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Figure 1. Our AMS model for dense hair simulation is capable of handling complex settings with a large number of strands, efficiently
simulating scenarios such as hair under wind (left, 14, 718 strands at 67 FPS), hair-face contact (middle, 7, 528 strands at 156 FPS), and
hair interacting with complex objects (right, 10, 298 strands at 114 FPS), all in real-time.

Abstract

We propose a novel Augmented Mass-Spring (AMS) model
for real-time simulation of dense hair at strand level. Our
approach considers the traditional edge, bending, and tor-
sional degrees of freedom in mass-spring systems, but in-
corporates an additional one-way biphasic coupling with
a ghost rest-shape configuration. Trough multiple evalua-
tion experiments with varied dynamical settings, we show
that AMS improves the stability of the simulation in com-
parison to mass-spring discretizations, preserves global fea-
tures, and enables the simulation of non-Hookean effects.
Using an heptadiagonal decomposition of the resulting ma-
trix, our approach provides the efficiency advantages of
mass-spring systems over more complex constitutive hair
models, while enabling a more robust simulation of multi-
ple strand configurations. Finally, our results demonstrate
that our framework enables the generation, complex inter-

activity, and editing of simulation-ready dense hair assets
in real-time. More details can be found on our project page:
https://agrosamad.github.io/AMS/.

1. Introduction
Hair dynamics play a crucial role in enhancing the visual re-
alism of digital characters. However, simulating hair remains
one of the most challenging and resource-intensive tasks,
due to its thin, flexible structure, the interactions between
strands (including friction and collisions with both the body
and other hair strands), and the sheer volume of hair, which
can range from 100, 000 to 200, 000 strands on a single head.
Over the years, various techniques have been developed to
replicate hair dynamics, including sophisticated models like
the Discrete Elastic Rods (DER) approach [2]. However,
due to the high computational demands, simulations using
*The work was mainly conducted at Adobe Research.
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physics-based models are typically limited to hundreds of
strands for low-latency applications, which restricts their
uses in games and animation. To achieve interactive perfor-
mance, many systems simulate a smaller number of guide
strands and apply linear or neural interpolation techniques to
upsample the strand count in real time. While this approach
improves performance, it often sacrifices fidelity, particularly
in areas with complex strand collisions.
In recent efforts to simulate a larger number of strands in real
time, more efficient integration routines [5] that parallelize
DER-based physics models have emerged, alongside data-
driven methods using neural networks to predict hair dynam-
ics. However, these methods face robustness issues in han-
dling outlier shapes and dynamic settings and dealing with
complex interactive scenes and intricate hairstyles. In this
paper, we propose a novel Augmented Mass-Spring (AMS)
model for real-time dense hair simulation. Standard Mass-
Spring (MS) model [9] is methodologically simpler and
computationally cheaper than Discrete Elastic Rod (DER)
models or neural-based methods. However, by design, the
MS model struggles to capture global strand behavior, lead-
ing to issues such as instability, excessive sagging, and a
loss of hair structure during simulation. To address these
limitations, we introduce several key augmentations to the
MS model. For improving the stability of the system and en-
coding global strand features, we design a novel but simple
scheme. We incorporate one-way biphasic interactions, com-
bined with a ghost rest-shape, applied to the particles along
the hair strands (Figure 2). This approach stabilizes the sim-
ulation while preserving global structural integrity. To main-
tain the dynamic realism and computational efficiency of MS
models, we design a two-stage hybrid Eulerian/Lagrangian
scheme that integrates fluid system and particle system to
handle hair interactions. This combination allows us to simu-
late intricate hair behavior without sacrificing performance.
We evaluate our framework through comparative experi-
ments across various dynamic and interaction settings, and
additionally showcase strand-level interactive simulations
and grooming of dense hair on a consumer-grade computer,
utilizing less than 1 gigabytes of GPU memory. To the best
of our knowledge, AMS is the first framework to enable
real-time simulation of a wide range of hair and facial hair
styles, including curly hair, asymmetrical styles, and pony-
tails, while having the capability of capturing fine collision
details when interacting with complex geometries (Figure 1)
and handling extreme forces, such as those encountered
during intense motion, like on a roller coaster (Figure 10).

2. Related Work

Here we discuss the physics-based hair simulation model
and the recently emerged neural-based approaches.

