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Gesture2Path: Imitation Learning for
Gesture-aware Navigation
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Abstract—As robots increasingly enter human-centered envi-
ronments, they must not only be able to navigate safely around
humans, but also adhere to complex social norms. Humans often
rely on non-verbal communication through gestures and facial
expressions when navigating around other people, especially in
densely occupied spaces. Consequently, robots also need to be able
to interpret gestures as part of solving social navigation tasks.
To this end, we present Gesture2Path, a novel social navigation
approach that combines image-based imitation learning with
model-predictive control. Gestures are interpreted based on a
neural network that operates on streams of images, while we
use a state-of-the-art model predictive control algorithm to solve
point-to-point navigation tasks. We deploy our method on real
robots and showcase the effectiveness of our approach for the four
gestures-navigation scenarios: left/right, follow me, and make
a circle. Our experiments indicate that our method is able to
successfully interpret complex human gestures and to use them as
a signal to generate socially compliant trajectories for navigation
tasks. We validated our method based on in-situ ratings of
participants interacting with the robots.

I. INTRODUCTION

Situated agents should not only navigate safely around
people, but should also abide by social norms and respond
to the full gamut of human behavior – including nonverbal
communication such as body language, gestures, and facial
expressions. A robot solving a navigation task must be able to
interpret human behavior and to carefully adjust its actions to
be socially compliant. We refer to this form of navigation task
as Nonverbal Social Navigation. For defining and generating
social behavior, robotics research has recently expanded efforts
toward understanding the importance of respecting personal
space [1] and social dynamics [21], [37], socially-acceptable
behavior for approaching humans [18], navigation among
groups of people [22], the validation of socially acceptable
policies [31], and curating large datasets [20]. The breadth of
these research directions is a testament of the complexity of
generating socially compliant agent behavior.

To solve navigation tasks, many existing approaches rely
on point cloud data obtained from LiDAR scanners that
provide real-time information about the environment, includ-
ing dynamic objects such as humans. The captured point
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Fig. 1: Gesture2Path is a novel social navigation policy that com-
bines image-based imitation learning with model-predictive control
to enable gesture-aware navigation. In this example we show our
right gesture policy: A robot at its start location begins navigating
toward its goal (a). On its way, it encounters a person that indicates
to the robot with a right gesture to pass on their right (b). The robot
interprets this gesture and drives around the person in the intended
manner (c) to then continue its path towards its goal (d). The robot
in use is from Everyday Robots.

clouds are projected to 2-D occupancy maps. With these maps
existing policy algorithms – such as model predictive control
(MPC) – can efficiently solve complex navigation tasks with
remarkable success. However, while point cloud data is a
powerful sensor modality for generating navigation trajectories
in the environment, it rarely provides the accuracy needed
to interpret intricate human behavior. Conversely, while RGB
sensors do not provide the depth information needed to solve
navigation tasks, they produce high-resolution images that
allow the capture of nuanced gestures and facial expressions.

In this paper, we propose a novel gesture-aware navigation
policy based on imitation learning and MPC. We train a se-
quential neural network that enables us to generate waypoints
of navigation trajectories from a sequence of consecutive
images. Our goal is to train this network so that it predicts
waypoints that are socially compliant and adherent to the ges-
tures of humans interacting with the robot. Once the network is
trained, the predicted waypoints are sent to an MPC algorithm
to control the robot. The sequential neural network serves
as a high-level planner, while the MPC algorithm provides
low-level control. This setup provides the benefits of both
approaches: the sequential neural network allows us to obtain
nuanced information of human gestures from sequences of
images, while the MPC algorithm allows us to safely navigate
the robot based on laser-scanned point clouds.
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Fig. 2: Overview of Gesture2Path: A sequential neural network trained via imitation learning acts as a high-level planner to predict waypoint
deltas from image sequences. The predicted waypoint deltas are used to compute a world space waypoint that serves as intermediate target
position. MPC uses these intermediate target positions to compute linear and angular velocities to drive the robot.

