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Abstract

A challenge to deploying robots widely is navigation in
human-populated environments, or social robot navigation.
Fairly evaluating social navigation algorithms is hard be-
cause it involves not simply robotic agents in static environ-
ments but also dynamic human agents. Further, human per-
ceptions of robot behavior are important when evaluating so-
cial robot navigation. While reliable benchmarks have accel-
erated progress in fields like computer vision and language
understanding, much work remains to be done to effectively
benchmark social navigation due to several open challenges.
For example, in social robot navigation, traditional quanti-
tative measures of navigation algorithm performance must
be augmented with user studies of human reactions to robot
behaviors. Also, work in human-robot interaction (HRI) in
industry and academia have different emphases, often lead-
ing to different evaluation techniques. In this paper, we re-
view ongoing efforts to develop principles and guidelines for
benchmarking social navigation and use these to analyze ex-
isting benchmarks with respect to HRI concerns.

The goal of social robot navigation research is to improve
how robots behave when moving around people. However,
a crisp definition of what makes navigation “social” is elu-
sive. To address this gap, the authors - a workgroup of re-
searchers brought together by the Social Navigation Sympo-
sium (Google, Stanford 2022) - have been developing prin-
ciples and guidelines for benchmarking social robot navi-
gation algorithms. Our discussions have clarified the social
navigation problem (Sec. 1) and how it is analyzed scientifi-
cally (Sec. 2), developed a taxonomy of social navigation ex-
perimental setups, metrics, simulators, datasets, and deploy-
ment environments (Sec. 3), and are converging on recom-
mendations to make evaluations more comparable (Sec. 4).
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Emerging from these discussions is an understanding that,
unlike traditional robot navigation, social navigation needs
human-robot interaction (HRI) methods to analyze human
behavior. We review existing benchmarks including aca-
demic benchmarks that enable detailed tests of behaviors
in simulation, and industry benchmarks that analyze human
reactions to social robot behavior (Sec. 5). Finally, we con-
clude by arguing social robot navigation benchmarks should
incorporate elements of both of these approaches (Sec. 6).

1 Towards a Definition of Social Navigation
Social navigation has referred to a range of behaviors from
simple navigation around dynamic obstacles, to complying
with complex social norms, up to navigating with commu-
nicative intent. To define “social” more precisely, we ex-
amined the terms social and antisocial for humans. Social
sometimes means participating in society, i.e., participating
in an interacting group whose individuals modify their be-
havior to accommodate the needs of others while achieving
their own. But social has a second meaning: a “social” indi-
vidual has outstanding skills to work with others, based on
an understanding of their feelings and needs and adapting
to them. Antisocial individuals fail to follow the customs of
society or live without consideration for others. Inspired by
these terms when applied to humans, we offer this definition:

A socially navigating robot is a robot that acts and
interacts with humans or other robots, achieving its
navigation goals while modifying its behavior to en-
able the other agents to better achieve theirs.

This social quality may be reflected through overt behav-
ior changes, such as respecting social norms, or through an
understanding of other agents’ needs, feelings, and/or com-
municating capabilities. However, social norms are often not
verbalized, and what other agents need to achieve, what they
feel, or what they like can be unclear. To operationalize these
concerns, we identified aspects of social navigation that can
be used to evaluate the quality of social behavior, including



safety, comfort, legibility, politeness, social competency, un-
derstanding other agents, and responding to context:

• Safety: A minimal requirement for robots and human so-
ciality is not harming others in the course of business.
Avoiding collisions with humans is important but is not
the only safety concern (Mavrogiannis et al. 2021). For
instance, while it might be acceptable for a factory robot
to bump a guardrail defining the edge of its workspace,
social robots should avoid damaging human environ-
ments, which often contain important objects that can be
damaged or wall coverings whose visual appearance is
important. Robots should also avoid behaving in a way
that induces a human to injure themselves.

