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Abstract

Building discriminative representations for 3D data has been an important task in
computer graphics and computer vision research. Convolutional Neural Networks
(CNNs) have shown to operate on 2D images with great success for a variety
of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible
and promising next step. Unfortunately, the computational complexity of 3D
CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D
geometry representations are boundary based, occupied regions do not increase
proportionately with the size of the discretization, resulting in wasted computation.
In this work, we represent 3D spaces as volumetric fields, and propose a novel
design that employs field probing filters to efficiently extract features from them.
Each field probing filter is a set of probing points — sensors that perceive the
space. Our learning algorithm optimizes not only the weights associated with the
probing points, but also their locations, which deforms the shape of the probing
filters and adaptively distributes them in 3D space. The optimized probing points
sense the 3D space “intelligently”, rather than operating blindly over the entire
domain. We show that field probing is significantly more efficient than 3DCNNs,
while providing state-of-the-art performance, on classification tasks for 3D object
recognition benchmark datasets.

1 Introduction

10.41% 5.09% 2.41%
Figure 1: The sparsity characteristic of 3D data
in occupancy grid representation. 3D occupancy
grids in resolution 30, 64 and 128 are shown in
this figure, together with their density, defined as
#occupied grid
#total grid . It is clear that 3D occupancy grid

space gets sparser and sparser as the fidelity of the
surface approximation increases.

Rapid advances in 3D sensing technology have
made 3D data ubiquitous and easily accessible,
rendering them an important data source for high
level semantic understanding in a variety of en-
vironments. The semantic understanding prob-
lem, however, remains very challenging for 3D
data as it is hard to find an effective scheme for
converting input data into informative features
for further processing by machine learning algo-
rithms. For semantic understanding problems in
2D images, deep CNNs [15] have been widely
used and have achieved great success, where the convolutional layers play an essential role. They
provide a set of 2D filters, which when convolved with input data, transform the data to informative
features for higher level inference.

In this paper, we focus on the problem of learning a 3D shape representation by a deep neural network.
We keep two goals in mind when designing the network: the shape features should be discriminative
for shape recognition and efficient for extraction at runtime. However, existing 3D CNN pipelines that
simply replace the conventional 2D filters by 3D ones [31, 19], have difficulty in capturing geometric
structures with sufficient efficiency. The input to these 3D CNNs are voxelized shapes represented
by occupancy grids, in direct analogy to pixel array representation for images. We observe that
the computational cost of 3D convolution is quite high, since convolving 3D voxels has cubical
complexity with respect to spatial resolution, one order higher than the 2D case. Due to this high
computational cost, researchers typically choose 30× 30× 30 resolution to voxelize shapes [31, 19],
which is significantly lower than the widely adopted resolution 227× 227 for processing images [24].
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Figure 2: An visualization of probing filters before (a) and after (d) training them for extracting 3D
features. The colors associated with each probing point visualize the filter weights for them. Note
that probing points belong to the same filter are linked together for visualizing purpose. (b) and (c)
are subsets of probing filters of (a) and (d), for better visualizing that not only the weights on the
probing points, but also their locations are optimized for them to better “sense” the space.
We suspect that the strong artifacts introduced at this level of quantization (see Figure 1) hinder the
process of learning effective 3D convolutional filters.

Two significant differences between 2D images and 3D shapes interfere with the success of directly
applying 2D CNNs on 3D data. First, as the voxelization resolution grows, the grids occupied by
shape surfaces get sparser and sparser (see Figure 1). The convolutional layers that are designed for
2D images thereby waste much computation resource in such a setting, since they always convolve
with 3D blocks that are largely empty and a large portion of multiplications are with zeros. Moreover,
as the voxelization resolution grows, the local 3D blocks become less and less discriminative. To
capture informative features, long range connections have to be established for taking distant grid
cells into consideration. This long range effect demands larger 3D filters, which yields an even higher
overhead in the computation.

