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Abstract. As robots increasingly enter human-centered environments,
they must not only be able to navigate safely around humans, but also
adhere to complex social norms. Humans often rely on non-verbal com-
munication through gestures and facial expressions, and respect body
motion and language, when navigating around other people, especially
in densely occupied spaces. Consequently, robots also need to be able to
interpret body motion as part of solving social navigation tasks. To this
end, we present Gesture2Path, a novel social navigation approach that
combines image-based imitation learning with model-predictive control.
We observe the human and their environment with a neural network
operating on streams of images, generating point-to-point navigation
tasks solved with state-of-the-art model predictive control. We deploy
our human-aware policy on real robots and showcase the effectiveness of
our approach for the four gestures-navigation scenarios: left/right, follow
me, and make a circle. We validated our method based on in-situ ratings
of participants interacting with the robots. Our experiments show our
method can interpret complex human gestures and use them to generate
socially compliant trajectories for navigation tasks.
Keywords: Social navigation, gesture-based interaction, human-robot
interaction, imitation learning, model predictive control

1 INTRODUCTION
Situated agents should not only navigate safely around people, but should also
abide by social norms and respond to the full gamut of human behavior – in-
cluding nonverbal communication such as body language, gestures, and facial
expressions. A robot solving a navigation task must be able to interpret human
behavior and to carefully adjust its actions to be socially compliant. We refer
to this form of navigation task as Nonverbal Social Navigation. Social robotics
research has recently expanded to study respecting personal space [1] and so-
cial dynamics [41, 23], socially-acceptable behavior for approaching humans [20],
navigation among groups of people [24] and curating large datasets [22].

To solve navigation tasks, many existing approaches rely on point cloud data
obtained from LiDAR scanners (or semantic maps [10]) that provide real-time
information about the environment, including dynamic objects such as humans.
The captured point clouds are projected to 2-D occupancy maps. With these
maps existing policy algorithms – such as model predictive control (MPC) –
can efficiently solve complex navigation tasks with remarkable success. However,
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Fig. 1. Gesture2Path is a novel social navigation policy that combines image-based
imitation learning with model-predictive control to enable gesture-aware navigation.
Here we show our right gesture policy: A robot at its start location begins navigating
toward its goal (a). It encounters a person that indicates to the robot with a right
gesture to pass on their right (b). The robot interprets this gesture and drives around
the person in the intended manner (c) and then continues towards its goal (d).

while point cloud data is a powerful sensor modality for generating navigation
trajectories in the environment, it rarely provides the accuracy needed to inter-
pret intricate human behavior. Conversely, while RGB sensors do not provide the
depth information needed to solve navigation tasks, they produce high-resolution
images that allow the capture of nuanced gestures and facial expressions.

In this paper, we propose a novel gesture-aware navigation policy based on
imitation learning and MPC. We train a sequential neural network that enables
us to generate waypoints of navigation trajectories from a sequence of consecutive
images. Our goal is to train this network so that it predicts waypoints that are
socially compliant and adherent to the gestures of humans interacting with the
robot. Once the network is trained, the predicted waypoints are sent to an MPC
algorithm to control the robot. The sequential neural network serves as a high-
level planner, while the MPC algorithm provides low-level control. This setup
provides the benefits of both approaches: the sequential neural network allows
us to obtain nuanced information of human gestures from sequences of images,
while the MPC algorithm allows us to safely navigate the robot based on laser-
scanned point clouds.

To explore the effectiveness of our gesture-aware social navigation policy, we
define the four gesture scenarios: Left/Right, Follow Me, and Make a Circle.
For each scenario we define the gesture (e.g. pointing with the hand to the
left) and the robot behavior (e.g. drive left) so each gesture maps to a specific
robot behavior – an example is shown in Fig. 1. We then collected a dataset of
expert examples for each scenario by driving the robot with a human operator.
A collected trajectory is defined by a sequence of images and a sequence of
robot waypoints. We then train the sequential neural network on subsequences
of images to predict subsequences of future waypoints. The MPC algorithm then
computes the linear and angular velocities to drive from robots’ current position
to the predicted position of the sequential model.