• Comfort: Humans should also feel comfortable around
robots, defined in (Kruse et al. 2013) as the absence
of annoyance and stress for humans in interaction with
robots. Many features contribute to comfort, includ-
ing maintaining human-robot distance, not cutting hu-
mans off, and naturalness of motion. Unacceptable robot
speed, navigation jitter and unexpected head movements
are factors that degrade humans’ perception of comfort.

• Legibility: Legibility refers to the property of an agent’s
behavior that makes it possible for other agents to infer
their goals (Dragan, Lee, and Srinivasa 2013). This in-
cludes not only the robot’s goal but also incidental inter-
actions when performing other tasks, e.g., moving to the
right or left when passing in a hallway. (Dragan, Lee, and
Srinivasa 2013) suggests that legibility involves relaxing
constraints such as predictability of trajectories.

• Politeness: Politeness refers to behavior that is respectful
and considerate of people. There are at least two dimen-
sions: physical politeness (how robots navigate around
people, such as not cutting people off) and communica-
tive politeness (gestures or verbal signals, such as saying
“excuse me”). Politeness can have a strong effect on peo-
ple’s perception of robots (Inbar and Meyer 2019).

• Social Competency: Robots should comply with social,
political, and legal norms for sharing space. Many social
competencies are matters of following conventions rather
than optimizing performance (e.g., driving on the left or
right). Some social competencies, like turn-taking, can
emerge naturally (Kose-Bagci, Dautenhahn, and Nehaniv
2008), whereas others must be engineered (or simulated
with wizard-of-oz studies (Kanda and Ishiguro 2017)).

• Understanding Other Agents: Accommodating other
agents requires understanding what they want, what
they’re doing and where they’re going, so robots don’t
thwart them by crossing paths or blocking goals. Un-
derstanding when the interaction potential - the likeli-
hood of robots entering human personal space - should
be minimized (Trautman and Krause 2010) or maximized
(Mead and Matarić 2017) depends on the task.

• Responding Appropriately to Context: Social naviga-
tion should be evaluated within the context that it is to be
deployed. Context helps us understand the relative im-
portance of the previous objectives. An example shared
in the symposium was a robot in a hospital bringing an

emergency drug to a doctor: politeness is less important
than task success. We identified several forms of context,
including cultural context, environmental context, diver-
sity, task context, and interpersonal context, all of which
can change which response is right in a given situation.

These aspects of social navigation can be seen as ad-
ditional objectives that the agent needs to optimize for
while still achieving its main objective, and context can be
seen as weighting which aspects are most important at any
given time. These aspects are not completely orthogonal:
improving legibility might improve safety and even com-
fort, whereas nonverbal politeness depends on understand-
ing other agents’ trajectories. As another example, what is
considered appropriate or polite behavior depends on the
cultural context (Recchiuto and Sgorbissa 2022).

Properly studying these aspects of social navigation di-
rectly impacts which metrics to measure (Gao and Huang
2021), what datasets to collect, how to build simulators, and
how to structure benchmarks. However, another key factor is
understanding what kind of social navigation research is be-
ing conducted, for algorithm development in academia and
product development in the industry have different concerns.

2 Scientific Questions of Social Navigation
Benchmarks require measures by which we compare and
an evaluation methodology for making the comparison. Be-
cause social robot navigation is concerned with methods
for controlling mobile robots to operate effectively around
people, many argue social robot evaluation methodologies
should involve the collection of human perception of robot
behavior. However, the scientific questions a benchmark
asks are equally important in deciding its scope and content.

The key scientific question asked in benchmarking so-
cial robot navigation is how different social navigation ap-
proaches compare to each other. Given the complexity of so-
cial navigation, different benchmarks often focus on differ-
ent aspects of the problem and thus different scientific ques-
tions. Some of these questions arise from traditional robot
navigation research and can arguably be evaluated using tra-
ditional methods, with adjustments for human participants:

• Method Evaluation: How do methods compare with
each other against baselines? Some aspects of method
evaluation involve quantitative metrics and can be per-
formed in simulation, such as revealing problems in a
robot’s safety layer as it faces increasing obstacle den-
sities. However, when human evaluations are required,
these are typically conducted in the real world, though
toolkits are now coming into use that enable labeling sim-
ulated trajectories as well (Baghel et al. 2021).

