
Self-Supervised Learning of Pose-Informed Latents

Raphaël Jean
Menya Solutions, Mila

raphael.jean@rocketmail.com

Pierre-Luc St-Charles
Mila, AMLRT

Sören Pirk
Google Research

Simon Brodeur
Menya Solutions

1. Supplementary Material

In the following sections, we provide supplemental detail
on the network architecture used in our experiments, addi-
tional qualitative and quantitative evaluation results for both
UCF101 and Objectron, and a discussion on failure cases in
pose estimation.

The code used for our experiments is available online.1

1.1. Network Architecture

We show in Figure 1 the architecture used in our exper-
iments. In (a), we show how we adapt the SimSiam ar-
chitecture to train on view pairs from object-centric videos.
The projector and predictor networks of our framework are
shown in (b) and (c), respectively. We use 2048-dimension
embeddings and a bottleneck structure for the predictor.
These are in line with the original description in SimSiam
but they differ from popular implementations such as Py-
Torch Lightning’s.2 Note also that in our implementation
the predictor learning rate is fixed throughout training while
the encoder and projector are trained with the learning rate
schedule described in the main paper.

1.2. Additional Results

Qualitative Evaluation Results on Objectron. Our
preliminary experiments on pose estimation using the Ob-
jectron dataset showed that commonly used pre-trained
models are insensitive to pose variations due to feature sup-
pression. In contrast with the structured space presented
in Figure 2 of the main paper, models pre-trained on Im-
ageNet will collapse different frame embeddings across a
video into a single location. Our methodology instead re-
sults in an embedding structure that evokes the motion of
the camera in the original video sequence. We provide a
video that shows this effect along with this document.3

The embeddings produced by SimSiam with our pro-
posed training approach also seem to be fairly robust to

1https://github.com/rjean/siampose/
2https://github.com/PyTorchLightning/lightning-

bolts/ as of version 0.3.1.
3The video is named pca 3d trajectory video.mp4.

background clutter and appearance variations while remain-
ing sensitive to object poses. We illustrate this in Figure 2
for a variety of videos. There, for different frames of a
given video (shown on the top row of each double-row seg-
ment), we find the nearest neighboring frame in the valida-
tion set based on embedding similarity. The sequence of
corresponding results is shown in the bottom row of each
segment. We can observe that although the nearest corre-
spondences sometimes vary in appearance and absolute lo-
cation in image space, the object orientations (shown using
the 3D bounding boxes in green) are almost always com-
parable. We provide high-resolution videos that show these
frame-to-frame matching results along with this document.4

Quantitative Evaluation Results on UCF101. Next,
we provide in Table 1 additional results on the UCF101 ac-
tion recognition benchmark for different model pre-training
strategies. The results for the “Nearby frame pairs” and
“Single frame” approaches are already discussed in the
main paper. Here, the “Distant frame pairs” approach is
added; interestingly, it shows significantly better perfor-
mance in the single-neighbor retrieval regime (R@1), but
much worse performance under other regimes. We also pro-
vide the evaluation results when using a model pre-trained
on ImageNet in a supervised fashion (“ImageNet embed-
dings”): in this case, the results far outperform those of self-
supervised training strategies. This shows that UCF101 pre-
training can be easily eclipsed by supervised pre-training
on an image dataset that contains object labels relevant to
the UCF101 actions. This provides an interesting upper
bound for single-frame representations. Finally, we provide
a lower bound on this benchmark based on the embeddings
of a randomly initialized model (“Random embeddings”).

Note that we use majority voting to compare sequences
of image embeddings and avoid the need to reduce the di-
mensionality of sequences with a temporal pooling opera-
tion. This allows to better compute the point-to-point sim-
ilarity of trajectories in embedding space. For each im-
age embedding of the query sequence, we search for the
k-nearest neighbours in the training set and aggregate them.

4One result video is provided for each Objectron category in the
frame matching folder.

1

https://github.com/rjean/siampose/
https://github.com/PyTorchLightning/lightning-bolts/
https://github.com/PyTorchLightning/lightning-bolts/


ResNet50

ResNet50

Projector

Projector

Video Object 
Detector

Cropped Image 
@ t=t1, 224x224x3

Cropped Image 
@ t=t2, 224x224x3

Predictor

Predictor

Cosine 
Similarity

Cosine 
Similarity

Encoder

Shared
Encoder 20

48

20
48

20
48

20
48

20
48

20
48

fc fc

ProjectorNetwork Architecture
fc fc

20
48

bn
 +

 re
lu

20
48

51
2

51
2

Predictor

(a) (b) (c)

bn
 +

 re
lu

bn
 +

 re
lu

bn

Shared
Predictorstop gradient

Figure 1. Our network architecture (a) is inspired by the Siamese framework of [1]. We sample frames from a video and use these as views
to learn good representations by maximizing the similarity between their corresponding embeddings. The use of video frames makes the
learned representations more motion- and geometry-aware which enables their use in tasks such as pose estimation and action recognition.
The setups for the projector and predictor blocks are shown in (b) and (c), respectively.