To address these issues, we represent 3D data as 3D fields, and propose a field probing scheme, which
samples the input field by a set of probing filters (see Figure 2). Each probing filter is composed of a
set of probing points which determine the shape and location of the filter, and filter weights associated
with probing points. In typical CNNs, only the filter weights are trained, while the filter shape
themselves are fixed. In our framework, due to the usage of 3D field representation, both the weights
and probing point locations are trainable, making the filters highly flexible in coupling long range
effects and adapting to the sparsity of 3D data when it comes to feature extraction. The computation
amount of our field probing scheme is determined by how many probing filters we place in the 3D
space, and how many probing points are sampled per filter. Thus, the computational complexity does
not grow as a function of the input resolution. We found that a small set of field probing filters is
enough for sampling sufficient information, probably due to the sparsity characteristic of 3D data.

Intuitively, we can think our field probing scheme as a set of sensors placed in the space to collect
informative signals for high level semantic tasks. With the long range connections between the
sensors, global overview of the underlying object can be easily established for effective inference.
Moreover, the sensors are “smart” in the sense that they learn how to sense the space (by optimizing
the filter weights), as well as where to sense (by optimizing the probing point locations). Note that
the intelligence of the sensors is not hand-crafted, but solely derived from data. We evaluate our field
probing based neural networks (FPNN) on a classification task on ModelNet [31] dataset, and show
that they match the performance of 3DCNNs while requiring much less computation, as they are
designed and trained to respect the sparsity of 3D data.

2 Related Work

3D Shape Descriptors. 3D shape descriptors lie at the core of shape analysis and a large variety
of shape descriptors have been designed in the past few decades. 3D shapes can be converted into
2D images and represented by descriptors of the converted images [13, 4]. 3D shapes can also be
represented by their inherent statistical properties, such as distance distribution [22] and spherical
harmonic decomposition [14]. Heat kernel signatures extract shape descriptions by simulating an
heat diffusion process on 3D shapes [29, 3]. In contrast, we propose an approach for learning the
shape descriptor extraction scheme, rather than hand-crafting it.

Convolutional Neural Networks. The architecture of CNN [15] is designed to take advantage
of the 2D structure of an input image (or other 2D input such as a speech signal), and CNNs have
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advanced the performance records in most image understanding tasks in computer vision [24]. An
important reason for this success is that by leveraging large image datasets (e.g., ImageNet [6]),
general purpose image descriptors can be directly learned from data, which adapt to the data better
and outperform hand-crafted features [16]. Our approach follows this paradigm of feature learning,
but is specifically designed for 3D data coming from object surface representations.

CNNs on Depth and 3D Data. With rapid advances in 3D sensing technology, depth has became
available as an additional information channel beyond color. Such 2.5D data can be represented as
multiple channel images, and processed by 2D CNNs [26, 10, 8]. Wu et al. [31] in a pioneering
paper proposed to extend 2D CNNs to process 3D data directly (3D ShapeNets). A similar approach
(VoxNet) was proposed in [19]. However, such approaches cannot work on high resolution 3D data, as
the computational complexity is a cubic function of the voxel grid resolution. Since CNNs for images
have been extensively studied, 3D shapes can be rendered into 2D images, and be represented by
the CNN features of the images [25, 28], which, surprisingly, outperforms any 3D CNN approaches,
in a 3D shape classification task. Recently, Qi et al. [23] presented an extensive study of these
volumetric and multi-view CNNs and refreshed the performance records. In this work, we propose a
feature learning approach that is specifically designed to take advantage of the sparsity of 3D data,
and compare against results reported in [23]. Note that our method was designed without explicit
consideration of deformable objects, which is a purely extrinsic construction. While 3D data is
represented as meshes, neural networks can benefit from intrinsic constructions[17, 18, 1, 2] to learn
object invariance to isometries, thus require less training data for handling deformable objects.

Our method can be viewed as an efficient scheme of sparse coding[7]. The learned weights of each
probing curve can be interpreted as the entries of the coding matrix in the sparse coding framework.
Compared with conventional sparse coding, our framework is not only computationally more tractable,
but also enables an end-to-end learning system.