To explore the effectiveness of our gesture-aware social nav-
igation policy, we define the four gesture scenarios: Left/Right,
Follow Me, and Make a Circle. For each scenario we define the
gesture (e.g. pointing with the hand to the left) and the robot
behavior (e.g. drive left) so each gesture maps to a specific
robot behavior – an example is shown in Fig. 1. We then
collected a dataset of expert examples for each scenario by
driving the robot with a human operator. A collected trajectory
is defined by a sequence of images and a sequence of robot
waypoints. We then train the sequential neural network on
subsequences of images to predict subsequences of future
waypoints. The MPC algorithm then computes the linear and
angular velocities to drive from robots’ current position to the
predicted position of the sequential model.

We validate our gesture-aware social navigation policy
based on in-situ experience ratings of humans interacting with
the robots. To obtain these ratings we follow a protocol for
social navigation policies [31]. Each of our scenarios is defined
by a gesture as well as the start and end positions of the
trajectory that the robot is supposed to drive along, mirroring
the training setup. Additionally, we define a questionnaire
based on a five-level Likert scale for each scenario. Once a
scenario is completed a participant is asked to provide their
ratings for a specific scenario. We use this setup to compare
our Gesture2Path policy with a MPC policy as the baseline.

In summary, our contributions are: (1) we introduce Ges-
ture2Path, a novel gesture-aware social navigation policy that
combines a sequential neural network with MPC; (2) we show
that our policy is able to interpret gestures to generate socially-
compliant behavior in gesture-navigation scenarios; (3) we
define a canonical set of social navigation scenarios with
gestures that can be replicated and tested; (4) we employ
a novel validation protocol for social navigation scenarios
to compare our gesture-aware policy with a standard MPC
policy.

II. PRIOR WORK
Due to its importance to robotics, research on social naviga-

tion has recently garnered considerable attention, spanning a
breadth of methods which we cannot comprehensively discuss.
For a general overview, interested readers are referred to recent
survey papers by Gao and Huang [14], Charalampous et al. [6],
Mavrogiannis et al. [27], Kruse et al. [25], Rios-Martinez [32],
and Mirsky et al. [28]. The following discussion focuses on
approaches to social navigation and human robot interaction
with methods closely related to our work.

A variety of researchers have explored gestures for robotic
control. For teleoperation, researchers used hand tracking with
a Microsoft Kinect device [39] [10], a Leap motion [38], or
a camera to direct a robot’s end effector. For robot navigation,
[33], [34] extracted gestures from a Kinect sensor to generate
navigation commands for a teleoperated robot in a non-social
setting. [19] used hidden Markov models to detect six gestures
with a Kinect sensor and mapped them to hand-crafted robot
navigation behaviors. [5] used a wearable gesture detector to
control a mobile robot. Finally, [3], [2] and [26] used imitation
learning to replicate human gestures on a robot platform.

Researchers have also examined gestures for social com-
munication. [17] modeled musical improvisation as a series
of gestures so a robot marimba player could improvise with
a human. In [29], researchers designed a gesture framework
for humans to collaborate with a co-worker robot on an
assembly task; [11] approached a different collaborative task
between humans and robots using a gesture framework. Other
gesture-based human-robot communication systems have been
developed for settings where verbal communication may be
challenging, such as emergency settings [8] or underwater [7].

III. METHOD

Our main goal is to develop a gesture-aware navigation
policy which can guide robots around humans in a socially
compliant manner while responding to provided gestures. We
define our Gesture2Path policy by combining a sequential
neural network as a high-level planner with MPC for low
level control (Fig. 2). The high-level planner identifies humans
and the gestures they perform from images, while the low-
level controller safely navigates the robot from one waypoint
to another. The advantage of this setup is that the high-level
planner and the low-level controller complement each other.
MPC performs well for navigating from one waypoint to
another, even around dynamic obstacles, based on point cloud
data obtained from the environment. However, MPC fails to
detect humans and their gestures as it does not use RGB data.
Conversely, the high-level planning neural network is able to
detect humans and their gestures from sequences of images,
but fails to reliably predict waypoints for the navigation task.

A. Gesture-aware Social Navigation

To control a robot in response to a human and their gestures,
we employ a sequential neural network [35] that, given a
history of observations, outputs a sequence of future positions.
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We learn this model from demonstrations of successful navi-
gation trajectories of human-robot interactions and show that
the network is able to learn to interpret human gestures.

In more detail, we denote by s = (I,O, p) the robot state
consisting of an RGB image I from a headmounted camera, an
occupancy grid O from a LiDAR sensor, and a robot position
p in the world coordinate frame. A demonstration trajectory of
length n can be described as a sequence of states: (s1, . . . , sn).
An occupancy map is defined as the 2D projection of a point
cloud obtained from a LiDAR scanner.