2.1. Physics-based Approaches

Physics-based hair simulation methods vary in the geometric
and constitutive models they use to simulate either individ-
ual hair strands or clumps of hair. Approximating hair as
large bundles has been explored through various techniques,
including cubic lattice representations [21], volumetric mod-
els [11, 24], and 2D strips [10]. While these approaches
are typically very efficient, they are limited in their ability
to capture effects and interactions that require modeling at
the level of individual strands. In contrast, individual hair
strands have been modeled using mass-spring systems [17]
and multi-body chains [4]. Some approaches, such as the use
of lattice deformers with additional springs [19], enhance
system stability, while others focus on efficient solvers and
improved hair-body interactions [9].
More physically accurate and complex models, such as the
super-helix scheme [3], DER [2], and exponential time in-
tegrators [15, 16], provide greater realism but at the cost
of significantly higher computational demands. Recently,
Daviet et al. [5] made significant engineering advancements
to accelerate the DER model by parallelizing strand computa-
tions, enabling the simulation of over 10, 000 guide strands
in real-time. This approach significantly improves the fi-
delity of real-time hair simulation. However, despite these
optimizations, DER-based methods remain computationally
complex for simulating strand dynamics, making them chal-
lenging to apply in more intricate interactive scenarios with
complex hairstyles. Additionally, these methods require spe-
cialized integration routines to address sagging artifacts [7].
In this context, we propose AMS as an evolution of tradi-
tional mass-spring schemes, enabling more robust and di-
verse hair dynamics simulations. This approach improves
the fidelity of mass-spring-based hair simulations while pre-
serving the efficiency advantages of these models.

Sagging and Progressive Shape Change Sagging is a
common artifact in various constitutive models, caused by
out-of-equilibrium forces that make objects deviate from
their intended configurations. To address this issue, the stan-
dard approach is to fine-tune or optimize the material pa-
rameters of the model to achieve force equilibrium at initial-
ization [1, 7, 8]. However, methods specifically designed to
prevent sagging often introduce a new problem: after motion,
the hair tends to return to its initial configuration, which is
unrealistic. In reality, hair does not always revert to its origi-
nal state after being blown or swayed. In contrast to previous
sagging-handling techniques, AMS only requires adjusting
the biphasic coupling coefficients to control the degree of
sagging. This allows for a progressive shape change during
motion while maintaining the overall integrity and curliness
of the hair.
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2.2. Neural-based Approaches
With the rise of machine learning in physics, recent research
has begun exploring neural approaches to predict hair dy-
namics using data generated by physics simulators, with the
aim of accelerating animation. One line of work focuses
on predicting individual hair strand shapes based on grav-
ity direction and head pose [25]. Another approach uses
deep learning to add fine details to interpolated dense hair
from sparse guide strands [13, 20]. While these methods can
achieve real-time results, they are heavily dependent on the
distribution of the training data, limiting their applicability to
the data’s domain. Consequently, these models may struggle
in scenarios outside their training data, leading to gaps in
performance when faced with unfamiliar cases. In practice, it
is infeasible to generate training data that covers all possible
scenarios, given the vast combinations of internal parameters,
external forces, and collision situations. Furthermore, the
grooms produced by these methods lack embedded dynamic
information, causing their behavior to potentially deviate
significantly from the original intent during motion.
In contrast, digital grooming within our dense hair simu-
lation framework adheres to physical constraints even for
manipulated strands, ensuring that the final groom will ex-
hibit predictable dynamic behavior and handling complex
hair-solid interactions.

3. Formulation
In this section, we introduce our augmented mass-spring
formulation, and describe how we handle hair-hair and hair-
solid interactions.

3.1. Augmented Mass-Spring Model
In a general MS scheme, each hair strand is discretized as
particles connected by springs, providing edge, bending,
and torsion degrees of freedom. To avoid issues such as ill-
defined torsion springs and collapsed tetrahedra formed by
consecutive particles, the MS scheme introduced by Selle
et al. [19] incorporates additional ghost particles/springs
and an altitude spring, as shown in Figure 2, middle. While
this model is capable of producing vivid hair dynamics, it
requires highly stiff springs to preserve local hair features
and reduce jittering. The necessity for such stiff springs,
however, can lead to numerical instabilities and limit the
time step size of the simulation [23]. Furthermore, due to
the local nature of spring connection (between neighboring
particles) there is significant sagging at initialization and a
loss of global hair features. To address these challenges, we
propose an augmented mass-spring formulation.

