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Abstract— Social navigation is the capability of an au-
tonomous agent, such as a robot, to navigate in a “socially
compliant” manner in the presence of other intelligent agents
such as humans. With the emergence of autonomously navi-
gating mobile robots in human-populated environments (e.g.,
domestic service robots in homes and restaurants and food
delivery robots on public sidewalks), incorporating socially
compliant navigation behaviors on these robots becomes critical
to ensuring safe and comfortable human-robot coexistence.
To address this challenge, imitation learning is a promising
framework, since it is easier for humans to demonstrate the task
of social navigation rather than to formulate reward functions
that accurately capture the complex multi-objective setting of
social navigation. The use of imitation learning and inverse
reinforcement learning to social navigation for mobile robots,
however, is currently hindered by a lack of large-scale datasets
that capture socially compliant robot navigation demonstrations
in the wild. To fill this gap, we introduce Socially Compli-
Ant Navigation Dataset (SCAND)—a large-scale, first-person-
view dataset of socially compliant navigation demonstrations.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of
socially compliant, human-teleoperated driving demonstrations
that comprises multi-modal data streams including 3D lidar,
joystick commands, odometry, visual and inertial information,
collected on two morphologically different mobile robots—a
Boston Dynamics Spot and a Clearpath Jackal—by four
different human demonstrators in both indoor and outdoor
environments. We additionally perform preliminary analysis
and validation through real-world robot experiments and show
that navigation policies learned by imitation learning on SCAND
generate socially compliant behaviors.

[. INTRODUCTION

Social navigation is the capability of an autonomous agent
to navigate in a socially compliant manner such that it
recognizes and reacts to the objectives of other navigating
agents, at least somewhat adjusting its own path in response,
while also projecting signals that can help the other agents
reciprocate. Enabling mobile robots to navigate in a socially
compliant manner has been a subject of great interest recently
in the robotics and learning communities [1]-[5]. Towards
enabling this capability, demonstration data of socially com-
pliant navigation for mobile robots, such as the ones shown
in Fig. |IL can be a valuable resource. For instance, such
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Fig. 1: A human demonstrator teleoperates the two robots,
following a socially compliant strategy (left- moving with
traffic, right- sticking to the right of the road) around human
crowds.

demonstration information can be used to learn socially
compliant robot navigation using the paradigm of Learning
from Demonstrations (LfD) [6], [7] or understanding human
navigation in the presence of autonomous robots [8].

Datasets for social navigation, generally used for learning
and benchmarking, include data collected both in the real-
world [9] and in simulated environments [10], [11]. While
such datasets provide basic trajectories of the robots and hu-
mans, they either contain limited interactions in constrained,
orchestrated environments or restrict themselves to indoor-
only navigation scenarios. When collecting data in such
controlled settings [9], naturally occurring social interactions
including—but not limited to—following lane rules of a
country, yielding to pedestrians and vehicles, walking with
and against a crowd of people, and street crossing is not
captured. Additionally, the robots used for data collection
in previous social navigation datasets [9] tend to use a
simple controller for point-to-point navigation that does not
explicitly exhibit socially aware navigation.

Recently, imitation learning has emerged as a useful
paradigm for designing mobile robot navigation controllers
[12]-[15]. In this paradigm, the desired navigation behavior
is first demonstrated by an agent such as a human, the
recording of which is then utilized by an imitation learning
algorithm to imitate. This intuitive way of teaching a task
to a robot is also easy for non-expert humans since it only
requires providing demonstrations, instead of defining the
rules of the task itself, which may be hard to explicitly
define for social navigation. Motivated by recent successes



of imitation learning in robot navigation, we posit that one
way to enable autonomous agents to navigate socially is
through learning from human demonstrations of socially
compliant navigation behavior. However, there is a lack of
large-scale datasets containing socially compliant navigation
demonstrations in the wild that can be utilized for imitation
learning.