3 Field Probing Neural Network

3.1 Input 3D Fields
(a)

(b)

(c)

(d)

(e)
Figure 3: 3D data representations. 3D mesh (a) or
point cloud (b) can be converted into occupancy
grid representation (c), from which the input to our
algorithm — a 3D distance field (d), is obtained via
a distance transform. We further transform it to a
Gaussian distance field (e) for focusing attention to
the space near the surface. The fields are visualized
by two crossing slices in the 3D space.

We study the 3D shape classification problem
by employing a deep neural network. The input
of our network is a 3D vector field built from the
input shape and the output is an object category
label. 3D shapes represented as meshes or point
clouds can be converted into 3D distance fields.
Given a mesh (or point cloud), we first convert
it into a binary occupancy grid representation,
where the binary occupancy value in each grid
is determined by whether it intersects with any
mesh surface (or contains any sample point).
Then we treat the occupied cells as the zero level
set of a surface, and apply a distance transform
to build a 3D distance field D, which is stored
in a 3D array indexed by (i, j, k), where i, j, k = 1, 2, ..., R, and R is the resolution of the distance
field. We denote the distance value at (i, j, k) by D(i,j,k). Note that D represents distance values
at discrete grid locations. The distance value at an arbitrary location d(x, y, z) can be computed by
standard trilinear interpolation over D. See Figure 3 for an illustration of the 3D data representations.

Similar to 3D distance fields, other 3D fields, such as normal fieldsNx,Ny , andNz , can also be used
for representing shapes. Note that the normal fields can be derived from the gradient of the distance
field: Nx(x, y, z) = 1

l
∂d
∂x ,Ny(x, y, z) =

1
l
∂d
∂y ,Nz(x, y, z) =

1
l
∂d
∂z , where l = |( ∂d∂x ,

∂d
∂y ,

∂d
∂z )|. Our

framework can employ any set of fields as input, as long as the gradients can be computed.

3.2 Field Probing Layers

The basic modules of deep neural networks are layers, which gradually convert input to output in a
forward pass, and get updated during a backward pass through the Back-propagation [30] mechanism.
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The key contribution of our approach is that we replace the convolutional layers in CNNs by field
probing layers, a novel component that uses field probing filters to efficiently extract features from
the 3D vector field. They are composed of three layers: Sensor layer, DotProduct layer and Gaussian
layer. The Sensor layer is responsible for collecting the signals (the values in the input fields) at
the probing points in the forward pass, and updating the probing point locations in the backward
pass. The DotProduct layer computes the dot product between the probing filter weights and the
signals from the Sensor layer. The Gaussian layer is a utility layer that transforms distance field into
a representation that is more friendly for numerical computation. We formally introduce these layers
in the following paragraphs, and show that they fit well for training a deep neural network.

Sensor Layer. The input to this layer is a 3D field V , where V(x, y, z) yields a T channel (T = 1
for distance field and T = 3 for normal fields) vector at location (x, y, z). This layer contains C
probing filters scattered in space, each with N probing points. The parameters of this layer are the
locations of all probing points {(xc,n, yc,n, zc,n)}, where c indexes the filter and n indexes the probing
point within each filter. This layer simply outputs the vector at the probing points V(xc,n, yc,n, zc,n).
The output of this layer forms a data chunk of size C ×N × T .

The gradient of this function∇V = (∂V∂x ,
∂p
∂y ,

∂p
∂z ) can be evaluated by numerical computation, which

will be used for updating the locations of probing points in the back-propagation process. This formal
definition emphasizes why we need the input being represented as 3D fields: the gradients computed
from the input fields are the forces to push the probing points towards more informative locations
until they converge to a local optimum.

DotProduct Layer. The input to this layer is the output of the Sensor layer — a data chunk of
size C ×N × T . For simplicity, we denote them as {pc,n,t}. The parameters of DotProduct layer
are the filter weights associated with probing points, i.e., there are C filters, each of length N , in
T channels. We denote the set of parameters as {wc,n,t}. The function at this layer computes
a dot product between {pc,n,t} and {wc,n,t}, which outputs a C-dimensional vector {vc}: vc =
v({pc,i,j}, {wc,i,j}) =

∑
i=1,...,N
j=1,...,T

pc,i,j × wc,i,j , and the gradient for the backward pass is: ∇vc =

( ∂v
∂{pc,i,j} ,

∂v
∂{wc,i,j} ) = ({wc,i,j}, {pc,i,j}).