We validate our gesture-aware social navigation policy based on in-situ ex-
perience ratings of humans interacting with the robots. To obtain these ratings
we follow a protocol for social navigation policies [34]. Each of our scenarios is
defined by a gesture as well as the start and end positions of the trajectory that
the robot is supposed to drive along, mirroring the training setup. Additionally,
we define a questionnaire based on a five-level Likert scale for each scenario.
Once a scenario is completed a participant is asked to provide their ratings for
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a specific scenario. We use this setup to compare our Gesture2Path policy with
a MPC policy as the baseline.

In summary, our contributions are: (1) we introduce Gesture2Path, a novel
gesture-aware social navigation policy that combines a sequential neural network
with MPC; (2) we show that our policy is able to interpret gestures to gener-
ate socially-compliant behavior in gesture-navigation scenarios; (3) we define a
canonical set of social navigation scenarios with gestures that can be replicated
and tested; (4) we use a novel validation protocol for social navigation scenarios
to compare our gesture-aware policy with a standard MPC policy.
2 PRIOR WORK
Due to its importance to robotics, research on social navigation has recently gar-
nered considerable attention, spanning a breadth of methods which we cannot
comprehensively discuss. For a general overview, interested readers are referred
to recent survey papers by Gao and Huang [17], Charalampous et al. [7], Mavro-
giannis et al. [28], Kruse et al. [27], Rios-Martinez [35], and Mirsky et al. [29].
The following discussion focuses on approaches to social navigation and human
robot interaction with methods closely related to our work.

A variety of researchers have explored gestures for robotic control. For tele-
operation, researchers used hand tracking with a Microsoft Kinect device [43]
[13], a Leap motion [42], or a camera to direct a robot’s end effector. For robot
navigation, [37], [38] extracted gestures from a Kinect sensor to generate naviga-
tion commands for a teleoperated robot in a non-social setting. [21] used hidden
Markov models to detect six gestures with a Kinect sensor and mapped them to
hand-crafted robot navigation behaviors. [6] used a wearable gesture detector to
control a mobile robot. Finally, [4] and [2] used imitation learning to replicate
human gestures on a robot platform.

Researchers have also examined gestures for social communication, such as
following [30], pointing [3] or drone-specific motions [32]. Prior work has also
aimed to recognize actions based on human-skeletons [8]. [19] modeled musical
improvisation as a series of gestures so a robot marimba player could improvise
with a human. In [31], researchers designed a gesture framework for humans to
collaborate with a co-worker robot; [14] approached a collaborative task between
humans and robots using a gesture framework. Other gesture-based human-robot
communication systems have been developed for settings where verbal commu-
nication may be challenging, such as emergency settings [11] or underwater [9].
Unlike the existing approaches (e.g., for gesture-aware UAV control) that mostly
generate unary control commands from the detected gestures, our work predicts
trajectories based on a representation that is learned from multi-modal sensor
data (RGB images + occupancy maps). Combined with MPC our method is
able to generate safe, efficient, and socially-compliant trajectories for solving
point-to-point navigation tasks.

3 METHOD
Our main goal is to develop a gesture-aware navigation policy which can guide
robots around humans in a socially compliant manner while responding to pro-
vided gestures. We define our Gesture2Path policy by combining a sequential
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Fig. 2. Overview of Gesture2Path: A sequential neural network trained via imitation
learning acts as a high-level planner to predict waypoint deltas from image sequences.
The predicted waypoint deltas are used to compute a world space waypoint that serves
as intermediate target position. MPC uses these intermediate target positions to com-
pute linear and angular velocities to drive the robot.

neural network as a high-level planner with MPC for low level control (Fig. 2).
The high-level planner identifies humans and the gestures they perform from
images, while the low-level controller navigates the robot from one waypoint to
another. The advantage of this setup is that the high-level planner and the low-
level controller complement each other. MPC performs well for navigating from
one waypoint to another, even around dynamic obstacles, based on point cloud
data obtained from the environment. However, MPC fails to detect humans and
their gestures as it does not use RGB data. Conversely, the high-level planning
neural network is able to detect humans and their gestures from sequences of
images, but fails to reliably predict waypoints for the navigation task.

