
Interactive Invigoration: Volumetric Modeling of Trees with Strands
BOSHENG LI, Purdue University, USA
NIKOLAS A. SCHWARZ, CAU, Germany
WOJTEK PAŁUBICKI, Adam Mickiewicz University, Poland
SÖREN PIRK, CAU, Germany
BEDRICH BENES, Purdue University, USA

Fig. 1. The intricate branching structure of a mature acacia tree model created with our framework Interactive Invigoration.

Generating realistic models of trees and plants is a complex problem because
of the vast variety of shapes trees can form. Procedural modeling algorithms
are popular for defining branching structures and steadily increasing their
expressive power by considering more biological findings. Most existing
methods focus on defining the branching structure of trees based on skeletal
graphs, while the surface mesh of branches is most commonly defined as
simple cylinders. One critical open problem is defining and controlling the
complex details observed in real trees. This paper aims to advance tree mod-
eling by proposing a strand-based volumetric representation for tree models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Strands are fixed-size volumetric pipes that define the branching structure.
By leveraging strands, our approach captures the lateral development of
trees. We combine the strands with a novel branch development formulation
that allows us to locally inject vigor and reshape the tree model. Moreover,
we define a set of editing operators for tree primary and lateral develop-
ment that enables users to interactively generate complex tree models with
unprecedented detail with minimal effort.

CCS Concepts: • Computing methodologies → Computer graphics;
Volumetric models.

Additional Key Words and Phrases: Geometric modeling, Tree Models,
Strands, Interaction

ACM Reference Format:
Bosheng Li, Nikolas A. Schwarz, Wojtek Pałubicki, Sören Pirk, and Bedrich
Benes. 2018. Interactive Invigoration: Volumetric Modeling of Trees with
Strands. In . ACM, New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.
XXXXXXX

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

1 INTRODUCTION
Trees and plants are important visual assets
in various application domains, from computer
games and movies to urban planning, architec-
tural design, and forestry simulators. Advances
in procedural modeling enable an efficient gen-
eration of branching structures and plant de-
velopment by considering biological findings.

However, most tree modeling approaches only focus on generating
the skeletal graph of a tree, while the lateral growth of branches
is neglected. Moreover, the majority of tree models use boundary
representation, neglecting the volumetric structure of the trees’ in-
ner parts. Creating complex forms, such as holes and twists, using
boundary representation is a tedious manual task. Complex and
realistic branch geometry is not only a key visual feature but also en-
ables tree models for advanced applications, such as the interaction
of plants with autonomous agents or the measurement of biomass in
agriculture or forestry [Cieslak et al. 2024]. Therefore, methods for
efficiently modeling the volumetric structure of trees seem like an
important step for advancing tree modeling in computer graphics
and related application areas.
A range of methods address the procedural and developmental

modeling of tree form, either through sketch-based interfaces [Lon-
gay et al. 2012], with a focus on the environmental response of
trees [Měch and Prusinkiewicz 1996; Pirk et al. 2012b], by modeling
specific features of trees, such as roots [Li et al. 2023], for recon-
structing trees from point sets or images of trees [Livny et al. 2011;
Neubert et al. 2007], or by leveraging data-driven techniques to learn
tree generation [Zhou et al. 2023]. Only a few approaches focus on
modeling the secondary growth of trees [Kratt et al. 2015] or the
modeling of trees with strands [Hädrich et al. 2020; Holton 1994]
and none of them supports modeling the primary growth, while
also maintaining a plausible volumetric structure for the branches.
This paper aims to advance tree modeling by introducing three

novel concepts. First, we introduce strand-based modeling for defin-
ing branch volumes. Strands are defined as fixed-sized pipes run-
ning from the tip of small twigs all the way down to the root of
a skeletal graph. As each strand occupies space, bundles of them
directly define the volumetric shape. Additionally, we enable fast
interactive sketching and manipulation of the branch profiles – the
cross-section between branch segments – to provide users with a
means of control. Second, we introduce interactive invigoration, a
vigor-based model for the local development of branching struc-
tures that allows us to develop branching structures with plausible
structural properties interactively. Third, we define operators for the
vigor-based and strand-based models, allowing us to interactively
design detailed and biologically plausible tree forms.

We describe procedural primary growth via a vigor-based model
like other state-of-the-art methods. This ensures a balanced distri-
bution of branches in space where meaningful parameters express
distinctive traits of tree species, e.g., pines or oaks. In contrast to
other methods, we integrated into such a biologically inspired model
a method for describing realistic branch shapes via a novel strand-
based model. Specifically, this allows us to capture a variety of
naturally looking branching points, twisting branch shapes, and

old and decaying branches, as well as the formation of adventitious
buds and burls.