• Ablation Studies: How do components of a method af-
fect its overall performance? These are generally con-
ducted by turning method components off. While in the-
ory ablation studies could be conducted on-robot, in
practice these studies are often only conducted in sim-
ulation, as real human participant time can be wasted on
variants of the algorithm expected to perform poorly (or
known to perform poorly in simulation).



• Method Generalization: How do policy behaviors gen-
eralize to different environments? Benchmarks can test
methods under different conditions to evaluate this, a task
which is easier (though less realistic) in simulation.

However, while physical safety may be measurable quan-
titatively, politeness seems to imply human evaluation, and
comfort is often defined in terms of human reactions. Scien-
tific questions involving these aspects involve human per-
ceptions and reactions to robot behaviors, and should ar-
guably be investigated through HRI studies:

• Human Ratings: How do humans rate the socialness of
social navigation methods, either intrinsically or in com-
parison to a baseline? For some researchers, human rat-
ings of policy behavior in real contexts is the gold stan-
dard for policy performance, but for these ratings to be
effective, studies must follow proper HRI protocols and
use validated survey instruments.

• Behavior Analysis: How does human behavior change
when exposed to different robot navigation policies?
While ratings are explicit, behavior change is implicit or
even unconscious, and studies must be conducted accord-
ing to HRI guidelines that ensure conditions are appropri-
ately blinded so participant and rater reactions are valid.

• Issue Discovery: Benchmarks can also be used to find
out the frequency of encounter types between humans
and robots, as well as the frequency of problems that af-
fect a given policy, to guide research in the direction of
problems that occur in the wild. These types of studies
must be conducted on robot in a live deployment.

Many benchmarks focus on a subset of the questions
above. However, in Section 6 we argue that because social
navigation involves understanding both how robots affect
other agents and which methods are effective, benchmarks
will benefit from incorporating both HRI components that
evaluate human reactions in the real, as well as ablation stud-
ies even if those cannot be collected in the real.

3 A Taxonomy of Social Navigation
Our workgroup does not aim to provide a single compre-
hensive evaluation protocol to be used for all social navi-
gation research, because social navigation research spans a
wide range of domains with different goals and priorities. In-
stead, we are developing principles and guidelines to guide
the development of protocols that enable fair comparisons of
methods. The first step in this process involves scoring social
navigation approaches along a formal set of axes including
factors of analysis, metrics collected, dataset types, simula-
tor platforms, social scenarios, and overall benchmarks.

• Factors: Benchmarks, datasets, and simulators for social
navigation have similar properties, and we have identi-
fied common factors to create a vocabulary for analysis.
The social navigation scenario includes the context of the
navigation, the physical environment where robots and
humans operate, the human behaviors expected, the robot
task being performed, and the role of the robot. The robot
platform is another key factor, including its morphology,
sensors, actuators, and communication modalities. Data

and metrics collected are additional factors, along with
methods for authoring human and robot behaviors, and
whether experiments are conducted in simulation or real.

• Metrics: Recent surveys of social navigation metrics
have uncovered close to a hundred different metrics in
use (see (Gao and Huang 2021; Mirsky et al. 2021) for
recent reviews). However, these metrics can be grouped
by broader features, such as algorithmically computed
(such as Success-weighted Path Length (SPL) (Anderson
et al. 2018)) or gathered by surveys of humans (such as
comfort ratings). Surveyed metrics can further be divided
into those collected explicitly via questionnaires (e.g.,
about perceived comfort) or implicitly through sensors
(such as stress in human facial expressions). Algorith-
mic metrics in turn can be hand-crafted or learned from
data gathered from surveys. Other axes of metrics include
whether metrics cover moment-to-moment behavior or
entire episodes, or whether metrics model individual fea-
tures (e.g., success rate or politeness) or holistic perfor-
mance (e.g., ratings of “socialness”).