To fill this gap, in this work, we introduce a dataset of
demonstrations for socially compliant robot navigation in the
wild. Our dataset contains 8.7 hours of human-teleoperated,
socially compliant, navigation demonstrations, specifically,
Velodyne lidar scans, joystick commands, odometry, camera
visuals, and 6D inertial (IMU) information collected on two
morphologically different mobile robots—a Clearpath Jackal
and a Boston Dynamics Spot—within the University of Texas
at Austin university campus. Comprising 25 miles in total
of 138 trajectories, Socially CompliAnt Navigation Dataset
(SCAND) is publically releasedﬂ and also contains labeled
tags of naturally occurring social interactions with every
trajectory. Additionally, we demonstrate the utility of the
dataset for studying questions relevant to social navigation.
We first show that there exists more than one strategy for an
agent to navigate with social compliance, as it is possible for
a classifier to differentiate between driving approaches of two
different human demonstrators with an accuracy of 74.48%.
Secondly, we also show that with SCAND, it is possible to
learn socially compliant local and global navigation policies
through imitation learning.

II. RELATED WORK

In this section, we review related literature with a focus
on learning-based approaches for social navigation. We ad-
ditionally survey relevant datasets for robot navigation and
contrast their contributions with this work.

A. Learning for Robot Navigation

Recently, several algorithms have emerged that show the
potential of applying learning to address challenges in robot
navigation [2]. Broadly speaking, in the robot navigation
literature, learning-based approaches have been shown to
be successful in problems such as adaptive planner pa-
rameter learning [16], overcoming viewpoint invariance in
demonstrations [13], and end-to-end learning for autonomous
driving [14], [17], [18]. Specifically in applying imitation
learning for social navigation, the work by Tai et al. [19]
is the closest to our work. They provide a simulation
framework in gazebo along with a dataset generated using
the same where virtual human agents navigate following
the social force model [1]. They additionally train a social
navigation policy using the Generative Adversarial Imitation
Learning algorithm assuming the social force model as the
“expert” demonstrator and show a successful deployment of
the learned policy in the real-world on a turtle bot robot.
While their work has shown that imitation learning can be
applied to address the social navigation problem, they do so
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assuming the social force model in simulation as the “expert”
demonstration. While simulated environments enable fast
and safe data collection for online learning, they lack the
naturally occurring social interactions seen in the wild. Also,
as we show in section [[V] there can be more than one strategy
for an agent to navigate socially in a scene, which is not
considered in their work.

Other learning paradigms such as Reinforcement Learning
(RL) have also been applied to address the social navigation
problem. Everett et al. [4] present CA-DRL, a multi-agent
collision avoidance algorithm learned using RL. While this
work shows impressive real-world results, their approach is
limited to specific social scenarios and requires simulating
these scenarios for the online learning algorithm to learn
episodically. Kretzschmar et al. [20] use Inverse Reinforce-
ment Learning to learn cost functions for a socially compliant
navigation policy. Similar to our work, they utilize human
demonstrations of the social navigation task, however, they
do so utilizing a small-scale, one-hour-long dataset. In this
work, we contribute a large-scale dataset of robot social nav-
igation demonstrations comprising multi-modal real-world
data over multiple hours, both indoors and outdoors, on two
different robots. Additionally, we train an imitation learning
algorithm to show it is possible to learn socially compliant
global and local navigation policies using our dataset.

B. Datasets for Social Navigation

Over the last decade, datasets containing robots navigating
in both simulated and real-world environments have been
useful for a wide variety of research areas, such as tracking
groups of people [9], [25], [26], human trajectory prediction
[27], navigation [28], robot localization [21], [29], [30] and
collision risk assessment [31].