Typical convolution encourages weight sharing within an image patch by “zipping” the patch into a
single value for upper layers by a dot production between the patch and a 2D filter. Our DotProduct
layer shares the same “zipping” idea, which facilitates to fully connect it: probing points are grouped
into probing filters to generate output with lower dimensionality.

Another option in designing deep neural networks is to decide whether parameters of convolutional
layers should be shared across different spatial locations. In 2D CNNs, these parameters are usually
shared when processing general images. In our case, we opt not to share the weights, as information
is not evenly distributed in 3D space, and we encourage our probing filters to individually deviate for
adapting to the data.

Gaussian Layer. Samples in locations distant to the object surface are associated with large distance
values from the distance field. Directly feeding them into the DotProduct layer does not converge
and thus does not yield reasonable performance. To emphasize the importance of samples in the
vicinity of the object surface, we apply a Gaussian transform (inverse exponential) on the distances
so that regions approaching the zero surface have larger weights while distant regions matter less.1.
We implement this transform with a Gaussian layer. The input is the output values of the Sensor
layer. Let us assume the values are {x}, then this layer applies an element-wise Gaussian transform

g(x) = e−
x2

2σ2 , and the gradient is∇g = −xe
− x2

2σ2

σ2 for the backward pass.

Complexity of Field Probing Layers. The complexity of field probing layers is O(C ×N × T ),
where C is the number of probing filters, N is the number of probing points on each filter, and T is
the number of input fields. The complexity of the convolutional layer is O(K3 × C × S3), where K

1Applying a batch normalization [11] on the distances also resolves the problem. However, Gaussian
transform has two advantages: 1. it can be approximated by truncated distance fields [5], which is widely used
in real time scanning and can be compactly stored by voxel hashing [21], 2. it is more efficient to compute than
batch normalization, since it is element-wise operation.
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is the 3D kernel size, C is the output channel number, and S is the number of the sliding locations for
each dimension. In field probing layers, we typically use C = 1024, N = 8, and T = 4 (distance and
normal fields), while in 3D CNN K = 6, C = 48 and S = 12. Compared with convolutional layers,
field probing layers save a majority of computation (1024× 8× 4 ≈ 1.83%× 63 × 48× 123), as the
probing filters in field probing layers are capable of learning where to “sense”, whereas convolutional
layers exhaustively examine everywhere by sliding the 3D kernels.

Figure 4: Initialization of field probing layers. For
simplicity, only a subset of the parameters are vi-
sualized.

Initialization of Field Probing Layers.
There are two sets of parameters: the probing
point locations and the weights associated
with them. To encourage the probing points
to explore as many potential locations as
possible, we initialize them to be widely
distributed in the input fields. We first divide
the space into G × G × G grids and then
generate P filters in each grid. Each filter is
initialized as a line segment with a random
orientation, a random length in [llow, lhigh] (we
use [llow, lhigh] = [0.2, 0.8] ∗R by default), and a random center point within the grid it belongs to
(Figure 4 left). Note that a probing filter spans distantly in the 3D space, so they capture long range
effects well. This is a property that distinguishes our design from those convolutional layers, as they
have to increase the kernel size to capture long range effects, at the cost of increased complexity. The
weights of field probing filters are initialized by the Xavier scheme [9]. In Figure 4 right, weights for
distance field are visualized by probing point colors and weights for normal fields by arrows attached
to each probing point.

Figure 5: FPNN architecture. Field probing
layers can be used together with other infer-
ence layers to minimize task specific losses.

FPNN Architecture and Usage. Field probing lay-
ers transform input 3D fields into an intermediate
representation, which can further be processed and
eventually linked to task specific loss layers (Fig-
ure 5). To further encourage long range connections,
we feed the output of our field probing layers into
fully connected layers. The advantage of long range
connections makes it possible to stick with a small
number of probing filters, while the small number of
probing filters makes it possible to directly use fully connected layers.