3.1.1. Model Description
We consider the basic edge, bending, and torsion springs,
for which an uniform spring constant κL is used, as well
as a weakly interaction with a ghost rest-shape via one-way

𝒅𝜽𝒊"𝟏𝒅(𝒙𝒊, 𝒚𝒊)

Initial Status Dynamic Status

A strand MS AMS AMS

𝒚𝒊
𝒙𝒊 𝒚𝒊 𝒙𝒊

𝒙𝒊"𝟏𝒚𝒊"𝟏

5 particles 9 particles 5 particles

Figure 2. Left we show the initial status of schematics of a hair
strand discretized with particles (left); constructed as MS (middle)
with edge (green), bending (blue), and torsion (red) springs and
additional strand ghost particles/springs (blue and purple, respec-
tively) and altitude springs (yellow) added to ensure stability; and
constructed as our AMS (right), where, instead, we use a ghost
rest configuration (shown with dot circles) with one-way biphasic
springs (purple outline). Note that, in general, MS needs 2N − 1
coupled particles, while AMS only uses the original N . On the right,
we show deviations of the strand from its rest-shape. We implement
an integrity spring, with stiffness κI , and tension proportional to
the deviation distance between a particle and its ghost; we also use
an angular spring, with stiffness κα, and tension proportional to
the deviation angle dθ. Together, these springs form the biphasic
connection between the ghost rest-shape and the simulated strand.

springs that connect each particle with their corresponding
ghost in the rest configuration, as demonstrated in Figure 2,
right. Moreover, in general, MS needs 2N − 1 coupled par-
ticles, while AMS uses only the original N particles. This
difference between models makes AMS more efficient in
terms of memory, as only a matrix with half the size of that
in MS is needed to solve during each iteration.

3.1.2. Biphasic Interaction
Given a discretized strand containing n particles with po-
sitions x0, ...,xn−1, we define yi to be the position of the
ghost corresponding to the i− th particle. The first part of
the interaction uses an integrity spring with zero rest length
and tension TI computed as

TI = κId(xi,yi) , (1)

where κI is the spring constant, and d : R3×R3 → R3 is the
distance function between two vectors. This spring connects
each particle to its corresponding ghost configuration. More-
over, note that, at initialization, xi = yi, ∀i ∈ {1, ..., n}.
We also introduce an angular spring, so that, if dθi+1 is
the angle between segments xiyi+1 and xixi+1, then the
tension of the spring Tα is given by

Tα = καdθi+1 , (2)
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where the spring connects the (i+ 1)th particle to its ghost.
At initialization, all the edges are aligned to the ghost coun-
terpart, so that dθi+1 = 0 ∀i ∈ {1, ..., n}. Each pair of
springs between ghost and real particles act in a biphasic
fashion, i.e., they are connected in parallel.

3.1.3. Linearization
We proceed as before, letting xn

i , yn
i , vn

i , and wn
i denote,

respectively, the position of each ghost-real pair, and their
correspondent velocities. The superscripts denote the current
time step. Furthermore, the vectors Xn,Y n,V n,W n ∈
R3N hold the position and velocities of the complete ghost-
real strand pair. Using this notation, the backward Euler
equations from time tn to tn+1 can be written as

Xn+1 = Xn +∆tV n+1 , (3)

V n+1 = V n +∆tM−1
(
F n + Sn+1 −GV n+1

)
, (4)

where ∆t = tn+1 − tn, M ,G ∈ R3N×3N are the mass
and damping coefficient matrix, respectively; the matrices
F n,Sn+1 ∈ R3N×3N , on the other hand, denote the total
external and internal forces. In particular, each entry sn+1

i

of Sn+1 is computed as

sn+1
i =

∑
j∈N (i)

κi,j

((
xn+1
j − xn+1

i

)T
d̂
n+1

i,j − li,j

)
d̂
n+1

i,j ,

where the stiffness κi,j and rest-length li,j characterize the
spring connecting particles i and j, the set N contains all
particles connected to i, and the direction vector is computed
as

d̂
n+1

i,j =
xn+1
j − xn+1

i

∥xn+1
j − xn+1

i ∥
.

We follow the linearization proposed by Selle et al. [19],
where the direction vector is kept fixed so that d̂n+1 → d̂n,
and the internal force terms become

sn+1
i =

∑
j∈N (i)

κi,j

(
∥xn

j − xn
i ∥ − li,j

)
d̂
n

i,j (5)

+
∑

j∈N (i)

κi,j∆tDn
i,j

(
vn+1
j − vn+1

i

)
,

where Dn
i,j =

(
d̂
n
)T

d̂
n

is the direction matrix for particles
i and j. The first term in this expansion corresponds to the
explicitly integrated elastic force, while the second term de-
scribes the damping of the spring, fixed at κi,j∆t, to ensure
stability in this semi-implicit discretization.

