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Figure 1: An input image is transformed into the output image using our framework: we first generate an EPS map as

intermediate representation to then generate the output image in the target domain with an image-to-image translation GAN.

Object classes of the EPS map are visualized based on the color scheme of Cordts et al. [10]. The input image shown here

for illustration is taken from the Cityscapes data set.

Abstract

We present a novel domain adaptation framework that

uses morphologic segmentation to translate images from ar-

bitrary input domains (real and synthetic) into a uniform

output domain. Our framework is based on an established

image-to-image translation pipeline that allows us to first

transform the input image into a generalized representation

that encodes morphology and semantics – the edge-plus-

segmentation map (EPS) – which is then transformed into

an output domain. Images transformed into the output do-

main are photo-realistic and free of artifacts that are com-

monly present across different real (e.g. lens flare, motion

blur, etc.) and synthetic (e.g. unrealistic textures, simplified

geometry, etc.) data sets. Our goal is to establish a prepro-

cessing step that unifies data from multiple sources into a

common representation that facilitates training downstream

tasks in computer vision such as autonomous driving. This

way, neural networks for existing tasks can be trained on a

larger variety of training data, while they are also less af-

fected by overfitting to specific data sets. We showcase the

effectiveness of our approach by qualitatively and quantita-

tively evaluating our method on four data sets of simulated

and real data of traffic scenes.

1. Introduction

Deep neural networks have shown unparalleled success

on a variety of tasks in computer vision and computer

graphics, among many others. Especially the emerging

technology of autonomous driving was enabled through

learned representations for object segmentation. To achieve

this paramount performance a majority of approaches re-

lies on large and diverse data sets that are difficult to estab-

lish. Especially for image-to-image tasks, where an image

is transformed into a different representation (e.g. seman-

tic segmentation), labels are extremely difficult to obtain.

Furthermore, even large and well established data sets such

as KITTI [14] and Cityscapes [10] are biased and do not

contain enough variance to allow for training models that

are robust and generalize well. Synthetic data generated

with modern rendering and simulation algorithms may pro-

vide a solution to this problem. However, the disparity be-

tween real and synthetic data often limits using generated

data to train models so as to operate on real data. A num-

ber of approaches aim to explicitly overcome this limitation

by modeling the sim-to-real transfer based on Generative

Adversarial Networks (GANs) that transform synthetically

generated images into images with more photo-realistic vi-

sual traits, such as shadows, highlights, or higher frequency

textures [48, 2, 21, 54, 51]. However, while some of the ex-

isting approaches show impressive results, it remains chal-

lenging to faithfully reconstruct the full spectrum of details
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in real images.

In this paper, we introduce a novel framework that trans-

lates images from various data sources to a unified represen-

tation. Synthetically generated images are enhanced, while

the details of real photographs are reduced. Our goal is to

establish a preprocessing step that translates data from dif-

ferent sources and of different modalities (real, synthetic)

into a unified representation that can then be used to train

networks for computer vision downstream tasks, such as

classification, object detection, or semantic segmentation.

This has the advantage that the downstream network can be

trained on less complex data and – in turn – usually with a

less complex architecture. Our image-to-image translation

approach combines a state-of-the-art semantic segmentation

algorithm [42] with an edge detection algorithm [6] to gen-

erate edge-plus-segmentation (EPS) maps from arbitrary in-

put images. We refer to this intermediate representation as

morphologic segmentation. Instead of directly working on

RGB images our GAN only uses the EPS maps to gener-

ate output images. Hence, our method is agnostic to the

style and details of the input images. Our generator network

builds upon the state-of-the-art pix2pixHD algorithm [48].

Instead of using contour maps, we employ edge maps that

also show internal object edges to provide further guidance

for the image generation process. Moreover, we use a pro-

gressive learning scheme to achieve high-resolution output

images and reduced training time.

To show that the automatic generation of training data

is feasible and that EPS maps serve as a meaningful inter-

mediate representation, for generating photo-realistic im-

ages with plausible amounts of detail, we train a genera-

tor on image data collected from YouTube videos. Once

trained, the generator can then be used for the translation of

images from various sources, including CARLA [12, 17],

Cityscapes [10], FCAV [23], and KITTI [14] as well as

across different modalities. To validate the impact of EPS

maps, we run ablation studies and measure common metrics

for semantic segmentation.

In summary, our contributions are (1) we introduce

a novel framework for translating images from different

sources into a unified representation; (2) we introduce edge-

plus-segmentation (EPS) maps as a novel representation for

training image-to-image translation networks so as to op-

erate on inputs of different sources and modalities; (3) we

evaluate our approach on a range of different data sources

and perform ablation studies using established metrics.