Object classification is widely used in computer vision as a testbed for evaluating neural network
designs, and the neural network parameters learned from this task may be transferred to other high-
level understanding tasks such as object retrieval and scene parsing. Thus we choose 3D object
classification as the task for evaluating our FPNN.

4 Results and Discussions

4.1 Timing
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Figure 6: Running time of convolutional layers
(same settings as that in [31]) and field probing
layers (C × N × T = 1024 × 8 × 4) on Nvidia
GeForce GTX TITAN GPU with batch size 83.

We implemented our field probing layers in
Caffe [12]. The Sensor layer is parallelized by
assigning computation on each probing point to
one GPU thread, and DotProduct layer by as-
signing computation on each probing filter to
one GPU thread. Figure 6 shows a run time
comparison between convonlutional layers and
field probing layers on different input resolu-
tions. The computation cost of our field probing
layers is agnostic to input resolutions, the slight increase of the run time on higher resolution is
due to GPU memory latency introduced by tri-linear interpolation of larger 3D fields. Note that

3The batch size is chosen to make sure the largest resolution data fits well in GPU memory.
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the convolutional layers in [12] are based on highly optimized cuBlas library from NVIDIA, while
our field probing layers are implemented with our naive parallelism, which is likely to be further
improved by GPU experts.

4.2 Datasets and Evaluation Protocols

1-FC 4-FCs
w/o FP w/ FP +NF w/o FP w/ FP +NF

79.1 85.0 86.0 86.6 87.5 88.4

Table 1: Top-1 accuracy of FPNNs on 3D object
classification task on ModelNet40 dataset.

We use ModelNet40 [31] (12,311 models
from 40 categories, training/testing split with
9,843/2,468 models4) — the standard benchmark for 3D object classification task, in our experiments.
Models in this dataset are already aligned with a canonical orientation. For 3D object recognition
scenarios in real world, the gravity direction can often be captured by the sensor, but the horizontal
“facing” direction of the objects are unknown. We augment ModelNet40 data by randomly rotating
the shapes horizontally. Note that this is done for both training and testing samples, thus in the
testing phase, the orientation of the inputs are unknown. This allows us to assess how well the trained
network perform on real world data.

4.3 Performance of Field Probing Layers

FPNN Setting R R15 R15 + T0.1 + S R45 T0.2
1-FC 85.0 82.4 76.2 74.1 72.2
4-FCs 87.5 86.8 84.9 85.3 85.4
[31] 84.7 - - 83.0 84.8

Table 2: Performance on different levels of spatial
perturbations.

We train our FPNN with SGD solver, with learn-
ing rate 0.01, momentum 0.9, and weight decay
0.0005. The network are trained 40000 epochs on 64× 64× 64 distance field with batch size 1024.5

Trying to study the performance of our field probing layers separately, we build up an FPNN with only
one fully connected layer that converts the output of field probing layers into the representation for
softmax classification loss (1-FC setting). Batch normalization [11] and rectified-linear unit [20] are
used in-between our field probing layers and the fully connected layer for reducing internal covariate
shift and introducing non-linearity. We train the network without/with updating the field probing
layer parameters. We show their top-1 accuracy on 3D object classification task on ModelNet40
dataset with single testing view in Table 1. It is clear that our field probing layers learned to sense
the input field more intelligently, with a 5.9% performance gain from 79.1% to 85.0%. Note that,
what achieved by this simple network, 85.0%, is already better than the state-of-the-art 3DCNN
before [23] (83.0% in [31] and 83.8% in [19]).

We also evaluate the performance of our field probing layers in the context of a deeper FPNN,
where four fully connected layers6, with in-between batch normalization, rectified-linear unit and
Dropout [27] layers, are used (4-FCs setting). As shown in Table 1, the deeper FPNN performs better,
while the gap between with and without field probing layers, 87.5%−86.6% = 0.9%, is smaller than
that in one fully connected FPNN setting. This is not surprising, as the additional fully connected
layers, with many parameters introduced, have strong learning capability. The 0.9% performance gap
introduced by our field probing layers is a precious extra over a strong baseline.