3.1.4. Integration
Given the expansion in Eq. (5), we can write the internal
force vector as

Sn+1 = Ŝ
n
+∆tCnV n+1 , (6)

where Ŝ
n

is the elastic term at t = n, and the connectivity
matrix Cn ∈ R3N×3N is composed of block matrices cn ∈
R3×3, computed as

cnij =


κi,jD

n
i,j , j ∈ N (i) ,

−
∑

j∈N (i) κi,jD
n
i,j , i = j ,

0 ∈ R3×3 , else .
(7)

Note that, since our rigid-body ghost configuration is one-
way coupled with the real particles, we can include the ghost
interaction directly in the elastic term Ŝ

n
, as well as by

adding the velocity term separated as the external interaction
κτ∆tDn

g,iw
n+1
i , and the damping −κτD

n
g,iv

n+1
i , where

κτ is a dummy index for the integrity κI and angular κα

spring constants, and the ghost direction matrix Dn
g,i is de-

fined as

Dn
g,i =


(
d̂g,i

)T

d̂g,i ∥xn
i − yn

i ∥ ≠ 0 ,

0 ∈ R3×3 else .
(8)

This separation of ghost terms allows to compute first
the ghost rigid-body dynamics and then update the real
strand dynamics using an N × N matrix, as opposed to
an (2N − 1)× (2N − 1) matrix in a two-way coupled sys-
tem. Combining all the interaction terms, we can express the
implicit Euler step E as(

I +∆tM−1G−∆t2M−1Cn
)
V n+1 = (9)

V n +∆tM−1
(
F n + Ŝ

n
)
.

3.2. Hair Interactions
We implement a two-stage hybrid Eulerian/Lagrangian ap-
proach, resembling that of [14]. In the first stage, we rasterize
hair segments into a dynamic background Eulerian volume
that moves rigidly with the mesh (as opposed to the static
volume formulation of McAdams et al. [14]), and solve the
equivalent fluid system using a FLIP/PIC scheme. Then,
we transfer the resulting velocity back to the particles, ef-
fectively preconditioning the velocity vector, and resolve
detailed Lagrangian collisions in a second stage.

3.3. Hair-Solid Collisions
The last step of an iteration corresponds to final velocity and
position corrections to account for solid collision response.
Having a pre-computed SDF σhead : R3 → R of the head,
with an associated velocity field vhead : R3 → R3, we
first check for particles that will be updated into an invalid
position σhead(x+∆tv) < 0. For these cases, we first update
the velocity by

v
′
= vhead+max

(
0, 1− µ

∥vN − vheadN ∥
∥vT − vheadT ∥

)
(vT − vheadT ) ,

4



where vhead = vhead(x+∆tv), and the sub-indices N and
T denote the normal and tangential components of velocities
when projected on the level-set normal ∇σhead(x + ∆tv).
When the targeted positions of particles are still inside of the
head, we pushed them further in a second stage by setting

x
′
= x+

(
∇σhead

∥∇σhead∥
σhead

)(
x+∆tv

′
)
. (10)

4. Algorithmics
The augmented mass-spring model described in the previous
section provide the basis of our simulation framework. The
procedure, summarized in Algorithm 1, updates the particle
dynamics on each iteration.

ALGORITHM 1: Time integration procedure of our frame-
work.

Input: Current hair strands and mesh.
Output: Updated particles/mesh.

1 Procedure:
2 — Compute ∆t

′
= ∆t/M .

3 — Define Xn+1
0 = Xn .

4 — Define V n+1
0 = V n .

5 for i = 1; i ≤ M do
6 — Compute the intra-particle and biphasic interaction
7 terms, as described in Section 3.1.3 .
8 — Solve the implicit Euler step for velocity update

9 given by V n+1
i = E .

(
Xn+1

i−1 ,V
n+1
i−1 ,F

n,∆t
′
)

10 — Update Position Xn+1
i = Xn+1

i−1 +∆t
′
V n+1

i .
11 end
12 — Apply inextensibility constraints to modify V n+1

M and
Xn+1

M .
13 — Rasterize velocities into dynamic background volume.
14 — Solve equivalent system through FLIP/PIC routine.
15 — Transfer velocity back to particles and resolve detailed

collisions.
16 — Resolve hair-solid collisions as described in

Section 3.3 .