• Datasets: We have used these factors to analyze
datasets such as JRDB (Martı́n-Martı́n et al. 2019),
THOR (Rudenko et al. 2020), TRAJNET++ (Kothari,
Kreiss, and Alahi 2021), UCY (Lerner, Chrysanthou, and
Lischinski 2007), ETH (Pellegrini et al. 2009), EPID (Ma-
jecka 2009), SDD (Robicquet et al. 2016), EFL) (Park
et al. 2016), WILDTRACK (Chavdarova et al. 2018),
SCAND (Karnan et al. 2022a,b). We will not try to sum-
marize our findings, but note datasets require additional
factors for analysis such as coverage, sampling distribu-
tion, annotations, and privacy and fairness handling.

• Simulators: Social navigation simulators include iGib-
son (Li et al. 2021), SEAN (Tsoi et al.), and Soc-
NavBench (Biswas et al. 2022). Many simulators have
different APIs and metrics. To enable clearer comparison
across simulation environments, we are working to create
a common API shared across all simulators.

• Scenarios: Social navigation studies include field stud-
ies of behavior in the wild, long-term robot deployments
at particular sites, controlled laboratory experiments, so-
cial navigation scenarios that aim to create a particular
in-the-wild behavior, and “staged” scenarios that attempt
to recreate the chaos of crowd scenarios. We have devel-
oped a “scenario card” which enables us to compare so-
cial navigation scenarios, such as frontal approach, over-
taking, intersections, and blind corner.

• Benchmarks: Benchmarks involve an evaluation pro-
tocol for collecting metrics for social robot navigation
methods in social navigation scenarios. Current bench-
marks include SEANavBench,1 iGibson (Li et al. 2021;
Shen et al.), and the Social Scenarios Protocol (Pirk et al.
2022), discussed in further depth in Section 5.

4 Criteria for Good Benchmarks
Based on our analysis of social navigation aspects, factors,
datasets, simulators, and metrics, we argue there are 6 key

1https://seanavbench.interactive-machines.com/



factors to make good social navigation benchmarks:

1. Evaluate Social Behavior: A good benchmark should
evaluate the properties of algorithms in social scenarios
which involve humans and robots interacting. Therefore,
a social benchmark should have metrics related to so-
cial behavior and not just contain pure navigation met-
rics such as Success-weighted by Path Length (Anderson
et al. 2018) or pure task metrics such as success rates.

2. Include Quantitative Metrics: Benchmarks should pro-
vide quantitative metrics on a variety of dimensions of
interest, enabling researchers with different goals to use
them to evaluate algorithms with respect to their context
while comparing with other approaches in the literature.

3. Provide Baselines for Comparison: Benchmarks
should include baseline policies that show worst-case
performance; comparisons with upper-bound oracle per-
formance or state-of-the-art policies are desirable as well.

4. Be efficient, repeatable, and scalable: To allow for bet-
ter democratization and productive competition and col-
laboration amongst different scientists, efficient, repeat-
able, and scalable benchmarks are preferable.

5. Ground Human Evaluations in Human Data: Many
researchers agree that we do not have a good predictive
model of how humans will react to or rate robot behavior;
therefore, benchmarks should measure socialness based
on data gathered from human evaluations.

6. Use well-validated evaluation instruments: These hu-
man evaluations should be based on metrics that are vali-
dated, which is an iterative process that involves propos-
ing metrics, conducting studies, statistically analyzing re-
sponses, and exposing metrics to peer review.

5 Current Social Navigation Benchmarks
Existing benchmarks often focus on one or more of the as-
pects of social navigation outlined above, and perform better
or worse on the criteria we have outlined. In this section, we
review benchmarks in use in academia and industry.