It is important to note that in both settings (1-FC and 4-FCs), our FPNNs provides reasonable perfor-
mance even without optimizing the field probing layers. This confirms that long range connections
among the sensors are beneficial.

Furthermore, we evaluate our FPNNs with multiple input fields (+NF setting). We did not only employ
distance fields, but also normal fields for our probing layers and found a consistent performance gain
for both of the aforementioned FPNNs (see Table 1). Since normal fields are derived from distance
fields, the same group of probing filters are used for both fields. Employing multiple fields in the
field probing layers with different groups of filters potentially enables even higher performance.

Robustness Against Spatial Perturbations. We evaluate our FPNNs on different levels of spatial
perturbations, and summarize the results in Table 2, where R indicates random horizontal rotation,
R15 indicates R plus a small random rotation (−15◦, 15◦) in the other two directions, T0.1 indicates

4The split is provided on the authors’ website. In their paper, a split composed of at most 80/20 training/testing
models for each category was used, which is tiny for deep learning tasks and thus prone to overfitting. Therefore,
we report and compare our performance on the whole ModelNet40 dataset.

5To save disk I/O footprint, a data augmentation is done on the fly. Each iteration, 256 data samples are
loaded, and augmented into 1024 samples for a batch.

6The first three of them output 1024 dimensional feature vector.
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random translations within range (−0.1, 0.1) of the object size in all directions, S indicates random
scaling within range (0.9, 1.1) in all directions. R45 and T0.2 shares the same notations, but with
even stronger rotation and translation, and are used in [23] for evaluating the performance of [31].
Note that such perturbations are done on both training and testing samples. It is clear that our FPNNs
are robust against spatial perturbations.

FPNN Setting 0.2− 0.8 0.2− 0.4 0.1− 0.2
1-FC 85.0 84.1 82.8
4-FCs 87.5 86.8 86.9

Table 3: Performance with different filter spans.

Advantage of Long Range Connections.
We evaluate our FPNNs with different range
parameters [llow, lhigh] used in initializing the
probing filters, and summarize the results in Table 3. Note that since the output dimensionality
of our field probing layers is low enough to be directly feed into fully connected layers, distant
sensor information is directly coupled by them. This is a desirable property, however, it poses the
difficulty to study the advantage of field probing layers in coupling long range information separately.
Table 3 shows that even if the following fully connected layer has the capability to couple distance
information, the long range connections introduced in our field probing layers are beneficial.

FPNN Setting 16× 16× 16 32× 32× 32 64× 64× 64

1-FC 84.2 84.5 85.0
4-FCs 87.3 87.3 87.5

Table 4: Performance on different field resolutions.

Performance on Different Field Resolutions.
We evaluate our FPNNs on different input field
resolutions, and summarize the results in Table 4.
Higher resolution input fields can represent in-
put data more accurately, and Table 4 shows that our FPNN can take advantage of the more accurate
representations. Since the computation cost of our field probing layers is agnostic to the resolution
of the data representation, higher resolution input fields are preferred for better performance, while
coupling with efficient data structures reduces the I/O footprint.

“Sharpness” of Gaussian Layer. The σ hyper-parameter in Gaussian layer controls how “sharp”
is the transform. We select its value empirically in our experiments, and the best performance is given
when we use σ ≈ 10% of the object size. Smaller σ slightly hurts the performance (≈ 1%), but has
the potential of reducing I/O footprint.

Figure 7: t-SNE visualization of FPNN features.

FPNN Features and Visual Similar-
ity. Figure 7 shows a visualization
of the features extracted by the FPNN
trained for a classification task. Our
FPNN is capable of capturing 3D ge-
ometric structures such that it allows
to map 3D models that belong to the
same categories (indicated by colors)
to similar regions in the feature space.
More specifically, our FPNN maps 3D
models into points in a high dimen-
sional feature space, where the dis-
tances between the points measure the
similarity between their correspond-
ing 3D models. As can be seen from
Figure 7 (better viewed in zoomin
mode), the FPNN feature distances be-
tween 3D models represent their shape similarities, thus FPNN features can support shape exploration
and retrieval tasks.