1) Simulated Datasets for Social Navigation: Social envi-
ronments in simulation can provide researchers with fast data
collection on social navigation [10], [19], [32], [33]. More-
over, such simulated environments can be generated with a
specified number of elements: the number and locations of
the humans, the structure of the room, the number of objects,
and the interactions between people and between objects
and people [11]. While simulated platforms provide these
benefits, they are limited in that they lack the natural, real-
world interactions that are experienced by humans. Datasets
that capture real-world robot navigation data in the wild
provide researchers with more naturally occurring scenarios
[21]-[24]. Additionally, datasets collected in the wild provide
sensory data for these scenarios which can be then used for
perceptual tasks related to navigation [34].

2) Real-world Datasets for Robot Navigation: In addition
to simulated datasets, several real-world datasets for long-
term robot navigation in human environments have also
been made available over the last decade. In the CoBots
dataset [21], two CoBots we deployed indoors autonomously
using a topological graph planner and collected more than
130 km worth of laser scans, odometry, and localization
data over 1082 deployments. Similarly, the L-CAS [24],
FLOBOT, [22], JRDB [8] and NCLT [23] datasets contain
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Dataset # Traj. Dist. (Km) Dur. (min) Sensors Nav. method # Robots Location
CoBot 1082 131 15600 2D Range Scanner, RGB-D Camera, Wheel Autonomous 2 Indoors +
[21] Odometry Outdoors
Ligﬁ S 3 N/A 49 3D LiDAR Teleoperated 1 Indoors
NCLT 3D LiDAR, RGB Camera, IMU, Wheel Indoors +
(23] 27 147.4 2094 Odometry, GPS Teleoperated 1 Outdoors
FLOBOT 3D LiDAR, RGB-D camera, Stereo Camera,
6 N/A 27.5 2D LiDAR, OEM incremental measuring Autonomous 1 Indoors
[24]
wheel encoder, IMU
3D LiDAR, 2D LiDAR, Omnidirectional Indoors +
JRDB [8] 54 N/A 64 Stereo Suite, RGB camera, RGB-D stereo Teleoperated 1
Outdoors
camera, 6D IMU
THOR [9] 600 N/A 60 3D LiDAR, MOU.O n capture system, Autonomous 1 Indoors
Eye-tracking Glasses
3D LiDAR, RGB-D Camera, Monocular Indoors +
SCAND 138 40 522 Camera, Stereo Camera, Wheel Odometry, Teleoperated 2 Outdoors

Visual Odometry

TABLE I: Comparison of real-world datasets for robot navigation.

LiDAR scans, RGBD visuals, GPS, and IMU data collected
independently on different robots, addressing perception-
related challenges to long-term robot navigation. In all these
different datasets, the robots were deployed in a public
environment, such as a restaurant or a university campus, and
teleoperated by a human as opposed to being autonomous,
but these teleoperated demonstrations are not explicitly so-
cially compliant. The JRDB social navigation dataset [8] is
the closest to our work, but it is smaller in scale, containing
only 64 minutes worth of data from 54 indoor and outdoor
trajectories. While the focus of the JRDB dataset is to solve
perception-related challenges such as human tracking and
detection in social navigation, the focus of the SCAND dataset
in this work is to address the “navigation” sub-component
of social navigation. The THOR dataset [9] provides motion
trajectories of both robots and humans using tracking hel-
mets. However, this is smaller in scale since it contains only
one hour’s worth of data. Also, the data is collected indoors
in an 8.4x18.8m laboratory room with an orchestrated social
navigation scenario for the human agents in the scene and a
socially unaware, pre-defined path for the robot—adjusting
neither its speed nor trajectory to account for surrounding
people. Existing real-world datasets for robot navigation are
summarized in Table [