Academic Benchmarks
SEANavBench is an academic benchmark created for the
SEANavBench workshop and competition held at ICRA’22.
SEANavBench combines SocNavBench (Biswas et al.
2022) and SEAN 2.0 (Tsoi et al.), enabling algorithms to
run on simulated robots via ROS in environments via Unity.
Algorithms can be evaluated on simulated scenes across
environment sizes, crowd densities, and pedestrian behav-
ior, including simulated pedestrians and replay of pedes-
trian datasets. This enables the analysis of how algorithms
can succeed or fail as environmental conditions change and
the measurement of performance using a variety of metrics.
SEANavBench uses SEAN-EP (Tsoi et al. 2021) to run the
SEAN 2.0 simulation environment on the web, which could
be used to collect human feedback.

iGibson (Li et al. 2021; Shen et al.) is a simulation en-
vironment for navigation and manipulation tasks in house-
hold scenes, used to create the iGibson Challenge 2021 so-

cial navigation benchmark 2 at the CVPR 2021 Embod-
ied AI Workshop. In this benchmark, robots must navi-
gate to targets without collision among pedestrians (Pérez-
D’Arpino et al. 2021), which are simulated via the ORCA
model (van den Berg et al. 2011) in fifteen interactive in-
door household scenes. Evaluation metrics include STL
(Success weighted by Time Length) for reaching the goal
quickly, and PSC (Personal Space Compliance) for main-
taining a comfortable distance from all pedestrians. This
benchmark enabled quantitative comparison of approaches
from over a dozen teams, including methods based on tech-
niques like DD-PPO (Wijmans et al. 2019), PPO (Schulman
et al. 2017), SAC (Haarnoja et al. 2018), and so on, pro-
viding a clear picture of which algorithms were superior for
the task. However, the benchmark does not include human
ratings, and in 2021 did not include on-robot tests.

Industry Benchmarks
The Social Navigation Scenarios Protocol (Pirk et al.
2022) is an industry benchmark proposed by Robotics at
Google (Google 2023) and used in (Pirk et al. 2022), (Xiao
et al. 2022), and (Cuan et al. 2022) to evaluate the perfor-
mance of a series of learning-based model predictive control
policies (MPC) for social robot navigation. This benchmark
protocol involves selecting social navigation scenarios of in-
terest, such as Frontal Approach, Blind Corner, Corridor In-
tersection, and so on. Each scenario’s human-robot interac-
tion is defined by the start and end of the robot trajectory
and a short description of what is expected to happen for
the human. This serves two purposes: enabling the collec-
tion of expert human trajectories for training social navigia-
tion policies, and evaluating policies on the same scenarios
with relatively low variability. Over the course of (Pirk et al.
2022), (Xiao et al. 2022), and (Cuan et al. 2022), the proto-
col was iteratively improved. For example, the questionnaire
proposed in (Pirk et al. 2022) was analyzed in (Xiao et al.
2022) to identify reliable factors according to Cronbach’s al-
pha, which were used to update the questionnaire for (Cuan
et al. 2022), which enabled more extensive analysis.

6 HRI and Social Navigation
HRI provides a wide array of experimental protocols and
tools for validating survey instruments, which can help the
social navigation community to improve its tools. However,
social navigation has its own unique challenges. In this sec-
tion, we review techniques typically used in industry and
academia, with the caveat that this characterization of what
is “industrial” or “academic” is really a caricature, and many
researchers cross what we are presenting as a divide.

HRI for Social Navigation in Industry
HRI in social robotics for industry often refers to study-
ing human-robot interactions to improve outcomes of robots
interacting with people. HRI studies help develop research
ideas into products, guiding the development of “experi-
ences” that focus less on improving performance and more

2https://svl.stanford.edu/igibson/challenge2021.html



on creating interactions that enable robots and humans to ac-
complish more together. Industry can deploy robots at scales
difficult for academia, but deployments have legal, privacy,
and safety issues as serious as the constraints of IRB review.
Industry can even conduct large-scale studies to validate sur-
vey instruments, but cannot always control potential con-
founds like the robot platform or deployment environment.