3.1 Gesture-aware Social Navigation
To control a robot in response to a human and their gestures, we employ a
sequential neural network [39] that, given a history of observations, outputs
a sequence of future positions. We learn this model from demonstrations of
successful navigation trajectories of human-robot interactions and show that
the network is able to learn to interpret human gestures.

In more detail, we denote by s = (I,O, p) the robot state consisting of an
RGB image I from a headmounted camera, an occupancy grid O from a LiDAR
sensor, and a robot position p in the world coordinate frame. A demonstration
trajectory of length n can be described as a sequence of states: (s1, . . . , sn). An
occupancy map is defined as the 2D projection of a point cloud obtained from
a LiDAR scanner. Given a history of states, we aim to compute controls that
would result in the future robot positions as encoded by the demonstrations. In
particular, at step n we utilize a history of k states from the demonstration to
predict l future positions:

(pn+1, ..., pn+l) = Gesture2Path(sn, . . . , sn−k, g), (1)

where g is the goal position of the robot.
In theory, we could use a neural network to directly learn robot control

commands. Several approaches do learn direct mappings from pixels to motor
controls [25, 26, 33]. However, learning an end-to-end robot control policy re-
mains challenging, as methods tend to require large training datasets and easily
overfit to the underlying robot dynamics. Therefore, we employ MPC as a low
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level controller that, given an intermediate goal position, drives the robot to this
position while avoiding collisions. The MPC algorithm takes care of converting
target positions to low level torque controls.

To navigate a robot a MPC controller requires the intermediate next posi-
tion encoded in the robot frame. Thus, we need to convert the demonstrated
robot positions from world frame to a sequence of egocentric positions, each in
the frame of the previous position. This can be done by calculating the deltas
between subsequent positions: δi = pi − pi−1 for i = 1, . . . , l, which leads to the
final model formulation:

(δn+1, . . . , δn+l) = Gesture2Path(sn, . . . , sn−k, g). (2)

Sequential Model Architecture: We train the sequential model by simul-
taneously embedding subsequences of RGB images I, the occupancy maps O,
and the target deltas τ = g−pn into a joined latent space. Specifically, our neural
network architecture uses 3D convolutional layers to obtain two 64-dimensional
embeddings from RGB images and occupancy maps of the input subsequence
with a resolution of 256x256 pixels. To combine the target deltas (τ) with the
image embeddings we also project them into a 64-dimensional latent space. We
then add the embeddings and pass them to three dense layers to obtain a se-
quence of l position deltas (δ). For the last dense layer we use a linear activation
for regression. Fig. 3 shows this network architecture. Our goal for defining a
lightweight multi-modal architecture for detecting gestures is to ensure small
inference times (< 30ms).

While our policy is agnostic to the choice of the sequential model, we found
a common 3D-convolutional neural network similar to [5] provided the best per-
formance for our experiments. We train the network via imitation learning using
expert sequences of human-robot interactions captured by manually driving the
robot with a human operator ( Section 4.2). Instead of using a sequential model
to predict sequences of waypoint deltas from sequences of multi-modal input
frames (many-to-many), we also experimented with other architectures (many-
to-one, one-to-one) to only predict a single waypoint delta. However, we found
that a many-to-many architecture provides the best results for our experiments.

We train our sequential neural network on subsequences of the collected ex-
pert trajectories (full sequence). The training objective is to predict a sequence
of position deltas (with l steps into the future) based on a history of k previous
states. The goal is to use the predicted position deltas to compute an interme-
diate target position (pt) from the current position (pn). To train the model we
sample all possible subsequences from our dataset of expert trajectories.