Numerical Integration We first embed the head mesh S
(or other solid meshes in the scene) within two 3D volumes
ΩInt,SDF ∈ R3 which we use for hair-hair interactions and
SDF computation, respectively. Depending on the specific
use of altitude springs and ghost configuration, the mass-
spring model of Selle et al. [19] forms a banded matrix with
seven to nine non-zero entries per particle, which represent
the local connectivity of the system. Since we do not use
two-way coupled ghosts or altitude springs, the resulting
numerical system in our framework is strictly heptadiagional,
which means the LU decomposition can be solved exactly
using only two iterations, in a similar fashion as the solvers
used in [9] and [22]. In general, the implicit system for a

strand will have the form AV = b, where the biphasic
interaction is incorporated into b, and, considering the edge,
bending, and torsional degrees of freedom, the only non-zero
elements in row i are those at j = i− 3, . . . , i+ 3. In turn ,
we can write the system as

Ai,j =

{
−∆t2M−1

i κi,jDi,j , |i− j| ≤ 3 ,

0 , otherwise .

Ai,i =
(
1 + ∆tM−1

i Gi

)
I +

∑
k∈N (i)

∆t2M iκi,kDi,k .

bi = V n
i +∆tM−1

i

(
F n + Ŝ

n
)
.

This represents a linear equation in R3 and can be solved
using a single forward and backward pair of sweeps. The first
sweep corresponds to the decomposition A = LU , where
the strict band size of A implies that Li,j = U i,j = 0 for
i− j < 3 and j− i > 3, respectively. For the other entries in
the decomposition, we first do the forward sweep to compute

Li,j = Ai,j −
j−1∑

k=max(1,i−3)

Li,kUk,j ,

V
′

i = (Li,i)
−1

bi − i−1∑
j=max(0,i−3)

Li,jv
′

j

 ,

with the intermediate vector V
′
= L−1b. Next, the back-

ward sweep yields

U i,j = (Li,i)
−1

Ai,j −
i−1∑

k=max(1,j−3)

Li,kUk,j

 ,

V i = V
′

i −
min (i+3,N)∑

j=i+1

U i,jV j ,

where the final vector V is given by the relation UV = V
′
.

Non-Hookean Effects To simulate the progressive loss
of hair shape features under extreme forces, we introduce
non-linear tension responses in AMS by parametrizing an
elongation curve for the integrity tension TI which accounts
for non-Hookean behavior, as demonstrated in Figure 3.

5. Experiments
We present a variety of results simulated with our
C++/CUDA framework, implemented as described in the pre-
vious section. Table 1 provides an overview of the different
experiments presented throughout this section, including the
values of relevant parameters. The computation times listed
in Table 1 are measured on an up-to-date desktop computer

5



0 20 40 60 80 100
Elongation (% of Rest Length)

0

1000

2000

3000

4000

5000

6000

7000
Te

ns
io

n 
(N

)
Spring Tension Response
Non-Hookean Transition (50%)
Breaking Point (100%)
Hookean Region
Non-Hookean Region

Figure 3. Parametrization plot for incorporating non-Hookean re-
sponses in the TI term of the biphasic coupling.

Table 1. Overview of the relevant parameters used in the scenes
presented in this paper. Time T is listed in ms. Unless other-
wise mentioned, identical parameter values of [κL] = 106 Nm−1,
[κI ] = 102 Nm−1, [κα] = 102 N rad−1 are used in all simula-
tions. We used a grid resolution of 1283 for Eulerian computations.
Peak GB for our largest asset was 0.58.

Fig. Scene # Strands # Particles T

4 Single Strand 1 30 0.01
5 Wisp Comparison 480 14k 0.02
6 Wig 10, 422 214k 1.9
7 Hand Interaction 15, 000 450k 15.2
8 Hollow Sphere 10, 298 308k 1.8
1 Wind 14, 718 294k 14.9
1 Asymmetric Style 7, 528 150k 6.4
9 Beard 1, 100 22k 0.03

10 Roller-Coaster 7, 500 225k 7.4
11 Digital Grooming 7, 905 166k 6.2

running our simulation framework on a NVIDIA GeForce
GTX 3080 Ti GPU. Unless otherwise mentioned, the assets
we used were generated using the parametric hair model of
[6]. We will make our source code publicly available upon
acceptance.

