into all non-Attention operations including Linear, Layer-
Norm, Add, and GeLU operations because they do not need to
distinguish tensor elements of different requests. On the other
hand, the Attention operation requires a notion of requests
(i.e., requires the batch dimension) to compute attention only
between the tokens of the same request, typically done by
applying cuBLAS routines for batch matrix multiplication.

Selective batching is aware of the different characteristics
of each operation; it splits the batch and processes each re-
quest individually for the Attention operation while applying
token-wise (instead of request-wise) batching to other oper-
ations without the notion of requests. Figure 5 presents the
selective batching mechanism processing a batch of requests
(x1,x2,x3,x4) described in Figure 4. This batch has 7 input
tokens to process, so we make the input tensor have a shape
of [7,H] and apply the non-Attention operations. Before the
Attention operation, we insert a Split operation and run the
Attention operation separately on the split tensor for each
request. The outputs of Attention operations are merged back
into a tensor of shape [7, H] by a Merge operation, bringing
back the batching functionality to the rest of operations.

To make the requests in the increment phase can use the
Attention keys and values for the tokens processed in previous
iterations, ORCA maintains the generated keys and values in
the Attention K/V manager. The manager maintains these
keys and values separately for each request until the scheduler
explicitly asks to remove certain request’s keys and values,
i.e., when the request has finished processing. The Attention
operation for request in the increment phase (x; and x,) takes
keys and values of previous tokens (x11,x12,x13 for x1; xo1 for
xp) from the manager, along with the current token’s query,
key, and value from the Split operation to compute attention
between the current token and the previous ones.

4 ORCA Design

Based on the above techniques, we design and implement
ORCA: a distributed serving system for Transformer-based
generative models. We have already discussed the system
components and the overall execution model of ORCA while
describing Figure 4. In this section, we answer the remaining
issues about how to build an efficient system that can scale to
large-scale models with hundreds of billions of parameters.
We also describe the scheduling algorithm for iteration-level
scheduling, i.e., how to select a batch of requests from the
request pool at every iteration.

4.1 Distributed Architecture

Recent works [12,31] have shown that scaling language mod-
els can dramatically improve the quality of models. Hence,
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Figure 7: An illustration of the distributed architecture of
ORCA’s execution engine using the parallelization configura-
tion shown in Figure 6. For example, the first inter-layer parti-
tion (Layerl and Layer2) in Figure 6 is assigned to Workerl,
while the second partition is assigned to Worker2.

system support for serving such large language models is get-
ting more importance, especially when the model does not fit
in a single GPU. In such a case, one should split the model
parameters along with the corresponding computation and
distribute them across multiple GPUs and machines.

ORCA composes known parallelization techniques for
Transformer models: intra-layer parallelism and inter-layer
parallelism. These two model parallelism strategies, which
are also used by FasterTransformer [4], have been origi-
nally developed for distributed training. Intra-layer paral-
lelism [55, 58] splits matrix multiplications (i.e., Linear and
Attention operations) and their associated parameters over
multiple GPUs. We omit the detail about how this strat-
egy partitions each matrix multiplication. On the other hand,
inter-layer parallelism splits Transformer layers over multiple
GPUs. ORCA assigns the same number of Transformer layers
to each GPU. Figure 6 illustrates an example application of
intra- and inter- layer parallelism to a 4-layer GPT model. The
4 layers are split into 2 inter-layer partitions, and the layers in
the partition are subdivided into 3 intra-layer partitions. We
assign each partition to a GPU, using a total of 6 GPUs.

The ORCA execution engine supports distributed execution
using the techniques described above. Figure 7 depicts the
architecture of an ORCA engine. Each worker process is re-
sponsible for an inter-layer partition of the model and can be

placed on a different machine from each other. In particular,
each worker manages one or more CPU threads each dedi-
cated for controlling a GPU, the number of which depends on
the degree of intra-layer parallelism.