4.4 Generalizability of FPNN Features

Testing Dataset FP+FC FC Only FP+FC on Source
FC Only on Target

MN401 93.8 90.7 92.7
MN402 89.4 85.1 88.2

Table 5: Generalizability test of FPNN features.One superior characteristic of CNN features is
that features from one task or dataset can be transferred to another task or dataset. We evaluate the
generalizability of FPNN features by cross validation — we train on one dataset and test on another.
We first split ModelNet40 (lexicographically by the category names) into two parts MN401 and
MN402, where each of them contains 20 non-overlapping categories. Then we train two FPNNs in
a 1-FC setting (updating both field probing layers and the only one fully connected layer) on these
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two datasets, achieving 93.8% and 89.4% accuracy, respectively (the second column in Table 5).7
Finally, we fine tune only the fully connected layer of these two FPNNs on the dataset that they were
not trained from, and achieved 92.7% and 88.2% on MN401 and MN402, respectively (the fourth
column in Table 5), which is comparable to that directly trained from the testing categories. We also
trained two FPNNs in 1-FC setting with updating only the fully connected layer, which achieves
90.7% and 85.1% accuracy on MN401 and MN402, respectively (the third column in Table 5).
These two FPNNs do not perform as well as the fine-tuned FPNNs (90.7% < 92.7% on MN401
and 85.1% < 88.2% on MN402), although all of them only update the fully connected layer. These
experiments show that the field probing filters learned from one dataset can be applied to another one.

4.5 Comparison with State-of-the-art
Our FPNN [23]

(4-FCs+NF) SubvolSup+BN MVCNN-MultiRes
88.4 88.8 93.8

Table 6: Comparison with state-of-the-art methods.We compare the performance of our FPNNs
against two state-of-the-art approaches — Sub-
volSup+BN and MVCNN-MultiRes, both from [23], in Table 6. SubvolSup+BN is a subvolume
supervised volumetric 3D CNN, with batch normalization applied during the training, and MVCNN-
MultiRes is a multi-view multi-resolution image based 2D CNN. Note that our FPNN achieves
comparable performance to SubvolSup+BN with less computational complexity. However, both our
FPNN and SubvolSup+BN do not perform as well as MVCNN-MultiRes. It is intriguing to answer
the question why methods directly operating on 3D data cannot match or outperform multi-view 2D
CNNs. The research on closing the gap between these modalities can lead to a deeper understanding
of both 2D images and 3D shapes or even higher dimensional data.

4.6 Limitations and Future Work

FPNN on Generic Fields. Our framework provides a general means for optimizing probing lo-
cations in 3D fields where the gradients can be computed. We suspect this capability might be
particularly important for analyzing 3D data with invisible internal structures. Moreover, our ap-
proach can easily be extended into higher dimensional fields, where a careful storage design of the
input fields is important for making the I/O footprint tractable though.

From Probing Filters to Probing Network. In our current framework, the probing filters are
independent to each other, which means, they do not share locations and weights, which may result in
too many parameters for small training sets. On the other hand, fully shared weights greatly limit the
representation power of the probing filters. A trade-off might be learning a probing network, where
each probing point belongs to multiple “pathes” in the network for partially sharing parameters.

FPNN for Finer Shape Understanding. Our current approach is superior for extracting robust
global descriptions of the input data, but lacks the capability of understanding finer structures inside
the input data. This capability might be realized by strategically initializing the probing filters
hierarchically, and jointly optimizing filters at different hierarchies.

5 Conclusions

We proposed a novel design for feature extraction from 3D data, whose computation cost is agnostic
to the resolution of data representation. A significant advantage of our design is that long range
interaction can be easily coupled. As 3D data is becoming more accessible, we believe that our
method will stimulate more work on feature learning from 3D data. We open-source our code at
https://github.com/yangyanli/FPNN for encouraging future developments.
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