5.1. Ablation Studies

We first study the impact of the biphasic interaction terms in
our augmented mass-spring formulation.

5.1.1. Global Features

In Figure 4, we present the results for a single strand simu-
lated with κα = 0 Nrad−1 in AMS, alongside simulations
using MS with increasing spring tensions. Despite the local
tensions being orders of magnitude higher in MS, the strand
loses its shape at initialization, and, for even greater tensions,
the system becomes unstable. In contrast, the integrity ten-
sion TI in our formulation effectively prevents the loss of
global features by directly coupling the dynamic particles to
the ghost rest configuration.

Figure 4. Simulation of a single strand using our model and MS.
Starting from a rest shape configuration, our method preserves the
global features by setting κL = 107 Nm−1, κα = 0 Nrad−1, and
κI = 102 Nm−1, while in MS, the shape is not maintained even as
κL increases, eventually leading to instability.

5.1.2. System Stability
In Figure 5, we assess the impact of the angular tension Tα

in AMS by simulating a wisp of hair with our framework
using κL = 106 Nm−1, κI = 0 Nm−1, and decreasing
values of κα. The additional degree of freedom introduced
by the angular term in our formulation enhances the stability
of the system, allowing for the use of lower spring tensions
and, consequently, higher time step sizes. This improvement
enables real-time execution without compromising stability.

Figure 5. Wisp simulation generated using our framework, showing
progressively decreasing values of the angular coupling. As κα

decreases, the simulation becomes increasingly unstable, ultimately
collapsing at κα = 0, where our system is equivalent to MS.

5.1.3. Simulation Fidelity
To compare the simulation fidelity with the advanced hybrid
Cosserat-MPM model [7], we use the same real-world cap-
tured Wig model [12] and set up a similar wind condition,
running on comparable hardware, since the original paper
has not released its code. As shown in Figure 6, [7] simulates
1024 hair strands with a reported simulation time of 1.2 ms
per frame, while our approach requires only 0.04 ms for the
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same number of strands. For higher fidelity, we increase the
number of simulated strands to 10, 422 (full asset), with a
per-frame time of just 1.9 ms. Additionally, while [7] re-
quires specific optimizations during initialization to alleviate
sagging artifacts, our approach eliminates the need for such
initialization while effectively preventing sagging.

Figure 6. Qualitative comparison of the Curly-wig experiment. Top
is our simulation results. Bottom is the figure from Hsu.et al. [7].

5.2. Complex Dynamics
Next, we evaluate the performance of our framework in
more complex dynamic settings, including interactions with
additional geometries, non-standard hairstyles, and scenarios
involving rapid acceleration.

5.2.1. Object Interaction
In order to manage the intensive computations required for
complex hair models, in previous works, strand interpolation
is often applied to a limited set of guide strands, reducing
computational costs. However, this approach can lead to ar-
tifacts, particularly in scenarios involving intricate object
interactions. Figure 7 illustrates this effect with hair-hand
interaction, where we use 15k fully simulated strands along-
side Linear Hair Skinning (LHS) interpolation over 2048
guiding strands. We further investigate hair-solid interac-
tion in Figure 8, using 10, 298 fully simulated strands and
a neural interpolation model based on CT2Hair [20]. Un-
like traditional methods, neural-driven approaches depend
heavily on the training dataset and are constrained by its do-
main, often resulting in artifacts when handling new objects
or unexpected motions. Additionally, these models require
significant training effort, limiting flexibility in complex,
dynamic environments.

Figure 7. Hair interaction with hands, simulated using our frame-
work with 15, 000 simulated strands (left) and 128 guiding strands
(right) enriched with LHS interpolation. While more advanced hair
models often rely on interpolation to manage computational com-
plexity, this can lead to artifacts in complex simulation settings
(e.g., intersections with solids). In contrast, our framework gener-
ates plausible dynamics for dense hair assets in real-time, without
the need for interpolation.

5.2.2. Non-Standard Settings
Since MS lacks a mechanism for maintaining global struc-
ture, strands lose their intended shape across different
lengths, leading to uniform behavior regardless of strand
length. In contrast, the biphasic interaction in AMS enhances
simulation fidelity by accounting for these variations. This
advantage is especially evident in the simulation of non-
standard hairstyles, as shown in Figure 1, middle, where we
model an asymmetric style. In MS, the shorter portion of the
style behaves like fur, whereas our AMS approach captures
the distinct dynamics of each section, as demonstrated in
the supplemental material. Another significant application is
facial hair simulation. As shown in Figure 9, where we simu-
late a beard using both MS and AMS, the initial shape of the
beard is lost in MS. In contrast, our scheme preserves the
overall shape and character of facial hair, while producing
vivid dynamics.