The execution procedure of the ORCA execution engine is
as follows. Once the engine is scheduled to run an iteration of
the model for a batch of requests, the engine master forwards
the received information about the scheduled batch to the first
worker process (Workerl). The information includes tokens
for the current iteration and a control message, which is com-
posed of ids of requests within the batch, current token index
(for requests in the increment phase), and number of input
tokens (for requests in the initiation phase). The controller of
Worker1 hands over the information received from the engine
master to the GPU-controlling threads, where each thread
parses the information and issues proper GPU kernels to its
associated GPU. For example, the kernel for the Attention
operation uses the request id and the current token index to get
the GPU memory address of previous keys and values kept by
the Attention K/V manager. In the meantime, the controller
also forwards the control message to the controller of the next
worker (Worker2), without waiting for the completion of the
kernels issued on the GPUs of Worker1. Unlike Workerl1, the
controller of the last worker (Worker2) waits for (i.e., syn-
chronize with) the completion of the issued GPU kernels, in
order to fetch the output token for each request and send the
tokens back to the engine master.

To keep GPUs busy as much as possible, we design the
ORCA engine to minimize synchronization between the CPU
and GPUs. We observe that current systems for distributed
inference (e.g., FasterTransformer [4] and Megatron-LM [3])
have CPU-GPU synchronization whenever each process re-
ceives control messages” because they exchange the messages
through a GPU-to-GPU communication channel — NCCL [5].
The exchange of these control messages occurs at every iter-
ation, imposing a non-negligible performance overhead. On
the other hand, ORCA separates the communication channels
for control messages (plus tokens) and tensor data transfer,
avoiding the use of NCCL for data used by CPUs. Figure 7
shows that the ORCA engine uses NCCL exclusively for ex-
changing intermediate tensor data (represented by dashed
arrows) as this data is produced and consumed by GPUs. Con-
trol messages, which is used by the CPU threads for issuing
GPU kernels, sent between the engine master and worker con-
trollers by a separate communication channel that does not
involve GPU such as gRPC [2].

4.2 Scheduling Algorithm

The ORCA scheduler makes decisions on which requests
should be selected and processed at every iteration. The sched-
uler has high flexibility in selecting a set of requests to com-

5This includes various metadata such as batch size, sequence length, and
whether a request within the batch has finished processing.
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pose a batch, because of the selective batching technique that
allows the engine to run any set of requests in the batched
manner. Now the main question left is how to select the re-
quests at every iteration.

We design the ORCA scheduler to use a simple algorithm
that does not change the processing order of client requests;
early-arrived requests are processed earlier. That is, we en-
sure iteration-level first-come-first-served (FCFS) property.
We define the iteration-level FCFES property for workloads
with multi-iteration characteristics as follows: for any pair
of requests (x;,x;) in the request pool, if x; has arrived ear-
lier than x;, x; should have run the same or more iterations
than x;. Note that some late-arrived requests may return ear-
lier to clients if the late request requires a smaller number of
iterations to finish.

Still, the scheduler needs to take into account additional
factors: diminishing returns to increasing the batch size and
GPU memory constraint. Increasing the batch size trades off
increased throughput for increased latency, but as the batch
size becomes larger, the amount of return (i.e., increase in
throughput) diminishes. Therefore, just like other serving sys-
tems [7,16], ORCA also has a notion of a max batch size: the
largest possible number of requests within a batch. The ORCA
system operator can tune this knob to maximize throughput
while satisfying one’s latency budget. We will discuss this in
more details with experiment results in Section 6.2.

Another factor is the GPU memory constraint. Optimiz-
ing memory usage by reusing buffers for intermediate results
across multiple operations is a well-known technique used by
various systems [4,6], and ORCA also adopts this technique.
However, unlike the buffers for intermediate results that can
be reused immediately, buffers used by the Attention K/V
manager for storing the keys and values cannot be reclaimed
until the ORCA scheduler notifies that the corresponding re-
quest has finished processing. A naive implementation can
make the scheduler fall into a deadlock when the scheduler
cannot issue an iteration for any requests in the pool because
there is no space left for storing a new Attention key and value
for the next token. This requires the ORCA scheduler to be
aware of the remaining size of pre-allocated memory regions
for the manager.

The ORCA scheduler takes all these factors into account:
it selects at most “max batch size” requests based on the ar-
rival time, while reserving enough space for storing keys and
values to a request when the request is scheduled for the first
time. We describe the scheduling process in Algorithm 1. The
algorithm selects a batch of requests from the request pool
(line 4) and schedules the batch (line 5). The Select function
(line 17) selects at most max_bs requests from the pool based
on the arrival time of the request (lines 20-22). Algorithm |
does not depict the procedure of request arrival and return;
one may think of it as there exist concurrent threads insert-
ing newly arrived requests into request_pool and removing
finished requests from request_pool.

