
Computational Aesthetics in Graphics, Visualization, and Imaging (2012)
D. Cunningham and D. House (Editors)

Feedback-guided Stroke Placement for a Painting Machine

Oliver Deussen, Thomas Lindemeier, Sören Pirk, Mark Tautzenberger

Department of Computer and Information Science, University of Konstanz, Germany

Abstract
In this paper we present and evaluate painterly rendering techniques that work within a visual feedback loop of
eDavid, our painting robot. The machine aims at simulating the human painting process. Two such methods are
compared for different objects. One uses a predefined set of stroke candidates, the other creates strokes directly
using line integral convolution. The aesthetics of both methods are discussed, results are shown.

1. Introduction

This paper aims at presenting two things: an introduction to
eDavid, our painting machine that works with visual feed-
back. Over the last two years we built this set-up for devel-
oping painting styles for the artistic representation of given
input images. In the main part of this paper, we compare two
of these styles and try to evaluate them with respect to their
aesthetic properties.

eDavid is a one-arm industry robot that we modified and
equipped for painting purposes (see [Deu12] and Figure 1).
A camera observes the canvas, their images are compared
with a given target function (usually an image, but could be
a more complex representation such as a 3-d scene). New
strokes are generated until the target function is sufficiently
approximated by the paint on the canvas. eDavid can paint
with different kinds of brushes, pencils and a number of
physical colors reaching from ink to oil paint. This was our
rationale to realize the set-up with an industry robot and not
just a pen plotter.

Furthermore, the feedback loop allows us to deal with
the inaccuracies of brush-stroke rendering and the unpre-
dictability of color interactions on a canvas. During our tests
this behavior proved to be very important since it allows us
not only to use quite inaccurate simulation techniques but
can also easily be adapted to different strategies for placing
strokes. This lets us realize various painting styles.

The whole eDavid experiment aims at approximating the
manual painting processes by a machine, we want to find
out to what extent we are able to produce artistically look-
ing paintings. In art history it is also well known that phys-
ical limitations, e.g. interactions between ink and canvas,
influence the formation of styles. We are looking for new

forms of visual representations that are especially suited for
painting machines; also we want to find out how to intro-
duce high-level semantic information into the process. In re-
cent years methods for image understanding developed a lot,
so painting machines of the future could "know" what they
draw and automatically adapt their painting strategy.

Since eDavid approximates the target by a sequence of
strokes, we have to adapt methods for painterly rendering
to work within a feedback environment: based on the target
function and the currently distributed paint on the canvas a
sequence of new brush strokes has to be computed that, if
realized by the robot, creates a better approximation of the
target by the canvas. In this sense greedy optimization is per-
formed.

In this paper we compare two techniques for such stroke
placements. In both cases we assume the target function to
be a gray-scale image, thinned black ink serves as paint. An
in depth exploration of color (and other media) is left for fu-
ture works; however, a first result is shown in the last section.
Using black ink simplifies the setup and the needed com-
parisons between target and canvas: color calibration can be
simplified and we do not have to take care about the 3-d
structure of the paint layers. Nevertheless, our framework is
already able to work with color; this is why we mention color
issues at some places.

The visual quality of the two algorithms depends on the
target image. For some objects a set of short and straight
strokes (we call them stroxels) is better suited due to their
ability to create different visual appearances than a set of
curved strokes and vice versa. After reviewing related works
and describing our painting machine we compare their abil-
ity to represent different classes of objects. Results are given
and discussed, future works are outlined.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

(a) (b) (c)

Figure 1: System setup of the painting machine: a) robot with canvas and camera; b) repository for colors and brush tools
(front row), in the back brush washing facility; c) brush tool and distance sensor.

2. Related Work

The vast majority of publications in the field of non-
photorealistic rendering and computational aesthetics work
on simulating the painting process. Since we deal with a
real machine, we firstly cite methods for painterly rendering
that are applicable within a feedback loop. Then we refer to
drawing machines and robots that artists use for producing
different kinds of paintings.

Painterly rendering was introduced in 1990 by Haeberli
[Hae90] who created artistic images using the mouse as
a virtual brush. Hertzmann [Her98] later published a gen-
eral approximation scheme for painterly rendering that starts
with a rough approximation of a given image that is refined
by smaller and smaller brush strokes in subsequent steps.
We use this idea for representing images with a set of pre-
defined stroke directions and lengths (stroxels). In contrast
to Hertzmann we therefore limit ourselves to a fixed set of
lengths and widths.