While previous datasets collected with robots and humans
have proven to be useful to study localization, perception,
and other navigation-related challenges, they lack demon-
stration information in the form of motion commands and
navigation strategies in different social scenarios that could
help us understand socially compliant robot navigation in the
presence of other autonomous agents. The SCAND dataset
introduced in this work addresses this gap and provides rich
human demonstration information in the form of joystick
commands and multi-modal robot sensor data in different,
naturally occurring social scenarios. SCAND also contains la-
beled tags of twelve different social interactions that occurred

along the path. Also, since robots of different morphologies
and capabilities could navigate differently and induce differ-
ent social interactions, SCAND also includes data from two
different robots. For example, the legged Spot, capable of
climbing stairs could choose to prefer the stairs along its path
while navigating whereas the wheeled Jackal might choose
a ramp to navigate. The other datasets use only one robot to
collect data (the Cobots dataset [21] uses two robots but they
are morphologically the same). Using two morphologically
different robots makes SCAND useful to investigate social
navigation in robots with different morphologies (wheeled
vs. legged).

ITII. DATA COLLECTION PROCEDURE

In this section, we first describe the data collection pro-
cedure used in SCAND and outline the sensor-suite present
on both robots. We then describe the labeled annotations of
social interactions provided with every trajectory.

A. Collecting Data

To collect multi-modal, socially compliant demonstra-
tion data for robot navigation, four human demonstrators—
including the first two authors of this work—navigate the
robot by teleoperation using a joystick. For each of the
138 trajectories in SCAND, the human demonstrator walks
behind the robot at all times, maintaining on average two
meters distance. The human demonstrator does not explicitly
interact with the crowd in the scene. Unlike other datasets
for social navigation [9], we do not restrict data collection
to a controlled, indoor environment or orchestrate a social
scenario for data collection. Instead, similar to the JRDB
dataset [8], we perform data collection in the wild in both
indoor and outdoor environments. The two robots are driven
around the university campus on frequently used sidewalks,
roads, and lawns, and inside buildings, all with people in the
scene during peak hours of high foot traffic. This includes
data collected outdoors near the university’s football stadium



Fig. 2: Five example scenarios from SCAND showing the RGB image and below it the accompanying Lidar with the
monocular image from side camera on the Spot. From left to right, the scenarios have the tags “Street Crossing”, “Narrow
Doorway, “Navigating Through Large Crowds”, “Vehicle Interaction”, and “Crossing Stationary Queue.”

on two game days with high traffic public crowds gathered
near the arena. The Spot is driven at linear and angular
velocities in the range of [0, 1.6] m/s and [—1.5,1.5] rad/s,
respectively, and the Jackal in the range of [0,2.0] m/s and
[—1.5,1.5] rad/s, respectively. Note that these velocities are
within the range of many people’s normal walking speed.

Fig. [3] shows the sensors present on the Clearpath Jackal
and the Boston Dynamics Spot robots. Both robots have
in common a VLP-16 Velodyne laser puck publishing at
a frequency of 10 Hz, a 6D inertial (IMU) sensor at 16
Hz, and a front-facing Azure Kinect RGB camera at 20
Hz. In addition to these common sensors, the Jackal has
a front-facing stereo camera (20 Hz) and wheel odometry
(30 Hz), while the Spot has five monocular cameras on its
body (publishing at 5 Hz), that are placed as shown in Fig.
[] We utilize the Boston Dynamics APK to record the visual
odometry of its body frame and the joint angles of the legs
on the robot. SCAND also contains transforms between the
frames of each of the sensors relative to the robot’s body
for both robots. We utilize AMRL’s software stack [35] for
data collection from different sensors which we record in the
rosbag format [36].

Although we provide visual information of the scene in
the form of surround-view monocular images on the Spot,
RGB image from the front-facing Kinect camera, and 3D
Velodyne laser scans on both robots, since the focus of this
work is specifically on navigation, we do not provide any
labeled annotations for human detection or tracking. We
refer the reader to the JRDB dataset [8] which contains
detailed, high-quality annotations for solving perception-
related tasks. Instead, SCAND contains joystick commands
of linear and angular velocities executed by the demonstrator
while teleoperating the robot socially, along with rich, multi-
modal sensory information of the environment including
labeled annotations of 12 different social interactions in every
trajectory. Fig. [2] shows five example scenarios and their
associated tags.