Algorithm 1: ORCA scheduling algorithm
Params: n_workers: number of workers, max_bs:
max batch size, n_slots: number of K/V slots
1 n_scheduled + 0
2 n_rsrv<0
3 while true do
4 | batch,n_rsrv < Select(request_pool,n_rsrv)
5 | schedule engine to run one iteration of
the model for the batch

¢ | foreach req in batch do

7 req.state <—— RUNNING

8 | n_scheduled < n_scheduled + 1

9 | if n_scheduled = n_workers then

10 wait for return of a scheduled batch
11 foreach req in the returned batch do
12 req.state < INCREMENT

13 if finished(req) then

14 ‘ N_rsrv <— n_rsrv — req.max_tokens
15 n_scheduled < n_scheduled — 1
16

17 def Select(pool, n_rsrv):

18 | batch + {}

19 | pool « {req € pool|req.state # RUNNING}
20 | SortByArrivalTime(pool)

21 | foreach req in pool do

22 if batch.size() = max_bs then break

23 if req.state = INITIATION then

24 new_n_rsrv < n_rsrv —+ req.max_tokens
25 if new_n_rsrv > n_slots then break

26 N_rSrv <— new_n_rsrv

27 batch + batch\J{req}

28 | return batch,n_rsrv

When the scheduler considers a request in the initiation
phase, meaning that the request has never been scheduled
yet, the scheduler uses the request’s max_tokens® attribute
to reserve max_tokens slots of GPU memory for storing the
keys and values in advance (lines 23-26). The scheduler deter-
mines whether the reservation is possible (line 25) based on
n_rsrv, the number of currently reserved slots, where a slot
is defined by the amount of memory required for storing an
Attention key and value for a single token. Here, n_slots is a
parameter tuned by the ORCA system operator indicating the
size of memory region (in terms of slots) allocated to the At-
tention K/V manager. Since the number of tokens in a request
cannot exceed max_tokens, if the reservation is possible, it
is guaranteed that the manager can allocate buffers for the
newly generated keys and values until the request finishes.

Unlike the tuning of max_bs that requires quantifying the
trade-off between latency and throughput, the ORCA system

The max_tokens attribute is a per-request option, meaning the maximum
number of tokens that a request can have after processing.
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Figure 8: Comparison of the use of pipeline parallelism in
ORCA and FasterTransformer where X; is the i-th iteration of
request X.

operator can easily configure n_slots without any experiments.
Given a model specification (e.g., hidden size, number of
layers, etc.) and degrees of intra- and inter- layer parallelism,
ORCA’s GPU memory usage mostly depends on n_slots. That
is, the operator can simply use the largest possible n_slots
under the memory constraint.

Pipeline parallelism. ORCA’s scheduler makes the execu-
tion of workers in the engine to be pipelined across multi-
ple batches. The scheduler does not wait for the return of a
scheduled batch until n_scheduled, the number of currently
scheduled batches, reaches n_workers (line 9-10 of Algo-
rithm ). By doing so, the scheduler keeps the number of
concurrently running batches in the engine to be n_workers,
which means that every worker in the engine is processing
one of the batches without being idle.

Figure 8a depicts the execution pipeline of 3 ORCA work-
ers, using a max batch size of 2. We assume that the request
A arrives before B, which arrives before C, and so on. At first,
the scheduler selects requests A and B based on the arrival
time and schedules the engine to process a batch of requests
A and B (we call this batch AB), where Workerl, Worker?2,
and Worker3 process the batch in turn. The scheduler waits
for the return of the batch AB only after the scheduler injects
two more batches: CD and EF. Once the batch AB returns,
requests A and B get selected and scheduled once again, be-
cause they are the earliest arrived requests among the requests
in the pool.