2. Related Work

Generative Adversarial Networks. GANs [15] provide

a powerful means for image generation by training a gen-

erator network so that it generates images that are indis-

tinguishable from a target distribution. Furthermore, it has

been recognized that GANs can be a applied to a wide range

of image synthesis and analysis problems, including image-

to-image translation [20, 35, 38, 31] or – more generally –

image generation [1, 37, 49, 53], image manipulation [55],

object detection [29], and video generation [34, 47]. As

training on large image resolutions easily becomes infeasi-

ble, many approaches aim to improve the output resolution,

often based on stacked architectures [48, 18, 52, 25, 28].

Similar to many of the existing approaches, we rely on a

GAN-based pipeline to convert images to a common target

domain.

Image-to-Image Translation. A number of methods

use GANs for image-to-image translation. To this end, Isola

et al. [20] present pix2pix, the first approach that takes in-

spiration from established networks [38, 31] to transfer im-

ages between domains. Although pix2pix can be applied

to a wide variety of domains, it is limited by the supported

output resolution and it requires a large amount of training

data. Various approaches address this and related problems.

Zhu et al. [56] introduce cycle-consistency loss: images are

first translated to the target domain and then back to the

source domain; loss is measured over the generated and the

input image. Cycle consistency allows generating impres-

sive results across a large variety of image domains [57].

Liu et al. [30] present a method that can generate images

from previously unseen classes from only a few examples.

Similarly, Disco GANs learn cross-domain relations and can

transform instances of one class to similar looking instances

of another class without requiring extra labels [26]. Huang

et al. [19] transfer an input image into a shared content

space and a class specific style space, which allows recre-

ating images of different classes in an unsupervised man-

ner. Chen et al. [8] propose cascaded refinement networks,

which drastically increases the output resolution and feature

quality. On a slightly different trajectory, Gatys et al. [13]

introduce a neural style-transfer network, which is able to

transfer among various artistic styles of images; for a com-

prehensive overview we refer to Jing et al. [22]. While style

transfer networks primarily focuses on the visual appear-

ance of images, they do not capture any semantic proper-

ties, which limits using these algorithms for many types of

image-to-image transfer.

Domain Adaptation. Methods for domain adaptation

use neural networks to more generally model the domain

shift of source and target domains by either converting one

domain into the other or by lifting source and target domain

into a shared domain. To this end, Tzeng et al. [44] use

a CNN-based architecture to model domain invariance for

domain transfer, while Long et al. [32] propose Deep Adap-

tation Network (DAN) to match domain distributions in a

Hilbert space. Murez et al. [36] propose a method for the

domain adaptation by more explicitly constraining the ex-

tracted features of the encoder network, which enables them

to model the domain shift of unpaired images. Moreover,
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it has been recognized that adversarial losses can be lever-

aged for modeling the domain shift. This includes GANs

that model for unequally labeled data of source and target

domains [33], for improving the realism of simulated im-

ages [40], for unsupervised training setups [39], and more

general approaches that combine discriminative modeling

and weight sharing with an adversarial loss [45]. Similar

to the existing approaches our goal is to model the domain

shift of different source domains so as to lift samples into a

common target domain. However, unlike them we use EPS

maps to translate images of a variety of source domains into

a common target domain.

3. Method

Our method consists of two main steps: first, we intro-

duce morphologic segmentation as the combination of se-

mantic segmentation and edge detection. Specifically, we

generate an edge-plus-segmentation (EPS) map as a repre-

sentation for input images. In a second step, we generate an

output image by only synthesizing it from an EPS map. In

the following we describe how we generate EPS maps and

how we use them to synthesize photo-realistic images with

a GAN.

EPS Map Generation. We introduce EPS maps as an

abstract intermediate representation of an image that en-

codes semantic information of objects as well as their mor-

phology defined as edges. We argue that a common seman-

tic segmentation map is insufficient as it does not provide

intra-object details. Therefore, we extend semantic segmen-

tation maps with edges, which encode more intricate geo-

metric details. We aim to devise a representation for images

that abstracts away defining details such as textures, light-

ing conditions, or the style of an image, that may be unique

to a specific data set. Our goal is to train a generator net-

work so that it can synthesize an image with uniform, yet

complex visual traits, by only using the EPS map.

Edge detection as well as semantic segmentation have

been active areas of research for many years. We

use state-of-the-art approaches for semantic segmentation

(DeepLabv3) [5] and edge detection (DexiNed-f) [43].