5.2.3. Extreme Forces
Figure 10 illustrates the progressive hair shape change when
strands are subjected to the intense acceleration of a roller-
coaster. Our scheme is able to hold the initial hairstyle before
intense motion as well as to capture the after-ride hair scram-
ble since we explicitly parametrize non-Hookean responses
on the integrity coupling of the biphasic interaction.

5.3. Digital Grooming
Inspired by Daviet et al. [5], we explore the editing and in-
teraction capabilities of our model by enabling diverse user
inputs to transform existing hair assets into new configura-
tions. This is illustrated in Figure 11, where we use an input
(left) to compare purely geometrical trimming (center) to
our dynamic simulation-based approach (right). Purely geo-
metric approaches lack the flexibility to realistically respond
to conditions like wind or complex interactions among hair
strands and with external objects. In contrast, our real-time
framework enables strand-level editing of dense hair that
incorporates these essential dynamic effects, thus allowing a
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Figure 8. Simulation of hair interacting with a hollow sphere, using 128 guiding strands (left) with interpolation based on the neural approach
from [20] (middle), and 10, 298 fully simulated strands with AMS (left). The neural method increases the hair count without considering the
updated rest pose of the head or the introduction of new geometry in the scene (the sphere), resulting in interpolation artifacts and object
penetration. In contrast, our framework accurately models the complex interaction between hair and additional geometry, increasing the
fidelity throughout the simulation.

Figure 9. Time evolution (from left to right) of facial hair simulated
using MS (top) and AMS (bottom). Our augmented formulation
introduces key interactions that preserve the intended structure of
facial hair throughout the simulation, while in MS, strands lose
their overall form at initialization.

wider variety of realistic hairstyles to be generated from a
single setup. Corresponding videos can be found in supple-
mental materials.

6. Discussion
Due to the high computational cost of hair simulation, even
the most prestigious game productions cannot afford strand-
level hair animations. However, our AMS framework en-
ables real-time performance of complex hair dynamics and
hair-object interactions with affordable GPU memory con-
sumption, making it feasible to incorporate high-fidelity hair
simulations in games and significantly reduce the cost of hair
animation in films. To demonstrate this, in the supplementary
material, we showcase the real-time simulation of hair and
facial hair movements for Wukong [18], a hero character
from a recent AAA game, running on a laptop.

Limitation and Future Works. Despite the growing pop-
ularity of neural approaches, we demonstrate in this work
that data-driven methods are not a cure-all for simulation. By

Figure 10. Time evolution (from left to right, top to bottom) of hair
within a roller-coaster dynamics simulated using our framework.
The non-linear response in the biphasic interaction enables us to
capture the progressive loss of global hair features when strands
are subjected to intense deformation.

Figure 11. Digital grooming comparison: starting from an initial
input (left), we demonstrate purely geometrical trimming (center)
versus our dynamic simulation-based trimming (right) where the
hair shape changes due to the volume and length change, mimicking
real-world effects.

carefully designing physics-based models, we can achieve
both high-efficiency and high-fidelity simulation effects. Fu-
ture research could explore adapting AMS systems for cloth

8



simulation. As for limitations, our method is an approxima-
tion of real-world physics, optimized for speed and visual
quality, but it does not guarantee full compliance with real-
world physical behavior.
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Figure 12. Schematic representation of the tetrahedra formed be-
tween consecutive real particles (left), and the additional real-ghost
interaction in our formulation (right). The angular one-way force
enhances stability by preventing tetrahedron collapse when parti-
cles deviate from their original dihedral angles.