In contrast, the interface between current serving systems
and execution engines (e.g., a combination of Triton [7]
and FasterTransformer [4]) does not allow injecting another
batch before the finish of the current running batch, due to
the request-level scheduling. That is, Triton cannot inject
the next request C to FasterTransformer until the current

#Params # Layers Hi(.iden # h.lt.er_ # Ir.1t.ra—
size  partitions partitions
13B 40 5120 1 1
101B 80 10240 1 8
175B 96 12288 2 8
341B 120 15360 4 8

Table 1: Configurations of models used in the experiments.

batch AB finishes. To enable pipelined execution of multiple
inter-layer partitions under such constraint, FasterTransformer
splits a batch of requests into multiple microbatches [28] and
pipelines the executions of partitions across the microbatches.
In Figure 8b, FasterTransformer splits the batch AB into two
microbatches, A and B. Since each partition processes a mi-
crobatch (which is smaller than the original batch) in the
batched manner, the performance gain from batching can
become smaller. Moreover, this method may insert bubbles
into the pipeline when the microbatch size is too large, mak-
ing the number of microbatches smaller than the number of
partitions. While FasterTransformer needs to trade batching
efficiency (larger microbatch size) for pipelining efficiency
(fewer pipeline bubbles), ORCA is free of such a tradeoff —
thanks to iteration-level scheduling — and can easily pipeline
requests without dividing a batch into microbatches.

5 Implementation

We have implemented ORCA with 13K lines of C++, based
on the CUDA ecosystem. We use gRPC [2] for the com-
munication in the control plane of the ORCA engine, while
NCCL [5] is used in the data plane, for both inter-layer and
intra-layer communication. Since we design ORCA to fo-
cus on Transformer-based generative models, ORCA pro-
vides popular Transformer layers as a building block of mod-
els including the original encoder-decoder Transformer [60],
GPT [47], and other variants discussed in Raffel et al. [49].

We have also implemented fused kernels for LayerNorm,
Attention, and GeLU operators, just like other systems for
training or inference of Transformer models [1, 4, 58]. For
example, the procedure of computing dot products between
Attention query and keys, Softmax on the dot products, and
weighted average of Attention values are fused into a single
CUDA kernel for the Attention operator. In addition, we go
one step further and fuse the kernels of the split Attention
operators by simply concatenating all thread blocks of the
kernels for different requests. Although this fusion makes the
thread blocks within a kernel have different characteristics and
lifetimes (which is often discouraged by CUDA programming
practice) because they process tensors of different shapes, we
find this fusion to be beneficial by improving GPU utilization
and reducing the kernel launch overhead [34,39].
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6 Evaluation

In this section, we present evaluation results to show the
efficiency of ORCA.

Environment. We run our evaluation on Azure ND96asr
A100 v4 VMs, each equipped with 8 NVIDIA 40-GB A100
GPUs connected over NVLink. We use at most four VMs
depending on the size of the model being tested. Each VM
has 8 Mellanox 200Gbps HDR Infiniband adapters, providing
an 1.6Tb/s of interconnect bandwidth between VMs.

Models. Throughout the experiments, we use GPT [12] as a
representative example of Transformer-based generative mod-
els. We use GPT models with various configurations, which is
listed in Table 1. The configurations for 13B and 175B models
come from the GPT-3 paper [12]. Based on these two mod-
els, we change the number of layers and hidden size to make
configurations for 101B and 341B models. All models have
a maximum sequence length of 2048, following the setting
of the original literature [12]. We use fp16-formatted model
parameters and intermediate activations for the experiments.
We also apply inter- and intra- layer parallelism strategies
described in Section 4.1, except for the 13B model that can fit
in a GPU. For example, the 175B model is partitioned over a
total of 16 GPUs by using 2 inter-layer partitions subdivided
into 8 intra-layer partitions, where the 8 GPUs in the same
VM belongs to the same inter-layer partition.

Baseline system. We compare with FasterTransformer [4],
an inference engine that supports large scale Transformer
models via distributed execution. While there exist other
systems with the support for distributed execution such as
Megatron-LM [3] and DeepSpeed [1], these systems are pri-
marily designed and optimized for training workloads, which
makes them show relatively lower performance compared to
the inference-optimized systems.

Scenarios. We use two different scenarios to drive our eval-
uation. First, we design a microbenchmark to solely assess the
performance of the ORCA engine without being affected by
the iteration-level scheduling. In particular, we do not run the
ORCA scheduler in this scenario. Instead, given a batch of re-
quests, the testing script repeats injecting the same batch into
the ORCA engine until all requests in the batch finishes, mim-
icking the behavior of the canonical request-level scheduling.
We also assume that all requests in the batch have the same
number of input tokens and generate the same number of
output tokens. We report the time taken for processing the
batch (not individual requests) and compare the result with
FasterTransformer [4].