Please note that both networks are in principal interchange-

able without affecting the rest of the pipeline. DeepLabv3

is the state-of-the-art extension of DeepLabv1 [3] and

DeepLabv2 [4]. In the previous versions, the input image is

processed by the network using atrous convolution increas-

ing the receptive field while maintaining the spatial dimen-

sion of the feature maps followed by bilinear interpolation

and fully connected conditional random field (CRF) post-

processing taking context into account. DeepLabv2 em-

ploys ResNet [16] and VGGNet [41] while DeepLabv1 only

uses VGGNet. DeepLabv2 further employs atrous spatial

pyramid pooling (ASPP) enabling the network to encode

multi-scale contextual information. In DeepLabv3, ASPP

is further augmented with features on the image-level en-

coding global context information and further boosting per-

formance. It outperforms its predecessors even without the

CRF postprocessing. Chen et al. [7] then further extended

DeepLabv3 to DeepLabv3+ mainly by adding a decoder

module refining the segmentation results especially along

object boundaries.

DexiNed-f is an edge detector devised by Soria et al. [43]

providing fused edge maps. It is based on holistically-

nested edge detection (HED) [50] enabling holistic image

training and prediction while allowing for multi-scale and

multi-level feature learning. Its general architecture is in-

spired from the Xception network [9].

Figure 2 shows how we compute EPS maps. The in-

put image is passed to DexiNed-f to produce a grayscale

image of the edges, while we use DeepLabv3+ to generate

the segmentation map. Both maps are combined by pixel-

wise addition to create the EPS map. We argue that EPS

maps reduce the number of input dimensions, while provid-

ing enough meaningful details to reconstruct photo-realistic

images.

Image Synthesis. Our image generator builds upon

pix2pixHD [48] as an extension of pix2pix [20] overcoming

the lack of fine details and unrealistic textures. In this re-

gard, the authors introduced a novel adversarial learning ob-

jective increasing robustness together with optimized multi-

scale architectures of the generator and the discriminator

networks. As in pix2pix, loss functions are specifically tai-

lored to the input domain.

The original pix2pixHD implementation supports two

different encodings for the segmentation maps: a one-hot

encoding for each class, or color-coded RGB maps with

different colors representing different classes. Due to the

encoding of the EPS maps, the latter one is used. In the

original implementation an object instance map can be pro-

vided along the segmentation map. Since the edge infor-

mation from the EPS maps already encode similar informa-

tion (however, edge maps have not necessarily closed object

boundaries and also contain inner edges), we do not make

use of this additional input channel. While pix2pixHD is

used without modifying its architecture, the type of input

information and its encoding is notable different from the

original proposed.

4. Implementation and Training

For generating EPS maps we use pretrained instances

of DeepLabv3+ and DexiNed-f. Depending on the sup-

ported classes and used training data, different versions

of DeepLabv3+ are available. We use the Xception71

variant, which is trained on the Cityscapes [11] data set,

which outputs segmentation classes commonly found in the

Cityscapes images. While DexiNed-f is very versatile and

performs well on a large set of input domains, semantic
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Figure 2: EPS maps are generated by combining a semantic segmentation map and an edge map generated by two state-of-

the-art networks.

segmentation is more problem tailored. Thus, when exe-

cuting our framework on different image types, the trained

DeepLabv3+ network would need to be exchanged. Since

DeepLabv3+, DexiNed-f, and pix2pixHD are implemented

in Python, using either TensorFlow or PyTorch, our EPS

pipeline is completely written in Python.

Training Data. The manual labeling of data is a time

consuming and often tedious process [23]. Therefore, to

emphasize the independence from manually labeled train-

ing data, we abstain from using a classic data set. Instead,

we use a large set of YouTube videos (according to fair

use guidelines) showing urban scenes from the driver’s per-

spective. This allows us to cover a wider variety of sce-

narios compared to what is contained in any of the cur-

rently available data sets, that are shown in Figure 3. In

total, 98 different videos corresponding to about 45 hours

of video material were used. The videos have been selected

using appropriate hashtags ensuring that most scenes are

showing European roads at daytime summer days, provid-

ing good weather conditions. From these videos, around

101 000 frames were randomly extracted and used for train-

ing. Many videos contain unsuitable scenes. Therefore, we

manually removed video segments prior to randomly select-

ing frames for training.

Our data set is further augmented using a combination

of three simple steps: first, each image is rotated around a

randomly selected center by ±7◦. A random cropping of

up to half of the image is then applied in each dimension.