Given a history of states, we aim to compute controls that
would result in the future robot positions as encoded by the
demonstrations. In particular, at step n we utilize a history of
k states from the demonstration to predict l future positions:

(pn+1, ..., pn+l) = Gesture2Path(sn, . . . , sn−k, g), (1)

where g is the goal position of the robot.
In theory, we could use a neural network to directly learn

robot control commands. Several approaches do learn direct
mappings from pixels to motor controls [23], [24], [30].
However, learning an end-to-end robot control policy remains
challenging, as methods tend to require large training datasets
and easily overfit to the underlying robot dynamics.

Therefore, we employ MPC as a low level controller that,
given an intermediate goal position, drives the robot to this
position while avoiding collisions. The MPC algorithm takes
care of converting target positions to low level torque controls.

To navigate a robot a MPC controller requires the interme-
diate next position encoded in the robot frame. Thus, we need
to convert the demonstrated robot positions from world frame
to a sequence of egocentric positions, each in the frame of the
previous position. This can be done by calculating the deltas
between subsequent positions: δi = pi−pi−1 for i = 1, . . . , l,
which leads to the final model formulation:

(δn+1, . . . , δn+l) = Gesture2Path(sn, . . . , sn−k, g). (2)

1) Sequential Model Architecture: We train the sequential
model by simultaneously embedding subsequences of RGB
images I , the occupancy maps O, and the target deltas
τ = g − pn into a joined latent space. Specifically, our
neural network architecture uses 3D convolutional layers to
obtain two 64-dimensional embeddings from RGB images and
occupancy maps of the input subsequence with a resolution
of 256x256 pixels. To combine the target deltas (τ ) with the
image embeddings we also project them into a 64-dimensional
latent space. We then add the embeddings and pass them
to three dense layers to obtain a sequence of l position
deltas (δ). For the last dense layer we use a linear activation for
regression. Fig. 3 shows this network architecture. Compared
to other approaches for action recognition (e.g. [15]), the
goal for defining a lightweight multi-modal architecture for
detecting gestures is to ensure small inference times (< 30ms).

While our policy is agnostic to the choice of the sequential
model, we found a common 3D-convolutional neural network
similar to [4] provided the best performance for our experi-
ments. We train the network via imitation learning using expert
sequences of human-robot interactions captured by manually
driving the robot with a human operator (see Section IV-B).
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Fig. 3: We use a 3D CovNet neural network architecture that joinly
embeds sequences of RGB images I , occupancy maps O, and target
deltas τ into a fused embedding space. The network is trained so
as to predict sequences of position deltas that we use to generate an
intermediate goal position for an MPC algorithm.
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Fig. 4: Our sequential neural network predicts a subsequence of
position deltas (δ) from a history of past states s. We use the predicted
position deltas to compute an intermediate target position (pt).

Fig. 4 illustrates the parameters of our learning setup.
We train our sequential neural network on subsequences of
the collected expert trajectories (full sequence). The training
objective is to predict a sequence of position deltas (with l
steps into the future) based on a history of k previous states.
The goal is to use the predicted position deltas to compute
an intermediate target position (pt) from the current position
(pn). To train the model we sample all possible subsequences
from our dataset of expert trajectories.

2) Action Parameterization: We use MPC for low-level
robot control. Specifically, we formulate the goal following as
an optimization problem and use an iterative linear quadratic
regulator (iLQR) solver, Trajax [13], that minimizes a hand-
engineered cost function, similar to [9], [16], [36]. The op-
timization problem was solved at each control step and the
predicted action at the first step (i.e. velocity command) is
sent to the robot. The inputs to MPC include the occupancy
grid and relative goal position; its cost function combines
time-weighted goal penalties, margin-offset collision penalties,
and a weighted control penalty; and its action space is linear
and angular velocities. This MPC policy provides smooth
navigation and fast reaction times for differential drive robots
and is superior in our tests to a re-implementation of the well-
performing reinforcement learning policy in [12].

We use MPC in two ways: first we establish a baseline,
where we use the algorithm to navigate from a start to a goal
position without additional visual inputs. Second, we use MPC
for our gesture-aware policy by tracking waypoints that are
generated by the sequential neural network. In both cases, the
action space are linear and angular velocities.