Still, techniques from academic HRI are useful to indus-
try. HRI helps design benchmarks and A/B tests built around
questionnaires so these instruments are valid. For example,
industry often measures success by A/B tests of social nav-
igation approaches evaluated by raters. HRI studies show,
however, that ratings provided by roboticists differ from
those of laypeople, so drawing raters from the expected user
pool is critical, and proper study protocols must be followed.

HRI and Social Navigation in Academia
Like their counterparts in industry, HRI researchers in
academia study how to make humans and robots interact
better. Academia often focuses more closely on developing
reliable, validated scientific techniques for analyzing how to
benchmark those interactions. For this reason, industry often
relies on academic researchers to advise its HRI efforts.

But academic social robotics is more than just HRI re-
search, as many social navigation researchers are interested
in understanding the performance of methods to improve
them. Academia often focuses on studies that vary environ-
ment properties like crowd density or algorithm properties
via ablations to illuminate the sources of power. Industry de-
ployments can challenge these improvements in the real.

Bridging Academic and Industrial HRI
While some techniques for social robot navigation bench-
marking are more frequently used in industry and others
more frequently in academia, we argue ideal benchmarks
should build on techniques from both traditions.

Industry already benefits from academia, using social
navigation methods from academia as building blocks for
social navigation solutions. However, even if a method does
well on a human-rated A/B test, without ablation studies that
reveal how these methods cause good (or bad) social behav-
ior, it’s hard to know how these methods could be improved.

Conversely, academic social robotics might benefit from
more focus on the human part of HRI. While studying the
sources of power of algorithms with ablation studies and a
diversity of environments is important, arguably the final ar-
biter of good performance is how real humans react to the
methods when deployed in real on-robot deployments.

Another tradeoff exists between controlled studies and
the wild. To create repeatable studies, many academic re-
searchers simplify problems until they can be tested in a con-
trolled laboratory setting. By design, this reduces the chance
of discovering interesting behaviors in the wild. Conversely,
deployments in the wild can discover unexpected outcomes,
but require a large number of trials to function.

Overall, benchmarks that combined these approaches
would be ideal. For example a benchmark that included a
simulated component which enabled collecting a broad va-
riety of data on algorithm ablations and environment con-

ditions would enable us to understand the behavior of al-
gorithms, even if it was not feasible to collect in the wild
- for example, in simulation one can test what would hap-
pen if one disabled the safety layer of an algorithm in a
dense crowd. But hand in hand with this simulated compo-
nent should be a real component which enables A/B testing
of qualities which are highly performant enough to be de-
ployed safely on-robot, using validated questionnaires that
enable reliable collection of human ratings. With both sets of
data, we can make predictions about how algorithm changes
would make humans feel about the sociability of navigation
behavior - predictions we cannot make given benchmarks
that address only algorithmic or human data in isolation.

7 Conclusion
The benchmarks discussed reveal complementary strengths
in academic and industry studies of social robot naviga-
tion. Academic social benchmarking has developed exten-
sive techniques for analysis of social navigation policies,
including environmental diversity to determine generaliza-
tion and ablation studies to reveal sources of power; indus-
try benchmarking has focused on on-robot testing which has
required incorporating techniques from HRI to create vali-
dated instruments which can enable reliable comparisons of
policies. The ideal social navigation benchmark would com-
bine features of both approaches. For these reasons, our cri-
teria for good benchmarks - evaluating social behavior, with
quantitative metrics, with baselines for comparison, scal-
ably, with human evaluations grounded in human data col-
lected with validated survey instruments - are designed to
encourage researchers to create the best of both worlds.
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