The second scenario tests the end-to-end performance of
ORCA by emulating a workload. We synthesize a trace of

client requests because there is no publicly-available request
trace for generative language models. Each request in the syn-
thesized trace is randomly generated by sampling the number
of input tokens and a max_gen_tokens attribute, where the
number of input tokens plus max_gen_tokens equals to the
max_tokens attribute described in Section 4.2. We assume
that all requests continue generation until the number of gen-
erated tokens reaches max_gen_tokens. In other words, we
make the model never emit the “<EOS>" token. This is be-
cause we have neither the actual model checkpoint nor the
actual input text so we do not have any information to guess
the right timing of the “<EOS>" token generation. Once the
requests are generated, we synthesize the trace by setting the
request arrival time based on the Poisson process. To assess
ORCA'’s behavior under varying load, we change the Poisson
parameter (i.e., arrival rate) and adjust the request arrival time
accordingly. We report latency and throughput using mul-
tiple traces generated from different distributions for better
comparison and understanding of the behavior of ORCA and
FasterTransformer.

6.1 Engine Microbenchmark

We first compare the performance of FasterTransformer and
the ORCA engine using the first scenario. We set all requests
in the batch to have the same number of input tokens (32 or
128) and generate 32 tokens. That is, in this set of experiments,
all requests within the batch start and finish processing at the
same time. We conduct experiments using three different
models: 13B, 101B, and 175B. For each model, we use the
corresponding parallelization strategy shown in Table 1.

Figure 9 shows the performance of FasterTransformer and
the ORCA engine for processing a batch composed of the same
requests. In Figure 9a, the ORCA engine shows a similar (or
slightly worse) performance compared to FasterTransformer
across all configurations. This is because ORCA does not
apply batching to the Attention operations, while FasterTrans-
former apply batching to all operations. Still, the performance
difference is relatively small. Despite not batching the Atten-
tion operation, the absence of model parameters in Attention
makes this decision has little impact on efficiency as there
is no benefit of reusing model parameters across multiple
requests.

Figure 9b presents similar results for the 101B model that
uses all of the 8 GPUs in a single VM. From these results, we
can say that the ORCA engine and FasterTransformer have
comparable efficiencies in the implementations of CUDA
kernels and the communication between intra-layer partitions.
Note that FasterTransformer cannot use a batch size of 8 or
larger with the 13B model (16 or larger with the 101B model)
because of the fixed amount of memory pre-allocation for
each request’s Attention keys and values, which grows in
proportion to the max sequence length of the model (2048
for this case). In contrast, ORCA avoids redundant memory
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Figure 10: Median end-to-end latency normalized by the number of generated tokens and throughput. Label “orca(max_bs)” rep-
resents results from ORCA with a max batch size of max_bs. Label “ft(max_bs, mbs)” represents results from FasterTransformer
with a max batch size of max_bs and a microbatch size of mbs.

allocation by setting the size of buffers for the keys and values
separately for each request based on the max_tokens attribute.

Next, we go one step further and experiment with the 175B
model, which splits the layers into two inter-layer partitions.
In this case, for better comparison, we disable pipelined execu-
tion of the inter-layer partitions for both systems. For Faster-
Transformer, we set the size of a microbatch to be equal to the
batch size to disable pipelining. As shown in Figure 9c, the
ORCA engine outperforms FasterTransformer by up to 47%.
We attribute this performance improvement to the control-
data plane separation described in Section 4.1. We omit the
341B model as it has similar results compared to the 175B
model.

6.2 End-to-end Performance

Now we assess the end-to-end performance of ORCA by
measuring the latency and throughput with the synthesized
request trace under varying load. When synthesizing the
trace, we sample each request’s number of input tokens from
U(32,512), a uniform distribution ranging from 32 to 512
(inclusive). The max_gen_tokens attributed is sampled from
U(1,128), which means that the least and the most time-
consuming requests require 1 and 128 iterations of the model
for processing, respectively.