For gesture-aware navigation, we use the sequential neural
network described in Section III-A1 to predict position deltas
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Fig. 5: Once the intermediate target position pt has been computed
from the predicted position deltas, we use MPC to compute an
optimal trajectory from the current position pn to the target position.
Note that the trajectory represented by the predicted position deltas
and the computed MPC trajectory may diverge – we do not want to
over-constrain the MPC algorithm to find an optimal trajectory.

(a) Cicle (b) Follow (d) Left(c) Right
Fig. 6: We test Gesture2Path with three policies to respond to four
gestures: circle (a), follow (b), right (c), and left (d). For each scenario
we only define the gesture (e.g. pointing with the hand to the left),
the corresponding expected robot behavior (e.g. drive left), and the
start and end positions of the robot trajectory. The robot is tasked to
navigate from its start position to a goal area (blue circle). A person
is standing in the center of the room and interacts with the robot by
performing different gestures to initiate the robots’ response.

from a sequence of previous states. From the position deltas
(δ) we compute an intermediate target position pt = pn +∑i=n+l

i=n+1 δi for MPC based on the current position pn. The
MPC algorithm then computes an optimal path from the
current position pn to the intermediate target position pt.

At every time step we collect the robot state sn. To generate
gesture-aware trajectories we use the neural network to make
predictions every k time steps (Fig. 2, Planning Loop), while
the MPC algorithm runs at a frequency of 10 Hz (Fig. 2,
Control Loop). With k = 10, this means that the neural
network is used to predict a new intermediate target position
every 10 time steps, while the MPC algorithm continuously
generates control commands to drive toward the intermediate
target position. Note that the number of previous states (de-
fined by k) used to make predictions with the neural network
need not be the same as the number of predicted position deltas
(defined by l). The neural network may be triggered to predict
a new intermediate target position before the robot reaches the
previously computed one. This ensures that the gesture-aware
policy is susceptible to chances in the observed gestures.

Moreover, as illustrated in Fig. 5, the trajectory represented
by the predicted position deltas of the sequential neural
network and the MPC-computed trajectory may diverge. While
we want the robot to closely follow the predicted position
deltas to implement gesture-aware behavior, we do not want
to over-constrain MPC to find an optimal trajectory from
the current position to the intermediate target position. The
planning loop based on the sequential neural network provides

general direction while considering observed gestures, and the
control loop based on MPC ensures safe navigation.

IV. EXPERIMENT SETUP

The robots we use are 7 DOF mobile manipulators with
a single arm and a rectangular base. Each robot is equipped
with a head-mounted camera and a LiDAR sensor. Robots also
have access to an existing static map of their environment to
assist with localization and point-to-point navigation.

A. Gesture Scenarios

To test the capabilities of Gesture2Path, we use the pro-
tocol proposed in [31] to define the four gesture scenarios
(illustrated in Fig. 6): Circle, Follow, and Left/Right

• Circle: In the make a circle scenario, the demonstrator
would stand in the center of the room and raise their right
hand straight up to the ceiling. The robot operator then
drives the robot to make a counterclockwise circle before
passing the human on their left (Fig. 6 a).

• Follow: In the follow me scenario, the demonstrator
would lift both hands out to the side while keeping
their feet together, making a “T” shape. After holding
this shape for 2 seconds, they would turn over their left
shoulder and walk along a wide arc prior to passing
through the end position region. Once the gesture has
been observed the robot operator would then drive the
robot so as to follow the demonstrator (Fig. 6 b).

• Left/Right: In the left/right scenario, the demonstrator
would stand in the center of the room and put their arm
out to the left or right while leaning in that direction. The
robot operator would then drive the robot to pass along
the side of the human’s outstretched arm (Fig. 6 c, d).

We selected these gestures based on the following criteria
for the human and the robot: (1) the robot solves a navigation
tast beginning at one side of the room and ending at the other;
(2) the robot would move continuously from beginning to
end without pausing or stopping; (3) the gesture instructions
would be simple and easy to teach the experiment participants;
(4) the gestures would correspond to clear changes in robot
behavior; (5) the gestures require the robot to react to a single
participant. While the gestures used for the Circle and Follow
scenarios are distinct, the Left and Right gestures represent
more subtle variations for the sequential model to disentangle.