While the above algorithm just represents the colors of
the image, for many styles it is also important to conserve
salient image features such as edges or object boundaries.
Hays and Essa [HE04] introduce a set of layers that refine a
painterly representation at important places. Collomosse and
Hall [CH02] use a mapping of strokes to geometric elements
of different width according to the image salience. Both al-
gorithms work well for NPR in general but are not easy to
implement within our sequential feedback loop since they
reorder strokes.

Kang et al. [KLC07] compute image gradients, smooth
the resulting vector field and use it to track important image
features by Line Integral Convolution (LIC). The method en-
ables them to create smooth outlines even for low quality in-
put. We use their method to produce image-guided strokes,

in contrast to their approach we do not just draw outlines but
try to represent the whole grey-scale content of the image by
such strokes.

An important aspect, especially when colors are used, is
the ordering of colors. Northam et al. [NIK10] explore dif-
ferent strategies such as painting lighter colors over darker
ones or vice versa to represent features optimally. Since we
currently use colors only to a limited extend, we do not alter
the order but will take this into account in the future.

In the past, a number of machines were built to create
drawings mechanically. After early attempts in the 19th cen-
tury, Jean Tinguely (1925-1991, see [Wik12c]) created a
number of sophisticated machines that were able to create
complex stroke patterns. In contemporary art, Harold Co-
hens Aaron (see [Coh12]) is the most famous robot painting
project, ongoing for many decades now. However, the artist
did not focus on faithfully representing image content but
to realize abstract computer-generated artworks. In the early
times he built and used a sophisticated painting machine, but
recently he moved to ordinary printers.

Early pioneers of computer graphics used plotters (e.g.
Frieder Naake, cf. [Wik12a]) and also robots (e.g. Ken Gold-
berg, [Wik12b]) to create art works, numerous others could
be listed here. Today, a number of artists uses such ma-
chines, but typically their main purpose is to create abstract
and artistic paintings. Ben Grosser [Gro12] and Holger Baer
[Bae12] are typical representatives. Zanelle [Arm12] by v.
Armin is a specialized plotter to create pop-art like paint-
ings and also somewhat more realistic portraits. An inter-
esting painting machine is Vangobot [KM12], also a spe-
cialized plotter, that uses a paint mixing hardware to create
color variations. To our knowledge, none of the mentioned
approaches uses a feedback loop for optimization.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

In contrast to most of the above approaches we also do not
primarily aim at creating art but to explore the algorithms be-
hind human painting and to describe art processes by means
of visual optimization. Therefore an important aspect of our
system is the visual feedback loop that is described in the
next section.

3. System

As shown in Figure 1, eDavid consists of a number of
components. The robot itself is equipped with a special-
ized picking device for grasping our brush tools. Five dif-
ferent brushes can be used in parallel by the system (see
Figure 1(b), front row).

The colors are stored in a repository, so far we are able
to use 24 different colors. The robot accesses a color con-
tainer by mechanically opening the cover plate and dipping
the brush into the color. A cleaning facility (Figure 1(b),
background right) is needed when changing the paint color
of a brush.

Since painting with brushes needs precise interaction we
measure the surface characteristics of the canvas using a dis-
tance sensor which is mounted on the robot arm. Besides
working with (slightly) curved canvases this allows us also
to compensate for mechanical tolerances of the robot while
moving the brush over the canvas. Such tolerances are in the
sub-millimeter range but still visible for image styles with
long strokes and fine brushes. Due to restrictions in the sen-
sor (color dependency of the precision) we so far measure
the distance only before we start painting for the entire can-
vas.

The visual feedback of the system is created by a Canon
EOS 5D Mark II SLR with a 21MPixel sensor and a fixed
50mm lens. This provides us with a resolution of about 1mm
on the canvas. Two specialized fluorescent tubes with polar-
ization filters are used to illuminate the canvas, also the SLR
is equipped with a polarization filter. Selecting the polariza-
tion direction perpendicular to the canvas avoids specular
highlights of the paint color.

3.1. Software Setup

The robot is controlled by a assembler-like language, there-
fore we built a server application that controls the machine
and accepts XML commands. Most commands are plotter-
like instructions such as pen selection and drawing, but also
specialized commands for measuring the canvas and the han-
dling of brushes and colors have been implemented.