A. Biphasic Interaction

Despite various optimizations, DER-based methods remain
computationally intensive when simulating strand dynamics,
making them challenging to apply in complex interactive
scenarios involving intricate hairstyles. Consequently, we
focused on addressing the two primary limitations of the
more efficient MS method: stability and the loss of global
shape during initialization.
Based on the detailed study of Selle [19], stability issues
in MS arise from collapsed tetrahedra formed by springs
between consecutive strand particles. Because of this, our
approach introduces an angular interaction with the ghost
rest-shape configuration, which prevents tetrahedron col-
lapse by maintaining an augmented stable structure based on
the connections between ghost and real particles, as shown
in Figure 12. Despite the enhanced numerical stability, the
use of very stiff springs remains necessary to preserve global
features, which, in practice, reintroduces instabilities unless
extremely small time step sizes are employed. This con-
straint limits the feasibility of real-time applications. More-
over, while edge, bending, torsion, and angular interactions
maintain local shape fidelity, they fail to encode the global
hair structure. To address these challenges, we encode the
global features of the hair through the integrity interaction
with the rest shape, which establishes a relationship between
each particle and its corresponding ghost based on the total
displacement of the strand. This mechanism introduces an ad-
ditional force that mitigates sagging and preserves the global
shape, independently of the particle count in the discretiza-
tion, by counteracting the weight of consecutive particles.
It is important to note that the two couplings we introduce
for the biphasic interaction function as force perturbations

to prevent tetrahedral collapse and encode global features.
However, there is a potential risk that these additional forces
may interfere with the fidelity of the dynamics. To mitigate
this, we typically set the biphasic coupling constants several
orders of magnitude lower than those of the traditional local
springs, ensuring that the necessary perturbations are intro-
duced to enhance the MS model while preserving dynamic
accuracy.

B. Integrity Preprocessing

Although our system effectively preserves global hair fea-
tures, it still exhibits minor sagging effects during initializa-
tion. To mitigate this, we apply a technique similar to the
gravity pre-loading method proposed by [8], adapted to the
specific interactions relevant to our model. First we note that,
at initialization, all the strand springs as well as biphasic
terms are at equilibrium, so the only force acting on each
particle is due to its own weight w = mg. Because of this,
the initial sag stops until all the spring forces reach a new
equilibrium with the total hair weight. Moreover, all of the
internal Dofs and the angular interaction are given by the
input configuration and then evolve dynamically. However,
we can pre-process the integrity coupling of the interaction
TI in terms of the ghost configuration to achieve an equilib-
rium.
Specifically, we consider each particle i with position xi and
its corresponding ghost at position yi = xi +∆ri, where
∆ri is the vector joining both particles. Originally, ∆ri = 0
at initialization. However, we pre-process this value to ac-
count for sagging by setting

T I −wi = 0 , (11)

Developing this equation we get

κId(xi,yi)r̂i −wi = κI∥∆ri∥r̂i −wi = 0 . (12)

Solving this equation element-wise we finally get

∆ri =
m

κI
g . (13)

Translating the initial position of ghost particles to yi =
xi +∆ri enables us to eliminate sagging at initialization.

C. Procedural Growth

We use an heuristic approach for hair growth that is divided
into two stages. First, given a pre-selected set of triangles in
the mesh, we sample pn random root positions per triangle.
Then, we compute the initial strand direction p0

dir on each
position by weighting the per-vertex normal vectors of the
root using its barycentric coordinates, and adding a noise
vector with entries from the distribution U(−1, 1). During
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Figure 13. Parameter space exploration showing the impact of in-
creasing values of helix radius ph and step size pτ in our procedural
hair growth module. We can control the curliness and length of
generated hair with these two parameters.

Figure 14. Parameter space exploration showing the impact of
increasing values of the gravity influence parameter pγ and step
size pτ in our procedural hair growth module. We can control the
hair deviation in the y direction using different values for pγ .

a second stage, we add sequential vertices to the strand,
starting from the root. Specifically, we compute

pi
′

dir = pi−1
dir +pi−1

grav max
(
pΓ, 1− ∥pi−1

dir · (0, 1, 0)∥
)
, (14)

where pΓ fixes the maximum particle deviation, and the
procedural vector pi

grav accounts for strand changes in the
vertical direction, and is defined as

pi
grav = (0,−ipγ , 0) , (15)

with gravity influence parameter pγ . Then, to incorporate
curls into our procedural growth module, we perform an

additional update step

pi
dir = pi

′

dir + pΩ

(
pi

′

dir −Hi
)
. (16)

with spiral impact factor pΩ, and helix vector Hi described
by

Hi = ((phcos(ipfreq), 1, phsin(ipfreq)) , (17)

with helix radius ph. We demonstrate the generation capa-
bilities of our procedural growth scheme by performing two
parameter space explorations, as shown in Figures 13 and 14.
In both cases, we set pΓ = 0.2, pfreq = 1, and pΩ = 0.017.
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