B. Labeled Annotations of Social Interactions

We annotate each trajectory in SCAND with labels de-
scribing social interactions that occurred along the path. The
labels are in the form of a list of textual captions of social
interactions taking place in a trajectory, chosen from a set

Tag Description # Tags
Against Traffic Navigating against oncoming traffic 22
With Traffic Navigating with oncoming traffic 74
Street Crossing Crossing across a street 34
Overtaking Overtaking a person or groups of 14
people
Sidewalk Navigating on a sidewalk 57
Passing Navigating past a group of 2 or more
Conversational people that are talking amongst 38
Groups themselves
. Navigating past a corner where the
Blind Corner robot cannot see the other side 6
Narrow Navigating through a doorway where
the robot waits for a human to open 15
Doorway
the door
Crossing
Stationary Walking across a line of people 6
Queue
Stairs Walking up and/or down stairs 22
Vehicle N .
Interaction Navigating around a vehicle 21
Navigating Navigating among large unstructured
Through Large gating g ‘arg 27
crowds
Crowds

TABLE II: Descriptions of labeled tags contained in SCAND

of twelve predefined labels of social interactions observed in
SCAND. For the full list of labels, refer to Table We intend
the labels to be useful for future studies of specific scenarios
that occur during social navigation in the real-world.

IV. ANALYSIS

In this section, we provide analysis on SCAND with the
data collected on the Spot to illustrate the usefulness of this
dataset for answering a variety of questions related to social
navigation. Specifically, we ask the following questions:

1) Is there more than one strategy for socially navigating

in a scene?

2) Can we learn a local and global planner for social

navigation using SCAND ?

We answer question 1 in subsection by learning a
neural network-based classifier that is trained for the task
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Fig. 3: Sensors present on the wheeled Jackal and the legged
Spot robots. Along with this multi-modal sensor information,
SCAND also contains joystick commands issued during the
navigation demonstration.
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Fig. 4: Network architecture and inputs for the demonstrator
classifier. The classifier takes as its input ten-second long
sensor observations and predicts a demonstrator label. The
BC agent (not shown in this figure) follows a similar architec-
ture, with a global planner and local planner head instead of a
classifier head. Additionally, instead of the future trajectory,
the BC agent takes as its inputs the move_base global plan
and desired velocities.
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of demonstrator classification given a ten-second sequence
of sensor observations and joystick commands as input. We
then answer question 2 in subsection [[V-B| by applying the
behavior cloning (BC) imitation learning algorithm [37] on
SCAND to learn a global and local planner jointly.

A. Demonstrator Classification

In this subsection, we consider the question “is there more
than one strategy for socially navigating in an environment?”
We hypothesize that the answer is yes, there is more than
one strategy to navigate in a socially compliant manner in a
given scenario.

1) Approach and Implementation: To answer this question
and to validate our hypothesis, we choose sixteen trajectories
driven by two demonstrators navigating along the same route
(Speedway road within the university campus) and train a
neural network for the task of demonstrator classification
(training on twelve trajectories and validating on four tra-
jectories). The input to our classifier is a ten-second long

sequence of sensor observations. This sequence consists of
processed sensor observations provided in SCAND such as
lidar scans (subsampled to 1 Hz and represented as greyscale
bird’s eye view (BEV) image), positions of the robot relative
to the first lidar frame, future trajectory driven by the human
consisting of 200 points in the most recent lidar frame,
inertial and joystick values executed by the demonstrator at
each of the lidar frames. The neural network architecture
consists of a four-layer convolutional encoder to process
the grayscale BEV lidar images and a three-layer fully
connected network to process the other sensor observations.
The representations output by these layers are fed into a
three-layer fully connected network classifier head. We use
the binary cross-entropy loss to train the classifier network.
Fig. [ shows the inputs and neural network architecture of
the demonstrator classifier.