Action Parameterization: We use MPC for low-level robot control. Specif-
ically, we formulate the goal following as an optimization problem and use an
iterative linear quadratic regulator (iLQR) solver, Trajax [16], that minimizes a
hand-engineered cost function, similar to [40, 18, 12]. The optimization problem
was solved at each control step and the predicted action at the first step (i.e.
velocity command) is sent to the robot. The inputs to MPC include the occu-
pancy grid and relative goal position; its cost function combines time-weighted
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Fig. 3. We use a 3D CovNet neural network architecture that jointly embeds sequences
of RGB images I, occupancy maps O, and target deltas τ into a fused embedding
space. The network is trained so as to predict sequences of position deltas that we use
to generate an intermediate goal position for an MPC algorithm.

goal penalties, margin-offset collision penalties, and a weighted control penalty;
and its action space is linear and angular velocities. This MPC policy provides
smooth navigation and fast reaction times for differential drive robots and is su-
perior in our tests to a re-implementation of the well-performing reinforcement
learning policy in [15].

We use MPC in two ways: first we establish a baseline, where we use the
algorithm to navigate from a start to a goal position without additional visual
inputs. Second, we use MPC for our gesture-aware policy by tracking waypoints
that are generated by the sequential neural network. In both cases, the action
space are linear and angular velocities.

For gesture-aware navigation, we use the sequential neural network described
in Section 3.1 to predict position deltas from a sequence of previous states.
From the position deltas (δ) we compute an intermediate target position pt =

pn +
∑i=n+l

i=n+1 δi for MPC based on the current position pn. The MPC algorithm
then computes an optimal path from the current position pn to the intermediate
target position pt. At every time step we collect the robot state sn. To generate
gesture-aware trajectories we use the neural network to make predictions every k
time steps (Fig. 2, Planning Loop), while the MPC algorithm runs at a frequency
of 10 Hz (Fig. 2, Control Loop). With k = 10, this means that the neural network
is used to predict a new intermediate target position every 10 time steps, while
the MPC algorithm continuously generates control commands to drive toward
the intermediate target position. The sequential network runs at 1 Hz to generate
waypoints for MPC, which runs at 10 Hz. This design choice ensures MPC can
plan a path from the robot’s current position to the predicted future target.
If the sequential network took longer than 10 Hz, the robot would stall, so we
aim for small inference times. Note that the number of previous states (defined
by k) used to make predictions with the neural network need not be the same
as the number of predicted position deltas (defined by l). The neural network
may be triggered to predict a new intermediate target before the robot reaches
the previous one. This ensures that the gesture-aware policy is susceptible to
changes in the observed gestures.

Moreover, as illustrated in Fig. 4, the trajectory represented by the pre-
dicted position deltas of the sequential neural network and the MPC-computed
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Predicted Position 
Deltas (  ) 

MPC TrajectoryPast Positions

Computed Target Position (pt)

Current Position (pn)

Fig. 4. Once the intermediate target position pt has been computed from the predicted
position deltas, we use MPC to compute an optimal trajectory from the current position
pn to the target position. Note that the trajectory represented by the predicted position
deltas and the computed MPC trajectory may diverge – we do not want to over-
constrain the MPC algorithm to find an optimal trajectory.

(a) Cicle (b) Follow (d) Left(c) Right

Fig. 5. We test Gesture2Path with three policies to respond to four gestures: circle
(a), follow (b), right (c), and left (d). For each scenario we only define the gesture
(e.g. pointing with the hand to the left), the corresponding expected robot behavior
(e.g. drive left), and the start and end positions of the robot trajectory. The robot
is tasked to navigate from its start position to a goal area (blue circle). A person is
standing in the center of the room and interacts with the robot by performing different
gestures to initiate the robots’ response.

trajectory may diverge. While we want the robot to closely follow the predicted
position deltas to implement gesture-aware behavior, we do not want to over-
constrain MPC to find an optimal trajectory from the current position to the
intermediate target position. The planning loop based on the sequential neural
network provides general direction while considering observed gestures, and the
control loop based on MPC ensures safe navigation. Similar to other imitation
learning approaches, our method for detecting body motions and gestures re-
quires a dataset of samples that faithfully represent the conditions the policy is
exected to operate in. However, in situations where the high-level planner fails –
e.g., when the current sequence of observation does not match the training data
distribution – the MPC algorithm still generates safe and efficient trajectories.

4 EXPERIMENT SETUP
The robots we use are 7 DOF mobile manipulators with a single arm and a rect-
angular base. Each robot is equipped with a head-mounted camera and a LiDAR
sensor. Robots also have access to an existing static map of their environment
to assist with localization and point-to-point navigation.