A second server is used for the camera. The Canon SDK
allows us to control all necessary functions from the com-
puter. Images are created in XYZ color space and are cal-
ibrated by using geometric calibration patterns and color
sheets. The geometric calibration is within the range of a
pixel, the color calibration so far in the range of 5%, which is

sufficient for our current applications but has to be enhanced
in the future.

4. Optimization via Visual Feedback

A typical application connects to the robot server and the
camera server. Based on the target function and stroke place-
ment strategy, the application creates a number of new
strokes. The strokes are realized by sending them to the robot
server; after painting, the camera server is invoked to obtain
the canvas image.

For producing paintings, a number of practical constraints
have to be taken into account. Colors react differently to
overdrawing when they are still wet. To let them dry we
avoid painting on the same place within a given time inter-
val. Colors such as inks are filled into specialized brush pens
that allow the robot to draw continuously without dipping
the brush into an ink container. For others, such as oil color,
only short strokes can be realized after dipping. These char-
acteristics are stored by the robot server in brush and paint
color profiles.

4.1. General Optimization Strategy

In each iteration, a number of brush strokes is generated to
minimize the difference between canvas and target image.
For the computation of the best approximation, the applica-
tion has to anticipate the effect of painting a new stroke on
the canvas. In our optimization program we implement this
by using OpenGL graphics using a brush texture and opac-
ity values that have been determined for each color. A stroke
path is generated and the color application is simulated for
all pixels under the stroke. Based on this simulation the qual-
ity of the stroke is computed, it determines how effective the
stroke minimizes the difference between canvas and target.
For a large number of stroke candidates the quality is com-
puted and the best candidates are realized by the machine.

Predefined stroke candidates: A simple implementation
of this strategy is to pre-define a set of stroke candidates.
Such candidates are typically short stroke paths in differ-
ent orientations. For a position within the image all candi-
dates are translated to that position, the quality is is com-
puted and the stroke with the highest local quality is selected
and stored. For a large number of random positions this is
repeated, the strokes with the globally highest quality are
drawn within an iteration step.

Figure 2 shows the application of a static stroke set for the
portrait of a woman. A set of 180 pre-defined stroke paths
of the same length and width but different orientations was
given. After optimization, the selected strokes approximate
the given gray scale image quite well. In subfigure (c) the
paper was purposely crimped to introduce an error to the re-
alization by the robot. Strokes on the right side of the portrait
are drawn with larger line width since the brush is closer to

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

(a) (b) (c)

Figure 2: Painting with predefined stroke candidates: a) in-
put image (original: Dominik Fusina, www.flickr.com) ; b)
approximation with a pre-defined set of 180 strokes in dif-
ferent directions that are applied to positions in the painting
that have the highest quality. c) approximation with intro-
duced realization error (thicker strokes are painted on the
right side of the face), the process adapts to this and reduces
the stroke density within this area.

the canvas here. Due to the visual feedback loop the machine
adapts automatically to this error and the final gray-scale val-
ues are similar to the undisturbed version.

Dynamically generated strokes: For a given position in
the image, a stroke can also be generated dynamically from
the image content. As suggested by works on painterly ren-
dering (cf. [Her98]) a strategy for directing strokes is to draw
them perpendicular to the image gradient. For each position
a path is created, the effect on the canvas is simulated and the
corresponding quality is computed, candidates with highest
quality are realized. Both methods will be described below.

4.2. Computing Stroke Quality

A number of factors influence the quality for a stroke candi-
date. These factors are not only responsible for the style of
the result, but also for the painting strategy, i.e., the order in
which strokes are painted to form the final image.

In general, strokes can only be applied at places where
the color difference between target image and canvas can be
lowered by applying a brush stroke with the selected paint.
For gray-scale input this is equivalent to the gray-scale dif-
ference of all pixels under the stroke being larger than the
opacity of an additional layer of paint, in the chromatic case
this has to be measured for all color channels.

We compute the difference d(T,C) between canvas image
C and target image T and select the regions with sufficiently
high image differences for the given color i. These regions,
we call them di(T,C), are our candidate regions for adding
new brush strokes.

As mentioned above, for the practical realization and for
implementing different styles, some additional factors have
to be considered:

Overdrawing: Often it is not intended to paint wet-on-

wet, the colors may mix in an unpredictable way or the pa-
per might even crimp due to too much ink. Therefore re-
gions where strokes have been applied are avoided for a pre-
defined and color-specific time duration. This is done by in-
tersecting di(T,C) with a map R that shows recently painted
strokes. The resulting map Mi = R∩ di(T,C) specifies the
regions where new strokes can be placed.