Unlike the microbenchmark shown in Section 6.1, to mea-
sure the end-to-end performance, we test the entire ORCA
software stack including the ORCA scheduler. Client requests
arrive to the ORCA scheduler following the synthesized trace
described above. We report results from various max batch
size configurations. For FasterTransformer that does not have
its own scheduler, we implement a custom scheduler that re-
ceives client requests, creates batches, and injects the batches
to an instance of FasterTransformer. We make the custom
scheduler create batches dynamically by taking at most max
batch size requests from the request queue, which is the most
common scheduling algorithm used by existing serving sys-
tems like Triton [7] and TensorFlow Serving [42]. Again,
we report results from various max batch size configurations,
along with varying microbatch sizes, an additional knob in
FasterTransformer that governs the pipelining behavior (see
Section 4.2).

Figure 10 shows median end-to-end latency and throughput.
Since each request in the trace requires different processing
time, which is (roughly) in proportion to the number of gener-
ated tokens, we report median latency normalized by the num-
ber of generated tokens of each request. From the figure, we
can see that ORCA provides significantly higher throughput
and lower latency than FasterTransformer. The only excep-
tion is the 101B model under low load (Figure 10a). In this
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Figure 11: Median end-to-end latency and throughput, using
the 175B model with traces composed of homogeneous re-
quests. We do not normalize the latency since all requests
have the same characteristic.

case, both ORCA and FasterTransformer do not have enough
number of requests to process in a batch. That is, the latency
will mostly depend on the engine’s performance, which is
shown in Figure 9b. As the load becomes heavier, ORCA
provides higher throughput with a relatively small increase
in latency, because the ORCA scheduler makes late-arrived
requests hitch a ride with the current ongoing batch. In con-
trast, FasterTransformer fails to efficiently handle multiple
requests that (1) arrive at different times; (2) require differ-
ent number of iterations to finish; or (3) start with different
number of input tokens, resulting in a peak throughput of 0.49
req/s and much higher latency. If we use the 175B or 341B
model (Figures 10b and 10c) that employs more than one
inter-layer partitions, ORCA outperforms FasterTransformer
under every level of load in terms of both latency and through-
put, resulting in an order of magnitude higher throughput
when we compare results at a similar level of latency. For
example, to match a median normalized latency of 190ms for
the 175B model, which is a double of the normalized execu-
tion time (by the number of generated tokens) of “orca(128)”
shown in Figure 9c, FasterTransformer provides a throughput
of 0.185 req/s whereas ORCA provides a throughput of 6.81
req/s, which is a 36.9x speedup.

Varying batch size configurations. Figure 10 shows that
the increase of the max batch size of ORCA results in a higher
throughput without affecting the latency. This is because the
iteration-level scheduling of ORCA resolves the problem of
early-finished and late-joining requests. Nevertheless, there is
no guarantee that increasing the batch size will not negatively
affect the latency, for arbitrary hardware settings, models, and
workloads. As mentioned in Section 4.2, the max batch size

must be set carefully by considering both the required latency
and throughput requirements.

Interestingly, larger max batch size in FasterTransformer
does not necessarily help improving throughput. By testing
all possible combinations of max batch size (max_bs) and
microbatch size (mbs) on all models under varying load, we
find that (max_bs, mbs) = (1, 1) or (8, 8) are the best op-
tions. Per our discussion in Section 4.1, FasterTransformer’s
microbatch-based pipelining can be less efficient because the
engine is going to process at most mbs number of requests
in the batched manner, which explains why the configura-
tions with the maximum possible mbs (which is the same
as max_bs) have better performance than others. In addition,
while increasing max_bs can improve performance due to the
increased batch size, at the same time, this also increases the
likelihood of batching requests with large difference in the
number of input tokens or the number of generated tokens. In
such cases, FasterTransformer cannot efficiently handle the
batch because (1) for the first iteration of the batch, Faster-
Transformer processes requests as if they all had the same
input length as the shortest one; and (2) early-finished requests
cannot immediately return to the clients.

Trace of homogeneous requests. We test the behavior of
ORCA and FasterTransformer when using a trace of homoge-
neous requests, i.e., all requests in a trace have the same num-
ber of input tokens and the same max_gen_tokens attribute.
Since all requests require the same number of iterations to
finish processing, the problem of early-leaving requests does
not occur for this trace. As a result, now the increase of the
max_bs has a noticeable positive impact on the performance
of FasterTransformer, as shown in Figure 11. Still, ORCA out-
performs FasterTransformer (max_bs=8) except for the case
using a max batch size of 1, where ORCA degenerates into a
simple pipeline of the ORCA workers that does not perform
batching.