4.1 Gesture Scenarios
To test the capabilities of Gesture2Path, we use the protocol proposed in [34]
to define the four gesture scenarios (illustrated in Fig. 5): Circle, Follow, and
Left/Right:
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Circle: In the make a circle scenario, the demonstrator would stand in the
center of the room and raise their right hand straight up to the ceiling. The
robot operator then drives the robot to make a counterclockwise circle before
passing the human on their left (Fig. 5 a).

Follow: In the follow me scenario, the demonstrator would lift both hands
out to the side while keeping their feet together, making a “T” shape. After
holding this shape for 2 seconds, they would turn over their left shoulder and
walk along a wide arc prior to passing through the end position region. Once the
gesture has been observed the robot operator would then drive the robot so as
to follow the demonstrator (Fig. 5 b).

Left/Right: In the left/right scenario, the demonstrator would stand in the
center of the room and put their arm out to the left or right while leaning in
that direction. The robot operator would then drive the robot to pass along the
side of the human’s outstretched arm (Fig. 5 c, d).

We selected these gestures based on the following criteria: (1) the robot solved
a navigation task beginning at one side of the room and ending at the other;
(2) the robot moved continuously from beginning to end without pausing or
stopping; (3) the gesture instructions would be simple and easy to teach the
experiment participants; (4) the gestures would correspond to clear changes in
robot behavior; (5) the gestures required the robot to react to a single partici-
pant. While the gestures used for the Circle and Follow scenarios were distinct,
the Left and Right gestures represented more subtle variations for the sequential
model to disentangle.

4.2 Data Collection and Training
To train our Gesture2Path policy we collected a dataset of 277 trajectories (40 for
follow, 30 for circle, 207 left and right). Each trajectory represents a 20-40 second
sequence that includes a human-robot interaction. The human performs one of
the four defined gestures, while the robot solves a point-to-point navigation task
from a start to a goal position. All training data was collected in the real world
in a large, open atrium space over several different days and times.

To collect our dataset we used the following procedure: an expert robot op-
erator would connect to the real robot using a Logitech F710 gamepad. The
robot operator would stand behind the robot and follow it while driving it for-
ward. The gesture demonstrator would begin by standing in the middle of the
room. Once the teleoperated robot started to move, the gesture demonstrator
would perform the gesture for 2-3 seconds. Depending on the gesture scenario,
the demonstrator would either stay in place or move appropriately.

We split the collected trajectories into 90% training and 10% validation data.
We then trained our sequential neural network on subsequences (k = 10, l = 10,
for most of our experiments) of RGB images and occupancy maps. For both data
modalities we use the raw frames normalized into a [-1, 1] range. We used the
Adam optimizer with a standard l2 loss and selected checkpoints of the network
for our policies based on the lowest l2 error measured on the validation dataset.
The training of our network usually converges after 120 epochs, which usually
takes 6 hours of training on a single V100 GPU.
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Fig. 6. Means and standard errors for all four questions for policy and gesture con-
dition. MPC is in grey and Gesture2Path is blue. Participants rated questions on a
scale of 1 Strongly Disagree to 5 Strongly Agree. Zero was reserved for Not Applicable.
Gesture2Path rated higher than MPC on all questions. We performed a paired t-test on
the MPC/Gesture2Path ratings for each gesture (i.e. comparing circle MPC to circle
Gesture2Path). All of these tests were statistically significant with a p-value < .01.
Gesture2Path performs better than MPC for each of these gesture scenarios.

4.3 Experiment Design
To validate the effectiveness of our gesture-aware policies we conducted a user-
study to obtain in-situ experience ratings. In the following, we discuss the setup
of our experiment for our Gesture2Path polices as well as for the MPC baseline.

User Study Design: We designed a within-subjects experiment where par-
ticipants performed the four gestures while the robot was running either Ges-
ture2Path or a baseline of the unmodified MPC policy. Note this baseline MPC
policy is itself a highly performant navigation policy, exceeding in our internal
tests a reimplementation of [15]. The study occurred in the same location where
the training data was collected.