2) Results and Conclusion: We find that the classifier
is 74.48% accurate at classifying the expert on the held-
out test set. Given that random guessing would lead to a
success rate of 50%, and that many ten-second trajectories
do not indicate any differentiating social interactions, this
number is indicative of successful prediction. The ability
of the classifier to identify the demonstrator from their
navigation style with an accuracy of 74.48% using a ten-
second sequence of observations, combined with the fact that
the demonstrations in SCAND are socially compliant shows
that there exists more than one strategy for socially compliant
navigation in a given scenario, validating our hypothesis.
Enabling algorithms to take into consideration this manifold
of socially compliant robot navigation behaviors naturally
observed in humans demonstrations is a promising direction
for future work.

B. Imitation Learning for Global and Local Planning

1) Approach and Implementation: To answer question 2,
we apply the BC imitation learning algorithm [37] on SCAND
to jointly train end-to-end a socially-aware global and local
planner for robot navigation. The objective of the global
planner agent is to predict the socially compliant global
plan (the future trajectory driven by the human demonstrator,
within a horizon of ten meters distance from the robot).
The local planner agent’s objective is to predict the forward
and the angular velocities demonstrated in SCAND in a
socially compliant manner. We jointly train the local and
the global planner agents using a common representation
space of observations, similar to the demonstrator classifier
network shown in Fig. @] However, unlike the demonstrator
classifier network with a single classifier head, here we use
two different heads (three-layer fully connected networks)
for the global and the local planner agents. As inputs to the
BC agent, we provide processed sensor observations from
SCAND of two seconds in length to account for temporal
variations in the scene; this includes BEV lidar scans (sub-
sampled to 2 Hz and represented as grayscale BEV image
as shown in Fig. [), positions of the previous lidar frames
relative to the first lidar frame and inertial information at each
of the lidar frames. Additionally, we also provide the global
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Fig. 5: An example sequence of three BEV lidar frames of
a human walking across the robot’s (green box) path. Green
path shows the demonstrated trajectory, red path shows the
move_base global path, and the yellow path shows the
predicted trajectory by the learned BC agent. In frame 2,
the move base path moves in the direction of the human’s
future state, whereas the learned path closely follows the
desired socially compliant path.

path and desired velocities produced by move_base [38]
using the location of the robot ten meters in the future from
its current position as prior information to the network. We
posit that feeding this prior information from move base as
inputs to the BC agent would enable improved performance.
The global planner head predicts 200 points in the path
driven by the demonstrator, and the local planner predicts
20 timesteps of joystick commands (v, w) issued by the
demonstrator since the current frame. We sum the mean-
squared error loss objectives for both agents and update their
parameters together. Note that we do not utilize any rep-
resentation learning algorithm to pretrain the encoders that
process the sensor observations, but doing so may potentially
improve results. However, since the focus of this analysis is
to show the potential of SCAND in enabling existing imitation
learning algorithms to learn socially compliant navigation
policies, representation learning is left to future work.

2) Results and Conclusion: To evaluate the social nav-
igation behavior of the global planner, we compute the
Hausdorff distance metric on a held out test set, between
the global path predicted by the learned global planner agent
and the actual path driven by the demonstrator in the future.
The average Hausdorff distance between the move_base
global path and the demonstrated path in a held out test
set is 1.25. However, after training the BC global planner
agent on SCAND, the average Hausdorff distance between
the predicted trajectory and the demonstrated trajectory is
improved at 0.26. Fig. [ shows a scenario involving the robot,
and a human walking across the robot’s path. We see that in
this scenario, the predicted path closely matches that of the
socially compliant demonstrated path, whereas move_base
turns in the direction of the human’s future state, creating an
undesired interaction.