B. Data Collection and Training

To train our Gesture2Path policy we collected a dataset of
277 trajectories (40 for follow, 30 for circle, 207 left and
right). Each trajectory represents a 20-40 second sequence that
includes a human-robot interaction. The human performs one
of the four defined gestures, while the robot solves a point-
to-point navigation task from a start to a goal position. All
training data was collected in the real world in a large, open
atrium space over several different days and times (Fig. 7).

To collect our dataset we used the following procedure: an
expert robot operator would connect to the real robot using
a Logitech F710 gamepad. The robot operator would stand
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Fig. 7: For data collection the robot is controlled by a joystick
handled by an experienced teleoperator. The human demonstrator
stands in the center of the room and performs the gesture as well
as the next sequence of human motions (if in the follow condition).
The teleoperator moves the robot from the beginning position to the
ending position with the correct response.

behind the robot and follow it while driving it forward. The
gesture demonstrator would begin by standing in the middle
of the room. Once the teleoperated robot started to move,
the gesture demonstrator would perform the gesture for 2-3
seconds. Depending on the gesture scenario, the demonstrator
would either stay in place or move appropriately.

We split the collected trajectories into 90% training and
10% validation data. We then trained our sequential neural
network on subsequences (k = 10, l = 10, for most of
our experiments) of RGB images and occupancy maps. We
used the Adam optimizer with a standard l2 loss and selected
checkpoints of the network for our policies based on the lowest
l2 error measured on the validation dataset. The training of our
network usually converges after 120 epochs, which usually
takes 6 hours of training on a single V100 GPU.

C. Experiment Design

To validate the effectiveness of our gesture-aware policies
we conducted a user-study to obtain in-situ experience ratings.
In the following, we discuss the setup of our experiment for
our Gesture2Path polices as well as for the MPC baseline.

1) User Study Design: We designed a within-subjects ex-
periment where participants performed the four gestures while
the robot was running either Gesture2Path or a baseline of
the unmodified MPC policy. Note this baseline MPC policy is
itself a highly performant navigation policy, exceeding in our
internal tests a reimplementation of [12]. The study occurred
in the same location where the training data was collected.

Participants arrived at the location and filled out an intro-
ductory survey asking about their dominant hand and number
of months they had been working near these robots. The
participants then performed each of the four gestures a total
of 70 different times in the center of the room. Each the trials
consisted of the robot crossing from one side of the room to the
other; the human participants would perform the gesture in the
center of the room (and during the follow scenario, walking
to the edge of the room). Once the trial was completed the
participant would immediately answer four questions about
the robot’s performance. The questionnaire was defined based
on a 5-level Likert scale. Each of the four questions were
rated on a scale of 1-5, 1 being Strongly Disagree and 5 being
Strongly Agree. Participants had the option to answer 0 if the
question did not apply. The questions were:

1) The robot maintained a safe distance at all times. (Safe)
2) It was clear what the robot wanted to do. (Clarity)
3) The robot responded correctly to my gesture. (Correct)
4) The robot paid attention to what I was doing. (Trust)

Circle MPC

Circle Policy

Follow MPC

Follow Policy

Left M
PC

Left P
olicy

Right M
PC

Right P
olicy

1

1.5

2

2.5

3

3.5
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Fig. 8: The means and standard errors for all four questions for
policy and gesture condition. The MPC conditions are in grey and
Gesture2Path policy in blue. Participants rated the question on a scale
of 1 Strongly Disagree to 5 Strongly Agree. Zero was reserved for
Not Applicable. The policy rated overall more highly for each of the
four questions when compared to MPC. A paired t-test was performed
on each MPC/policy bar for each gesture (i.e. comparing circle MPC
to circle policy). All of these tests were statistically significant with
a p-value < .01. We can conclude that the policy performs overall
better than MPC for each of these gesture scenarios.

We ran the gesture trials 10 times for each of our Ges-
ture2path policies (Follow, Circle, Left/Right). For the MPC
baseline we ran 10 trials for the Follow and Circle scenarios
and 5 trials for the Left and Right scenarios.

We randomized policy ordering for each participant. For ex-
ample, one participant may have completed MPC Left/Right,
Gesture2Path Left/Right, MPC Follow, Policy Follow, MPC
Circle, Follow Circle. After the gesture trials, the participants
filled out a closing survey asking about their age, gender,
cultural group, height, highest degree of education received,
primary field of work or study, as well as their experience with
STEM, robotics in general, and specifically the used robot. The
experiment took approx. 90 minutes to complete.