Participants arrived at the location and filled out an introductory survey ask-
ing about their dominant hand and number of months they had been working
near these robots. The participants then performed each of the four gestures a
total of 70 different times in the center of the room. Each the trials consisted of
the robot crossing from one side of the room to the other; the human partici-
pants would perform the gesture in the center of the room (and during the follow
scenario, walking to the edge of the room). Once the trial was completed the
participant would immediately answer four questions about the robot’s perfor-
mance. The questionnaire was defined based on a 5-level Likert scale [34]. Each
of the four questions were rated on a scale of 1-5, 1 being Strongly Disagree and
5 being Strongly Agree. Participants had the option to answer 0 if the question
did not apply. The questions were: (1) The robot maintained a safe distance at
all times (Safe); (2) It was clear what the robot wanted to do (Clarity); (3) The
robot responded correctly to my gesture (Correct); (4) The robot paid attention
to what I was doing (Trust).

We ran the gesture trials 10 times for each of our Gesture2path policies (Fol-
low, Circle, Left/Right). For the MPC baseline we ran 10 trials for the Follow and
Circle scenarios and 5 trials for the Left and Right scenarios. We hypothesized
that the Gesture2Path policy would score more highly on questions 2-4 (Clarity,
Correct, Trust) and lower on question 1 (Safe). We hypothesized that it would
score lower on Safety since the robot’s actions would be more varied. We ran-
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Fig. 7. All averages and standard errors for each question for each gesture, Ges-
ture2Path is in blue, MPC is in grey. Question 3 (Correctness) shows the largest dif-
ference between Gesture2Path and MPC. A repeated measures ANOVA on Question
3 showed a statistically significant difference.
domized policy ordering for each participant. For example, one participant may
have completed MPC Left/Right, Gesture2Path Left/Right, MPC Follow, Pol-
icy Follow, MPC Circle, Follow Circle. After the gesture trials, the participants
filled out a closing survey asking about their demographics and work experience.
The experiment took approx. 90 minutes to complete.

Participants: 12 individuals volunteered to participate in the user study,
including 2 women and 10 men. 8 participants identified as Asian, 2 as White,
1 as Hispanic/Latino, and 1 Middle Eastern. 3 participants were ages 18-24, 8
were ages 25-34, and 1 declined to state. All participants listed their right hand
as the dominant hand and all participants had previously used the robot.
5 RESULTS
All participant ratings for each gesture and condition (Gesture2Path and MPC)
were averaged, as shown in Fig. 6. A paired t-test was performed for each gesture
comparing policy and MPC group and all differences are statistically significant
with a p-value < .01. Therefore, we conclude that the Gesture2Path policy over-
all performs better than MPC for all four gesture scenarios (again, see Fig. 6). We
ran a repeated measures ANOVA on each question; the effect of Gesture2Path vs
MPC on Question 3 (Correctness) showed a statistically significant difference:
F(within groups df) = 115.563, p-value = .059. Separate repeated measures
ANOVAs were performed to compare the effect of Gesture2Path vs MPC on
Question 1 (Safety), Question 2 (Clarity) and Questions 4 (Trustworthiness).
Fig. 6 shows that Gesture2Path (blue bars) is higher in all cases for Question 2
(Clarity) and Question 4 (Trustworthiness), while MPC (grey bars) is higher for
Question 1 (Safety). However, for Questions 1, 2, and 4, the ANOVA did not show
statistical significance. Therefore, the improvement that elevated Gesture2Path
over MPC was the policy’s correct response to the human gesture (Question 3).
All paired t-tests and ANOVA analysis were performed with a Bonferroni cor-
rection (Fig. 7). Baseline MPC performed better than Gesture2Path for all four
gestures on Question 1 (Safety). The higher safety rating follows from baseline
MPC’s tendency to give humans a large amount of space.
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Fig. 8. 2D plots of robot trajectories and participant ratings (for Question 3) for all
four gestures with Gesture2Path (Ours) and MPC. The robot starts in the red circle and
must navigate to the blue dot. The human is the black circle in the center. For Follow
plots, there is an additional black alternating dot-dash line to indicate the rough path
that the human walks after they make the gesture in the center of the room. Favorable
participant ratings (4 or 5 on a 5 point scale) are solid lines in magenta. Neutral ratings
(3 on a 5 point scale) are the dashed line in blue. Negative ratings (1 or 2 on a 5 point
scale) are the dotted lines in red. The MPC trajectories in the first row are all similar
regardless of the gesture. The Gesture2Path policy robot trajectories in b) Circle and
d) Follow are distinctive, correct, and consistent, with ratings capturing this effect.
The Gesture2Path policy does not perform as well for Right and Left sides.