Homogeneity: The pixels under a stroke candidate sc
within M should have a large homogeneity h(sc) or a small
color variance, rsp., to be represented effectively by a single
color. This automatically selects strokes perpendicular to the
image gradient since in this direction there is a higher prob-
ability of having small color variances. Stroke directions of
many painting styles are set according to this rule.

Orientation: Many painting styles furthermore prefer a
uniform orientation of strokes, at least in areas where the im-
age gradient is not too large. Examples are crosshatchings as
well as impressionist or expressionist styles. The orientation
of the strokes can therefore be weighted by a function a(cs)
that, e.g., prefers strokes in horizontal and vertical direction.

Values for orientation and proximity are typically in con-
flict and have to be balanced against each other. For some
styles a direction field could be given that lets strokes follow
a pre-defined pattern.

Proximity: The color (the amount of ink) that is needed to
alter the pixels under a stroke candidate towards the intended
color in T should be approximated optimally by one of the
given paint colors. So we compute the average color of those
pixels and determine the closest paint color. The comparison
is done on the basis of the color hue, the difference in hue
ci(sc) is an additional factor for the quality of the stroke.

Our standard method to determine stroke quality in a color
i is to combine the above-mentioned factors and find a path
within Mi that maximizes:

q(sc) = w ·h(sc)+(1−w) ·a(sc)+ ci(sc), (1)

with w ∈ [0..1] being a weight factor. More complex func-
tions could perform a non-linear balancing between h(sc)
and a(sc). In the following section we describe two methods
that rely on this function.

5. Realization of two Painting Styles

As mentioned above, in this paper we compare two styles to
represent a target image: pre-defined stroxels and dynami-
cally generated longer strokes. After we introduced the two
styles in the previous section we now describe their practi-
cal realization to produce robot paintings. Both have differ-
ent representational abilities and are well suited for different
objects. We will discuss this in the next section.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

Figure 3: Objects drawn with pre-defined paths (left) and dynamically generated strokes.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

Figure 4: More technical scene drawn with pre-defined paths (upper line) and dynamically generated strokes.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

5.1. Pre-defined Strokes

Our pre-defined set of paths for this style has three differ-
ent lengths (5,10 and 20mm) and three widths (2mm, 3mm,
4mm) in 60 different directions each. This results in 540
paths that we test for thousands of random positions in Mi.
The stroke candidates with the highest quality are selected
and painted. We take care that they do not overlap by using
a paint map R.

Upper and lower left painting of Figure 3 show objects
painted with this method. Within each iteration 300 strokes
were painted. The strokes are determined in sets of five
strokes each. These sets are the top stroke candidates from
1000 random positions according to Eq. (1) with w= 0.5 and
a(cs) = 0 (no orientation preference). Sixty of these sets are
painted in a single iteration. If a stroke was selected, its sim-
ulation is added to the maps R and Mi to prevent the ongoing
simulation from overdrawing strokes within the current iter-
ation.

5.2. Dynamically generated Strokes

In a second method we compute strokes dynamically on the
basis of the image information and its gradient. The image
gradient is computed using a Sobel operator, subsequently it
is filtered to allow larger and smoother strokes (cf. Kang et
al. [KLC07]). This gradient is used to produce stroke paths
that later guide the brush strokes.

In each iteration of the visual feedback loop, a large num-
ber of initial random positions is generated. For each po-
sition a path is generated using Line Integral Convolution
(LIC) of the gradient vector field (see Cabral et al. [CL93]).
This lets the strokes follow what Kang et al. call "edge tan-
gent flow". We use a Runge-Kutta integration method of
fourth order and a step size of one pixel to produce the paths.
Uniform regions can be filled with pre-defined directions or
by computing a distance transform [ST94].

Since with this method many paths are directed towards
the edges of the image, we store the already drawn paths in
a separate file. We test if a new path overlaps existing ones
and if it overlaps it will be clipped. If the remaining stroke is
too short it will be deleted.