7 Related Work and Discussion

Fine-grained batching for recurrent models. We would
like to highlight BatchMaker [23] as one of the most relevant
previous works. BatchMaker is a serving system for RNNs
that performs scheduling and batching at the granularity of
RNN cells, motivated by the unique RNN characteristic of re-
peating the same computation. Once a request arrives, Batch-
Maker breaks the dataflow graph for processing the request
into RNN cells, schedules execution at the granularity of cells
(instead of the entire graph), and batches the execution of iden-
tical cells (if any). Since each RNN cell always performs the
exact same computation, BatchMaker can execute multiple
RNN cells in a batched manner regardless of the position (i.e.,
token index) of the cell. By doing so, BatchMaker allows a
newly arrived request for RNN to join (or a finished request
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to leave) the current executing batch without waiting for the
batch to completely finish.

However, BatchMaker cannot make batches of cells for
Transformer models because there are too many distinct cells
(a subgraph that encapsulates the computation for processing
a token; Figure 1c) in the graph. Each cell at a different to-
ken index t must use a different set of Attention Keys/Values.
As the cell for each ¢ is different, the graph comprises L dif-
ferent cells (L denotes the number of input and generated
tokens), significantly lowering the likelihood of cells of the
same computation being present at a given moment (e.g., in
Figure 10, L ranges from 33 =32+ 1 to 640 = 512+ 128).
Thus execution of the cells will be mostly serialized, making
BatchMaker fall back to non-batched execution. BatchMaker
also lacks support for large models that require model and
pipeline parallelism.

While BatchMaker is geared towards detecting and aligning
batch-able RNN cells, our key principle in designing ORCA is
to perform as much computation as possible per each round of
model parameter read. This is based on the insight that reading
parameters from GPU global memory is a major bottleneck
in terms of end-to-end execution time, for large-scale models.
Adhering to this principle, we apply iteration-level scheduling
and selective batching to process all “ready” tokens in a single
round of parameter read, regardless of whether the processing
of tokens can be batched (non-Attention ops) or not (Attention

ops).

Specialized execution engines for Transformer models.
The outstanding performance of Transformer-based models
encourages the development of inference systems specialized
for them. FasterTransformer [4], LightSeq [61], TurboTrans-
formers [22] and EET [36] are such examples. Each of these
systems behave as an backend execution engine of existing
serving systems like Triton Inference Server [7] and Tensor-
Flow Serving [42]. That is, these systems delegate the role
of scheduling to the serving system layer, adhering to the
canonical request-level scheduling. Instead, ORCA suggests
to schedule executions at a finer granularity, which is not pos-
sible in current systems without changing the mechanism for
coordination between the scheduler and the execution engine.
Note that among these systems, FasterTransformer is the only
one with the support for distributed execution. While systems
like Megatron-LM [3] and DeepSpeed [1] can also be used for
distributed execution, these systems are primarily optimized
for large-scale training rather than inference serving.

Interface between serving systems and execution engines.
Current general-purpose serving systems such as Triton In-
ference Server [7] and Clipper [16] serve as an abstraction
for handling client requests and scheduling executions of the
underlying execution engines. This approach is found to be
beneficial by separating the design and implementation of
the serving layer and the execution layer. However, we find

that the prevalent interface between the two layers is too re-
stricted for handling models like GPT [12], which has the
multi-iteration characteristic. Instead, we design ORCA to
tightly integrate the scheduler and the engine, simplifying the
application of the two proposed techniques: iteration-level
scheduling and selective batching. While in this paper we
do not study a general interface design that supports the two
techniques without losing the separation of abstractions, it
can be an interesting topic to explore such possibility; we
leave this issue to future work.

8 Conclusion

We present iteration-level scheduling with selective batch-
ing, a novel approach that achieves low latency and high
throughput for serving Transformer-based generative mod-
els. Iteration-level scheduling makes the scheduler interact
with the execution engine at the granularity of iteration in-
stead of request, while selective batching enables batching
arbitrary requests processing tokens at different positions,
which is crucial for applying batching with iteration-level
scheduling. Based on these techniques, we have designed
and implemented a distributed serving system named ORCA.
Experiments show the effectiveness of our approach: ORCA
provides an order of magnitude higher throughput than current
state-of-the-art systems at the same level of latency.
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