Finally, we scale the image by ±20%, while preserving the

aspect ratio. After applying these augmentation steps, the

number of training artifacts is greatly reduced.

Progressive Training. We train generator and discrim-

inator by progressively increasing the image resolution in

four steps (each doubling the resolution); starting with a res-

olution of 128×72 up to a final resolution of 1024×576. In-

creasing the resolution results in finer details as the training

progresses. Accordingly, the learning rate of η = 0.0001
used in the first step is decreased with increasing resolution

to η = 0.00001 in the second and third steps. However,

in the final step, the initial learning rate η = 0.0001 is ap-

plied again in order to avoid overfitting, which results in

improved stability [24].

5. Evaluation

Examples of synthesized images from various input

sources are shown in Figure 3. While the input images

across the different data sets show a number of heteroge-

neous visual features, such as varying lighting condition or

diverse environments, the translated images only show con-

sistent visual traits. For example, while many of the in-

put images taken from the FCAV data set show a desert

environment, its corresponding output images show fea-

tures of more common environments. Furthermore, it can

be observed that synthetic input images are enhanced with

more photo-realistic details. In contrast, images of real data

sets are showing less artifacts commonly present in photos

(e.g. exceedingly strong contrasts, hard shadows, gray cast,

etc.). The disparity between real and synthetic data is sig-

nificantly reduced.

We follow an established evaluation protocol for image-

to-image translation [48, 20, 56]. The quality of our results

is evaluated by computing semantic segmentation maps of

the output images and by comparing how well the resulting

segmentation maps match the corresponding segmentation

of the input images. This can easily be quantified by com-

puting the mean intersection-over-union, IoU ∈ [0, 1] ⊂ R,

score. Figure 3 lists the IoU score for the different cases

presented therein. The scores range from IoU = 0.380
to IoU = 0.557 and can be considered as average val-

ues. A representative cross section of our results is shown

here. Moreover, the distributions of the IoU scores per

class are shown in Figure 4 (left). For this evaluation, 150

images from CARLA, 500 images from Cityscapes, 365

images from FCAV, and 285 images from KITTI data set

were analysed. DeepLabv3+ for the semantic segmenta-

tion was employed as in our whole image-to-image transla-

tion pipeline. This likely causes the effect that significantly

higher scores are usually obtained for the Cityscapes inputs

since DeepLabv3+ is trained on the Cityscapes data set [7].

We carry out three ablation studies providing further
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Figure 3: Examples of synthesized images from various input sources CARLA, Cityscapes, FCAV, and KITTI comprising

real and rendered data. The EPS maps are extracted from the input images and then used as the only input to synthesize the

output images.

Figure 4: Illustration of the IoU scores per input source considering CARLA, Cityscapes, FCAV, and KITTI (left), and the

dependence of the IoU score on different smoothing radii (right).

evaluations of our approach. In particular, we systemati-

cally analyze the impact of quality of the input data, the

availability of accurate edge details, and the quality of the

segmentation. In this regard, we analyzed a reduced data

set comprising 16 images of each input source CARLA,

Cityscapes, FCAV, and KITTI since each image produced

a series of new images as explained in the following. Fig-

ure 7 illustrates the effect caused by smoothing the input

image. Specifically, a Kuwahara filter [27] is applied us-

ing different radii r to control the smoothing intensity. We

quantify the effect of smoothing by measuring IoU scores

between segmentations of input and output images for dif-

ferent smoothing intensities. This is illustrated for the dif-

ferent classes in Figure 4 (right). It can be observed that in

the case of real data (Cityscapes and KITTI), the IoU scores

are initially above the ones of synthetic data (CARLA and

FCAV), while the scores are getting more similar with in-

creasing smoothing radius. As the general quality of images

decreases, the domain disparity between real and synthetic

data is reduced. This study also shows significant robust-
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Figure 5: Illustration of the effect caused by different edge carving levels and the corresponding IoU score. The input image

shown here for illustration is taken from the KITTI data set.

ness of our approach with respect to image quality as illus-

trated in Figure 7 (middle row) demonstrating the effect of

a relatively strong Kuwahara smoothing with r = 4. The

smoothed input image is completely blurred, while the cor-

responding output image contains fine traits such as struc-

tural and texture details of the vegetation located between

the street and the sidewalk on the right. Thus, our approach

can potentially enable the use of additional data sources for

training downstream tasks.