To validate the learned local planner agent, we conduct
real-world experiments using the Spot robot with fourteen
human participants in an indoor location. We design two
scenarios—static and dynamic—to evaluate the social com-
pliance and safety of the learned local planner and the
move_base planner, as shown in Fig. [ In the static
scenario, the robot starts five meters ahead of a stationary

Fig. 6: Evaluating the local planner agent trained using
Behavior Cloning on SCAND. Scenario on the left shows a
stationary human in the robot’s path and the scenario on the
right shows a human walking to the location of the robot.
The robot is evaluated on social compliance and safety as it
navigates to its goal position.

human in the robot’s path, and tries to navigate to a goal
position five meters behind the human. In the dynamic
scenario, the robot and the human start facing each other
10 meters apart and try to reach the start position of the
other. In the dynamic scenario, the participants were asked to
navigate in a socially compliant manner to their goal position
and in both scenarios, the participants were asked to observe
the navigation behavior of the robot. After each scenario,
for both the algorithms, a questionnaire was presented to the
participant with the two following questions:

1) On a scale of 1 to 5, how “socially compliant” do
you think the robot was? (think of social compliance
as how considerate the robot was of your presence)

2) On a scale of 1 to 5, how “safe” did you feel around
the robot?

We randomized the order in which the two algorithms
(move_base and BC policy) were played to the participants.
Fig. [7] shows the responses of the human participants. On
average, more humans felt the imitation learning agent
trained on SCAND was more socially compliant (SCAND
mean=4.39, sd=0.99; move_base mean=2.86, sd=0.82) and
safer (SCAND mean=4.71, sd=0.70; move_base mean=2.89,
sd=1.18) than the move_base agent. The results for both
questions are statistically significant as tested by a One-Way
Analysis of Variance (ANOVA) (Safe Fi 55 = 47.87,p <
0.001; Socially Compliant I' 55 = 38.67,p < 0.001). This
is expected since the move_base agent is not designed
to exhibit social compliance. Refer to the attached supple-
mentary video for scenarios showing the behavior of both
the algorithms in the static and dynamic trials. The results
of this study support our hypothesis that imitation learning
using demonstrations provided in SCAND produces socially
compliant navigation policies.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduce the Socially CompliAnt Naviga-
tion Dataset (SCAND), a large-scale dataset of demonstrations
for mobile robot social navigation. SCAND contains 8.7
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Fig. 7: Mean and standard deviation of scores assigned by
the fourteen human participants in the evaluation study for
the learned local planner.

hours, 138 trajectories, 25 miles of socially compliant driving
demonstrations, collected on two morphologically different
robots. In addition to the multi-modal sensory data streams
from the two robots, SCAND also contains labeled annota-
tions of social interactions for all trajectories. We illustrate
the usefulness of SCAND for answering a variety of questions
related to social navigation. First, we show that there exists
more than one strategy for socially compliant navigation by
training a neural network classifier on the task of demon-
strator classification. Second, we train a behavior cloning
agent on the demonstrations from SCAND and show that it is
possible to learn both a socially compliant global and local
planner for mobile robot navigation using SCAND. We further
validate the performance of the behavior cloned local planner
through human trials on two social navigation scenarios and
show that the participants perceived the imitation learning
agent to be relatively more socially compliant and safe,
compared to a naive move _base agent. While we show here
that the BC agent was able to handle simple social navigation
scenarios, better imitation learning algorithms may be needed
to handle more sophisticated social navigation scenarios that
are present in SCAND. Although SCAND includes a wide
variety of social navigation scenarios, there may be novel
interactions that are less frequent. To improve generaliz-
ability of a learning based approach to unseen situations,
exploring representation learning for social navigation with
SCAND is a promising future direction. Another interesting
future research direction is to explore Real-to-Sim transfer
with SCAND and improve parameterized simulated social
navigation environments to generate more realistic social
interactions between virtual agents, directly benefiting data
hungry approaches such as reinforcement learning.
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