Figure 2. Overview of frame-to-frame nearest neighbor matching results obtained with the Objectron validation set for the bike, book,
bottle, camera, cereal box, chair, laptop and shoe categories of Objectron. Each double-row segment has a corresponding high-resolution
video provided with this document. Top shows the query frames (white bounding box is ground truth, green and red bounding boxes are
the reprojected 3D box from the nearest neighbor). Bottom shows the result frames and the associated 3D bounding boxes in green. The
full resolution version of the images in this figure are also provided with this document (as part of the frame matching folder).

The relative frequencies of the classes associated with the
aggregated k-nearest neighbours are then computed. If at
least one of the top-k most frequent classes matches the
class of the query sentence, we consider it a match.

Impact of Data Augmentation Strength. We also study
the impact of varying the strength of the data augmentation
operations across different view generation strategies on the
Objectron dataset. We split our experiments into three main



Table 1. UCF-101 nearest neighbor video retrieval performance
using different pairing methods, and using backbones pre-trained
on other datasets.

Method R@1 R@5 R@10 R@20
Nearby frame pairs 41.4 57.3 62.1 66.2
Distant frame pairs 42.6 54.9 58.8 61.2
Single frame 41.6 57.1 61.7 65.2
Random embeddings 18.1 32.8 41.1 50.1
ImageNet embeddings 66.8 85.5 90.1 93.2

categories: the first category has views generated from a
single frame (“Same”), the second has views from nearby
frames (“Nearby”), and the last has views from frames uni-
formly sampled from the video (“Distant”). Then, we use
four different sets of data augmentation pipelines across all
categories: pixel-only operations such as blur and color jit-
ter (“PX”), ultra-light cropping (<20% rescale without as-
pect ratio changes) combined with pixel-only operations
(“ULC+PX”), light cropping (<40% rescale without as-
pect ratio changes) combined with pixel-only operations
(“LC+PX”), and strong augmentations (“Full”). Note that
“Full” corresponds to the original setup proposed in Sim-
CLR and used in the original version of SimSiam. We show
the evaluation results in Table 2.

We can first observe in this table that all the pixel-only
augmentation pipelines lead to bad representations (and
thus bad downstream performance) due to the discovery of
edge-level shortcuts during pre-training. This happens even
with the “distant” strategy which suggests that the diver-
sity of views itself is not sufficient to learn good represen-
tations. The use of random cropping at a large enough scale
is important and seems to be a predictor of the overall per-
formance. Besides, we can observe that generating views
from frame pairs reduces the need for data augmentation to
obtain similar performance levels.

1.3. Failure Cases

Finally, we highlight cases where our pose estimation
approach fails. In practice, about 69% of the 3D bounding
boxes predicted using our zero-shot pipeline are within the
50% 3D IoU threshold of the ground-truth annotations of
Objectron. The remainder are failure cases that fall into one
of the two major categories described below.

Thickness and ground plane related failures. These
failures happen when the predicted object orientation and
size are correct but its thickness is incorrect. Such cases
occur frequently with small books and closed laptops. They
are sometimes also caused by bad ground plane estimations
in the dataset that result in bounding box fitting errors. See
Figure 3 for a few examples.

Optical illusions. These failures are related to the image
content itself. For instance, in Figure 4, local features in the

Table 2. Results for different data augmentation and view selection
configurations. “PX” stands for pixel-only augmentations. “ULC”
is ultra light cropping, “LC” is light cropping, and “Full” is the
default pipeline with strong augmentation.

Method
Classif.

Acc.
Re-ID
mAP 3D mAP

Same - PX 44.2 0.02 0.29
Same - ULC + PX 83.1 0.24 0.59
Same - LC + PX 91.2 0.26 0.65
Same - Full 96.8 0.59 0.67
Nearby - PX 26.6 0.00 0.19
Nearby - ULC + PX 93.8 0.55 0.65
Nearby - LC + PX 95.7 0.53 0.69
Nearby - Full 94.5 0.71 0.66
Distant - PX 25.9 0.00 0.18
Distant - ULC + PX 93.8 0.22 0.58
Distant - LC + PX 91.4 0.82 0.60
Distant - Full 94.8 0.85 0.58

Figure 3. Examples of object thickness estimation failures com-
bined with ground plane estimation failures. Query frames are
shown in the top row, nearest neighbors in the bottom row.

Figure 4. Example of degraded book pose estimation. The orien-
tation of the pattern on the book seems to confuse the pose estima-
tion. Query frames are shown in the top row, nearest neighbors in
the bottom row.

Figure 5. Example of failing nearest neighbor retrieval for a chair
with a dot pattern (left). The other crops correspond to nearest
neighbors across unique videos.

book’s cover pattern suggest a 45° orientation. This leads to
bad nearest neighbor matches (shown in the bottom row). In
Figure 5, the grid pattern in the chair seems to dominate the
embedding more than the pose information. In this case, the



query frame is the first image on the left, and several nearest
neighbors are shown consecutively after it.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2


	. Supplementary Material
	. Network Architecture
	. Additional Results
	. Failure Cases