Moreover, we investigate the importance of the accuracy

of edges and segmentation with respect to the output qual-

ity. Edges are systematically carved as illustrated in Fig-

ure 5. Since we observed that most edges already show

relatively small gradients, we threshold pixels at 64% inten-

sity in each step followed by a smoothing procedure with a

1px kernel. This can be repeated to allow for different edge

carving levels. The IoU scores between segmentations of

input and output images for different levels are measured

further underlying our previous observations. Our image-

to-image transformation is robust towards a decrease of im-

age quality while domain disparity between real and syn-

thetic data is reduced. We carry out a similar ablation study

by systematically reducing the quality of the semantic seg-

mentation instead of edge quality. This is illustrated in Fig-

ure 6 and consistent with the previous observations. In this

regard, segmentation maps are systematically warped to re-

duce their quality by manipulating control points. Fine de-

tails are first warped by shifting control points by distances

sampled from a normal distribution with a standard devi-

ation corresponding to the warp level. The result is then

warped by a single point along a distance proportional to the

warp level concluding a distorting process affecting multi-

ple scales.1 The analysis shows that our approach is more

robust with respect to a loss of segmentation quality com-

pared to edge quality. In other words, even if the segmen-

tation quality is rather low, given appropriate edges usually

available, proper results can still be achieved.

Since semantic segmentation is a less stable task than

edge detection (for instance in Figure 7 the segmentation

degrades faster) and it is unsurprising that our generator

tends to prioritize edge information. In the CARLA exam-

ple in Figure 3, the whole sky is classified as building in the

EPS map, but the generator learned to ignore such obvious

mistakes, as they also occur for the training data. As another

example, the street sign in Figure 5 is falsely segmented as

tree, but correctly recreated as long as the edge information

1The resolution of our segmentation maps is given by 1024 × 576. A

7×5 grid is used in which the inner points are shifted. The result is further

transformed by shifting the center point in a random direction by a distance

of twice the warp level.
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Figure 6: Illustration of the effect caused by warping semantic segmentations using different intensities, and the correspond-

ing IoU score. The input image shown here for illustration is taken from the CARLA data set.

Figure 7: Illustration of the effect caused by smoothing the input image. A Kuwahara filter is applied with different radii.

The input image is taken from the FCAV data set.

is intact. However, this behaviour makes it harder to guide

the image generation process by changing the segmentation

map. In Figure 6 it can be observed that when the tree line

is moved in the segmentation map, trees are still generated

according to the edge map (although artifacts appear in the

sky). We expect our method to profit most from improved
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Figure 8: t-SNE plots of 1.3k image embeddings of the orig-

inal images (left) and the generated ones (right).

semantic segmentation networks in the future.

To validate how well our method is able to overcome

the domain disparity present across different data sets we

visualize image embeddings generated with a convolutional

autoencoder [46] (Figure 8).

We first train the encoder so as to reconstruct the origi-

nal input images of each data set (left). Second, we use the

same images, convert them to EPS maps, to then generate

photo-realistic images with our pipeline (right). Encoding

the original data generates obvious clusters, which indicates

that the autoencoder latches on to the unique visual features

of each data set (e.g. desert next to the road for FCAV data,

low frequency textures in CARLA, etc.). Images generated

with our pipeline are devoid of these artifacts and only show

similar visual traits, which results in a more uniform distri-

bution of embeddings. This shows that our method allows

us to remove domain shifts that are present in different data

sets and for different data modalities.

6. Conclusion

We have presented a novel framework that allows us to

translate images of various input sources into a unified tar-

get domain. Our approach uses EPS maps as an intermedi-

ate representation to generate images with photo-realistic,

but simplified visual traits. Our goal is to remove common

image artifacts, while we maintain enough plausible details

to faithfully represent an image. This way, our pipeline

can be used to generate training data that facilitates train-

ing downstream computer vision tasks, such as classifica-

tion, object detection, or semantic segmentation which are

of high importance for autonomous driving. By generating

images from EPS maps our method is able to remove a wide

range of image artifacts of real data, including seasonal and

daytime shifts, camera artifacts such as lens flares, as well

as to compensate for common artifacts of synthetic data,

such as simplified geometry or low frequency textures. We

have shown that our pipeline is able to generate images with

similar visual properties from four different data sources.

Furthermore, we have evaluated our approach through a

number of ablation studies that show its robustness against

common artifacts present across the source domains. How-

ever, since the quality of edges is of superior importance

compared to segmentations, it is hard to ignore edges im-

peding the generation of more abstract recreations of the

input images. As avenues for future work, it would be inter-

esting to explore the usefulness of our method for an even

large number of data sources and for the training of com-

puter vision downstream tasks.
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