2) Participants: 12 individuals volunteered to participate in
the user study, including 2 women and 10 men. 8 participants
identified as Asian, 2 as White, 1 as Hispanic/Latino, and
1 Middle Eastern. 3 participants were ages 18-24, 8 were ages
25-34, and 1 declined to state. All participants listed their right
hand as the dominant hand and all participants had previously
used the robot in their work.

V. RESULTS

All participant ratings for each gesture were grouped to-
gether by Gesture2Path and MPC (i.e. questions 1-4 for Circle
gesture, Gesture2Path, were all grouped). These grouped re-
sponses were averaged, as shown in Fig. 9. A paired t-test was
performed for each gesture vs policy group (i.e. Questions 1-4
for Circle Gesture2Path vs Questions 1-4 for Circle MPC) and
all differences are statistically significant with a p-value < .01.
Therefore, we conclude that the Gesture2Path policy overall
performs better than MPC for all four gesture scenarios.

To determine which questions had the strongest effect on
Gesture2Path’s improvement over MPC, we ran a repeated
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Fig. 9: All averages and standard errors for each question for
each gesture, Gesture2Path is in blue, MPC is in grey. Question
3 (Correctness) shows the largest difference between Gesture2Path
and MPC. A repeated measures ANOVA on Question 3 showed a
statistically significant difference.

measures ANOVA on each question. The repeated measures
ANOVA comparing the effect of Gesture2Path vs MPC on
Question 3 (Correctness) showed a statistically significant
difference: F(within groups df) = 115.563, p-value = .059.

Separate repeated measures ANOVAs were performed to
compare the effect of Gesture2Path vs MPC on Question 1
(Safety), Question 2 (Clarity) and Questions 4 (Trustworthi-
ness). Fig. 8 shows that Gesture2Path (blue bars) is higher
in all cases for Question 2 (Clarity) and Question 4 (Trust-
worthiness), while MPC (grey bars) is higher for Question 1
(Safety). However, for Questions 1, 2, and 4, the ANOVA
did not show statistical significance. Therefore, the critical
improvement that elevated Gesture2Path over MPC was the
policy’s correct response to the human gesture (Question 3).

The Gesture2Path policies took longer than MPC in all
cases, as summarized in Table I. For Circle and Follow, this
was likely due to the gesture response trajectory requiring
a longer distance for the robot to travel. For the Left/Right
Policy, the additional time was likely due to the wider distance
needed by the gesture, as well as how quickly the human
operator drove the robot during data collection. A paired t-
test was performed on each Gesture2Path and MPC pairing
for each gesture and the results were statistically significant.

In Fig. 11 we show 2-dimensional plots of the robot navi-
gating from the start to end positions. The positive participant
ratings (4 or 5 out of 5) for Question 3 (Correctness) are shown
in solid magenta. The neutral rating (3 out of 5) is show in
dotted black. The negative ratings (1 or 2 out of 5) are shown
in dotted red. These plots demonstrate that the participants
have a clear understanding of the robot’s correct response as
the higher ratings correspond with the robot’s correct behavior.

Finally, in Fig. 12, we show examples for the four scenarios.
For each policy the image sequences show (from left to
right) the robot at its start location, the human performing the

Fig. 10: Example of the MPC policy: As no image sequences are
used, the policy is not able to generate trajectories in response to
gestures. While the performed gesture is supposed to make the robot
drive a circle, it only passes the human participant on their right side.

TABLE I: p-values for gesture, MPC vs. policy, and relevant
question using a paired t-test

Gesture Gesture2Path, MPC Avg duration (sec) p-value
Circle Gesture2Path, MPC 56, 35 < .001
Follow Gesture2Path, MPC 45, 38 < .01

Left Gesture2Path, MPC 45, 38 < .01
Right Gesture2Path, MPC 46, 33 < .01

The Gesture2Path policy took significantly longer than MPC in all cases,
likely due to the increased distance requirements of the correct response path
or the speed of the demonstrations.

gesture, the gesture response of the robot, and the navigation
to the goal location. As shown, our Gesture2Path policy is
able to generate socially compliant trajectories in response to
the performed gestures. In contrast, as the MPC policy is not
using image sequences as input to detect gestures, it is not
able to generate trajectories based on the performed gestures
– an example is shown in Fig. 10.