Fig. 9. MPC policy: As no image sequences are used, the policy is not able to generate
trajectories in response to gestures. While the performed gesture is supposed to make
the robot drive a circle, it only passes the human participant on their right side.

The Gesture2Path policies took longer than MPC in all cases. The average
durations for each gesture in Gesture2Path | MPC order were: Circle (56 | 35),
Follow (45 | 38), Left (45 | 38), and Right (46 | 33). For Circle and Follow, this
was likely due to the gesture response trajectory requiring a longer distance for
the robot to travel. For the Left/Right Policy, the additional time was likely due
to the wider distance needed by the gesture. The Gesture2Path policy is slower
(lower velocity) but more smooth (lower acceleration and jerk), as shown in Table
I. This is logical as the policy imitates the human operator driving the robot
during data collection. Paired t-tests for duration, velocity, acceleration, and jerk
were performed on each Gesture2Path and MPC pairing for each gesture and
the results were statistically significant with all p-values < 0.01. A comparison of
human-robot distances of MPC and Gesture2Path for the Follow gesture showed
the average Gesture2Path distance at 2.59m with 0.86 SD, where the average
MPC distance was 2.78m with 1.11 SD. Our method is well within the human-
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Table 1. Velocity, Acceleration, and Jerk for each Policy and Gesture Combination,
Gesture2Path is abbreviated to “G2P”.

Policy w/ Gesture Velocity(m/s) Acceleration(m/s2) Jerk(m/s3

G2P L/R 0.20555 0.0044 0.0321
MPC L/R 0.47382 0.0055 0.0390
G2P Follow 0.20977 0.0040 0.0293
MPC Follow 0.45282 0.0070 0.0503
G2P Circle 0.25233 0.0066 0.0454
MPC Circle 0.44694 0.0076 0.0551

robot proxemics social space [36] of 3.6m radius and the SD is lower, meaning
the robot follows at a more consistent distance over the episode.

In Fig. 8 we show 2-dimensional plots of the robot navigating from the start
to end positions. The positive participant ratings (4 or 5 out of 5) for Question 3
(Correctness) are shown in solid magenta. The neutral rating (3 out of 5) is show
in dotted black. The negative ratings (1 or 2 out of 5) are shown in dotted red.
These plots demonstrate that the participants have a clear understanding of the
robot’s correct response as the higher ratings correspond with the robot’s correct
behavior. The trajectories in Fig. 8 (e) and (g) differ because as the person
gestures in that direction, their arm and hand create an obstacle that changes
the distribution of the obstacles in the scene. This obstacle affects the MPC
plan. We created two quantitative metrics in order to measure the correctness of
the response to Left/Right and the Circle gesture. For the Left/Right gesture,
we compute a binary success as to whether the robot spent more than 52% of
the episode on the correct side. In this case, the Gesture2Path policy is 34%
accurate while the MPC is 12% accurate. The Circle binary success was defined
as the robot performing a change in orientation greater than 180 degrees. In this
case, the Gesture2Path policy is 90% accurate while the MPC is 0% accurate.

Our Gesture2Path policy is able to generate socially compliant trajectories in
response to the performed gestures. In contrast, as the MPC policy is not using
image sequences as input, it is not able to generate trajectories based on the
performed gestures – an example is shown in Fig. 9. Given the stochasticity of
the scene, MPC may occasionally fail to generate a path, however Gesture2Path
may fail due to MPC failing to generate a path, the sequential network failing to
output correct target waypoint deltas, or failing to generate a correct behavior
given the gesture done by the participant.
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