In a second step the remaining part of the path is tested for
rendering. We take Mi and compute the stroke quality for a
stroke with maximum width. Typically the stroke will over-
lap with already drawn parts and therefore possibly extend
outside of Mi, which is penalized in the quality function. The
stroke width is gradually reduced and the quality is deter-
mined again. The width with maximum quality is added to
a candidate list. The robot realizes the candidates with the
highest quality. The method automatically prevents the ma-
chine from overdrawing, therefore no additional overlap test
is applied here.

5.3. Practical Considerations

Both styles were drawn with a specialized brush pen, a mix-
ture between a brush and a pen. Its fiberglass brush is very
robust and thus convenient for our application. We extended
its ink cartridge to be able to draw many thousand strokes
without refilling it. This allows us to paint 2000-3000 strokes
per hour. Unfortunately, higher speeds are prohibitive since
the acceleration may cause unintended spurting of ink on the
canvas and reduces the accuracy.

The used ink was thinned by a factor of 1:15 to have the
ability of gradually darkening the canvas. Interestingly, we
had many problems with highly thinned ink because it has
the tendency to dissolve and also to block the pen brush,
which then dries out. All images have a size of 40-60cm
and where drawn with approx. 30.000-40.000 brush strokes.
Painting took between 10 and 15 hours depending on the
type of brush strokes and the overall speed of the machine.

Using the set-up described so far, a number of practical
constraints are imposed to the simulation and feedback loop
of our active visual control:

Termination: For each iteration we record the number of
unsuccessful stroke placements (no stroke with sufficiently
high quality was found within 1000 random positions). If too
many failures occur in a sequence we stop the iteration. This
kind of stopping criterion seems to be much more stable than
other methods such as root mean squared pixel errors (RMS)
between target image and canvas. This is due to the fact that a
lot of visual noise is created during our approximation lead-
ing to unstable image-based termination criteria.

Color Calibration: Since color calibration never works
perfectly we have to take into account that the saturation on
the canvas will possibly not reach the exact amount of our
prediction. Therefore tolerances have to be added, otherwise
the process would not terminate and the robot would repeat-
edly overdraw already saturated regions.

Camera Lens: Though we have a relatively high resolu-
tion camera, the feedback image is blurred. Small strokes are
sometimes not shown exactly at the right position and thus
can also introduce repeated overdraw. On the other hand the
blur seems to stabilize the iteration. In his approximation
scheme Hertzmann [Her98] also uses blur for distributing
the introduced error. Maybe a similar effect is introduced
here.

Paint Interaction: On the canvas, colors mix in a much
more complex way than we can simulate on the computer.
Therefore we use highly thinned colors to correct our predic-
tion errors by repeated overdraw during the feedback itera-
tions. Even in the gray-scale case such complex interactions
have to be taken into account.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

Figure 5: First result with a color version of stroxel placement, we used ink jet colors yellow, magenta, and cyan for this
realization. The input image is shown in the upper right (image: Elizabeth A. Day, Penn State SALA, Overland Partners).

5.4. Visual Analysis

Both algorithms terminate with a valid visual representation
of the object. It is hard to determine their quality by means
of absolute measurements since their characteristics are too
different and the approximations are too rough to use quan-
titative pixel-based error metrics such as RMS.

Dynamically generated strokes tend to create drawings
that are too dark, this seems to be due to the fact that within
stroke simulation the width is not approximated precisely
enough. Furthermore, in the current version some tiny lines
are not filtered out properly and cause dark spots. This has
to be improved in the future.

In Figure 6 we compare a simulation of stroxels and their
practical realization. Typically different strokes are drawn in
our simulation and by the robot within the feedback loop; in
general, however, the gray-scale values are simulated quite
faithfully. Some differences can be seen though: strokes are
darker than assumed, their width is larger and also their
shapes do not really match our simulation. As mentioned
above, our feedback loop allows the process to adapt to the
so far created gray-scale values on the canvas. This limits the
overall error.

A very informal investigation of members of the univer-
sity did not yield a clear preference for one of these styles
(please refer to [Her10] for a review of evaluation methods
based on user studies). While the stroxels look more "techni-
cal", the dynamically generated strokes have more curly and
"expressionistic" look that might be better suited for organic

forms. However, also the buildings in Figure 4 seems to be
approximated quite nicely this way.

Both styles incorporate enough "artistic" attributes to be
considered "beautiful". If pre-defined paths are not restricted
in their direction, the textures of technical objects such as
the building are sometimes rendered too arbitrary, orienta-
tion preferences could help here.