A. Discussion and Limitations

Our MPC baseline can reliably navigate around obstacles
with success comparable to published state of the art [12]. In
this work we show that using imitation learning in tandem with
MPC simultaneously allows us to maintain this performance
level while enabling gesture-aware navigation. The aim of the
study was to show that robots can respond correctly to human
gestures and we observe this in the results.

The trained Gesture2Path policies perform better than base-
line MPC policy for all gestures in the participant ratings
(Fig. 9). Question 3 (Correctness) was statistically significant,
showing that Gesture2Path is able to correctly identify and
respond to human gestures. The difference in ratings between
baseline MPC and Gesture2Path was larger for the Circle and
Follow policy than for the Right and Left policy, meaning
that either participants were more certain of the robot’s correct
response or that Gesture2Path’s behavior was more distinctive
than baseline MPC. Baseline MPC performed better than
Gesture2Path for all four gestures on Question 1 (Safety). The
higher safety rating follows from baseline MPC’s tendency to
give humans a large amount of space to avoid collisions.

Recall we trained three policies: 1) Circle only, 2) Follow
only, and 3) Left and Right. The third policy must generate
different paths for two gestures. As baseline MPC tends to
go right when it encounters obstacles, it appears correct to
participants half the time (high clarity rating, Question 2).

We limited the number of questions to four due to practi-
cality reasons; running the study became quite lengthy. The
study ran for a minimum of 90 minutes, so participants
may have been fatigued towards the end. One participant
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Fig. 11: 2D plots of the robot trajectories and corresponding participant ratings (Question 3 only) for all four gestures with Gesture2Path
(Ours) and MPC. The robot starts in the red circle and is tasked to navigate to the blue dot. The human is the black circle in the center.
For the Follow plots, there is an additional black alternating dot-dash line to indicate the rough path that the human walks after they make
the gesture in the center of the room. Favorable participant ratings (4 or 5 on a 5 point scale) are solid lines in magenta. Neutral participant
ratings (3 on a 5 point scale) are the dashed line in blue. Negative participant ratings (1 or 2 on a 5 point scale) are the dotted lines in red.
The MPC trajectories in the first row are all similar regardless of the gesture. The Gesture2Path policy robot trajectories in b) Circle and
d) Follow are distinctive, correct, and consistent, with participant ratings capturing this effect. The Gesture2Path policy does not perform as
well for Right and Left sides, also reflected in the participant ratings.

elected not to complete the study halfway through due to the
time commitment. To mitigate this fatigue effect in the data,
conditions were randomized for each participant.

Furthermore, not all participants perform the gesture the
same way. Despite watching the same video in order to learn
the gesture, each human has different timings, range of mo-
tion, and qualitative emphasis. Therefore, it is promising that
Gesture2Path can generalize to these performance variations.

VI. CONCLUSION AND FUTURE WORK

We have introduced Gesture2Path, a novel social navigation
policy, to enable gesture-aware point-to-point navigation. Our
approach combines a novel sequential neural network which
can predict position deltas from images with MPC for gen-
erating linear and angular velocities to control a robot. As
the sequential neural network is trained on images of the
observed gestures it can generate positions as waypoints which
implement socially-acceptable and gesture-aware navigation
behavior. On the other hand, MPC allows us to safely navigate
from the current position of the robot to an intermediate goal
position. Based on four scenarios we have shown that our
Gesture2Path policy is able to respond correctly, clearly, and
legibly to a range of human gestures, while it also outperforms
the baseline MPC algorithm devoid of visual inputs.

In future work, we plan to train our policy so as to
handle multiple gestures simultaneously. This step is important
for deploying Gesture2Path in a working robot environment,
where the aim is to maximize the number of gestures with the
smallest number of concurrently running policies. We will also
explore multiple humans gesturing simultaneously. As another
direction for future work we are interested in exploring a closer
connection of the introduced sequential neural network and
MPC. While keeping both algorithms separate has intriguing
advantages from an engineering point of view, it seems likely

that a closer integration of understanding gestures and low-
level control would lead to better performance. Finally, we
want to use our Gesture2Path policy for learning even more
complex and diverse sets of gestures to enable even more
advanced robot navigation behavior.
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