Figure 6: Simulation of stroxels (left) and their practical re-
alization.

6. Conclusion and Future Work

We presented a mechanical painting system that works with
visual feedback and an optimization loop. An industry robot
is used to move a brush over the canvas, a set of special-
ized tools was developed to enable experiments with differ-
ent brushes and paint colors. Two painting styles were inves-
tigated and discussed, a number of results were presented.

c© The Eurographics Association 2012.



Deussen et al. / Feedback-guided Stroke Placement

A methodically interesting question for the future would
be a numerical evaluation of the painting results. Appropri-
ate statistical means have to be found to compute the quality
of different artistic representations.

In the future we want to further extend our experiments
to colors, a first result is shown in Figure 5. First trials with
oil colors showed us that this medium is quite difficult to
handle, different colors have different viscosity, the handling
of brushes is much more complex. Furthermore, the mixing
of colors has to be improved, a solution similar to VangoBot
[KM12] could help here. Nevertheless, we consider our set-
up as a good test bed for many experiments, in the future
we will also invite artists to explore the space of creative
possibilities opened by eDavid.

References

[Arm12] ARMAN P. V.: Zanelle. http://www.vanarman.com/,
2012. March 13th, 2012. 2

[Bae12] BAER H.:. http://www.holgerbaer.com/, 2012. March
13th, 2012. 2

[CH02] COLLOMOSSE J. P., HALL P. M.: Painterly rendering
using image salience. In 20th Eurographics UK Conference (June
2002), Eurographics Assoc., pp. 122—128. 2

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields using
line integral convolution. In Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques (1993),
SIGGRAPH ’93, pp. 263–270. 7

[Coh12] COHEN H.: Aaron. http://crca.ucsd.edu/ hcohen/, 2012.
March 13th, 2012. 2

[Deu12] DEUSSEN O.: eDavid, a Painting Robot. http://graphics.
uni-konstanz.de/, 2012. 1

[Gro12] GROSSER B.:. http://bengrosser.com/, 2012. March 13th,
2012. 2

[Hae90] HAEBERLI P. E.: Paint by numbers: Abstract image rep-
resentations. In Computer Graphics (Proceedings of SIGGRAPH
90) (Aug. 1990), pp. 207–214. 2

[HE04] HAYS J., ESSA I.: Image and video based painterly
animation. In Proceedings of the 3rd international symposium
on Non-photorealistic animation and rendering (New York, NY,
USA, 2004), NPAR ’04, ACM, pp. 113–120. 2

[Her98] HERTZMANN A.: Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1998), SIGGRAPH ’98, ACM, pp. 453–460. 2,
4, 7

[Her10] HERTZMANN A.: Non-photorealistic rendering and the
science of art. In Proceedings of the 8th International Symposium
on Non-Photorealistic Animation and Rendering (New York, NY,
USA, 2010), NPAR ’10, ACM, pp. 147–157. 8

[KLC07] KANG H., LEE S., CHUI C. K.: Coherent line draw-
ing. In ACM Symposium on Non-Photorealistic Animation and
Rendering (NPAR) (Aug. 2007), pp. 43–50. 2, 7

[KM12] KELLY L., MARX D.: Vangobot. http://vangobot.com,
2012. April 30th, 2012. 2, 9

[NIK10] NORTHAM L., ISTEAD J., KAPLAN C. S.: Brush stroke
ordering techniques for painterly rendering. In Computational
Aesthetics 2010 Eurographics Workshop on Computational Aes-
thetics in Graphics Visualization and Imaging Victoria British
Columbia Canada May 2830 2009 (2010), Eurographics Associ-
ation, pp. 59–66. 2

[ST94] SAITO T., TORIWAKI J.-I.: New algorithms for euclidean
distance transformation of an n-dimensional digitized picture
with applications. Pattern Recognition 27, 11 (1994), 1551 –
1565. 7

[Wik12a] WIKIPEDIA: Frider Naake. http://de.wikipedia.
org/wiki/Frieder_Nake, 2012. March 13th, 2012. 2

[Wik12b] WIKIPEDIA: Ken Goldberg. http://en.wikipedia.
org/wiki/Ken_Goldberg, 2012. March 13th, 2012. 2

[Wik12c] WIKIPEDIA: Tinguely art machines. http://en.
wikipedia.org/wiki/Tinguely, 2012. March 13th, 2012. 2

c© The Eurographics Association 2012.