Figure 1 shows the branching structure of a mature oak tree model
generated with our method. In summary, our contributions are: (1)
we introduce interactive invigoration as a novel way to grow and
reshape branching structures; (2) we use strands to model secondary
branch growth while we let users define the shape of their cross
sections; (3) we introduce a novel meshing algorithm for branching
structures that operates on strands; (4) we propose a novel set of
tree editing operators that enable to design a tree while maintaining
its structural integrity interactively.

2 RELATED WORK
Researchers in computer graphics have invested a considerable
amount of effort to model trees and plants. Early techniques rep-
resent branching structures using rule-based algorithms [Honda
1971; Prusinkiewicz and Lindenmayer 1990], grammars [Aono and
Kunii 1984], particle systems [Reeves and Blau 1985], and frac-
tals [Oppenheimer 1986]. Among these methods, L-systems have
emerged as a prominent formal framework for modeling plant struc-
tures [Prusinkiewicz 1986]. However, although L-systems offer a
robust method for generating plant structures, the intricate pro-
cess of defining production rules to create complex trees is a labor-
intensive task that requires a significant amount of expertise or
applications of machine learning to detect the rules [Guo et al. 2020;
Lee et al. 2024]. Consequently, this complexity often makes their
application impractical. Procedural modeling techniques [Weber
and Penn 1995] aim to overcome these limitations by combining
rule-based approaches with geometric modeling and user interac-
tion [Lintermann and Deussen 1996; Longay et al. 2012]. More recent
procedural modeling approaches focus on establishing formalism
for phenomenological or self-organizing growth [Guo et al. 2020;
Palubicki et al. 2009; Runions et al. 2005], inverse procedural mod-
eling [Stava et al. 2014], urban forests [Niese et al. 2022], dynamic
environmental response [Pirk et al. 2012b], the procedural model-
ing of specific types of plants [Wong and Chen 2015], and learned
representations for defining branching structures [Zhou et al. 2023]
or foliage of trees [Kałużny et al. 2024; Liu et al. 2021b].

Recent approaches for modeling trees have also expanded toward
modeling the dynamics of plants. This reaches as far as modeling
animations of growth [Hädrich et al. 2017], the interaction of trees
with wind [Habel et al. 2009; Pirk et al. 2014; Quigley et al. 2018;
Shao et al. 2021], and fire [Pirk et al. 2017]. A few methods focus on
modeling the biomechanic material properties of branching struc-
tures for generating realistic animations of tree dynamics [Wang
et al. 2017; Zhao and Barbič 2013] or even simulate the effect of plant
wilting [Maggioli et al. 2023]. While some approaches also focus on
defining volumetric representations for branches, e.g., to enable the
combustion of trees through slabs [Pirk et al. 2017], only a handful
use strands to define branching [Hädrich et al. 2020; Holton 1994;
Kleiberg et al. 2001].
As modeling branching structures is challenging, many meth-

ods also focus on reconstructing tree models from different sen-
sor data. Approaches exist to reconstruct trees from one or multi-
ple images [Neubert et al. 2007; Quan et al. 2006; Tan et al. 2008],

2

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

point clouds [Liu et al. 2021a; Livny et al. 2011; Xu et al. 2007],
and videos [Li et al. 2011]. Some methods also use intermediate
data structures for the reconstruction process, such as segmenta-
tion masks [Argudo et al. 2016] or 3D bounding volumes [Li et al.
2021]. Bradley et al. [2013] utilize point clouds acquired from stereo
images and employ a statistical model along with non-rigid mesh
fitting to reconstruct dense foliage. In a more advanced approach,
Li et al. [2013] take plant reconstruction a step further by incorpo-
rating the temporal dimension, tracking events like budding and
bifurcation for enhanced accuracy.
Closest to our method are sketch-based techniques, a class of

algorithms that aim to simplify the creation of tree models by allow-
ing users to define gestures that guide the procedural modeling of
branching structures [Chen et al. 2008; Okabe et al. 2007; Tan et al.
2008], as well as for plants [Anastacio et al. 2006] and flowers [Ijiri
et al. 2006]. The most advanced approach is TreeSketch, which seam-
lessly integrates user-defined sketches with procedural modeling
[Longay et al. 2012]. Additionally, sketches can serve as a means
to define intermediary representations for tree modeling, such as
envelope shapes [Benes et al. 2009], which can direct the model-
ing process [Wither et al. 2009] or guide particle flows [Neubert
et al. 2007]. Pirk et al. [2012a] use growth spaces to first inversely
compute growth to define new branching structures [2012a] then.
Unlike the existing approaches, we use a recently proposed vigor-
based signaling mechanism to grow branching structures [Li et al.
2023] procedurally and combine it with user-sketched profiles for
defining the secondary growth of branches.

3 OVERVIEW
Our interactive method uses the model proposed by Li et al. [2023]
to express the growth of trees as the result of long-distance signal
processing within the tree architecture. This model captures essen-
tial biological processes such as phototropism, gravitropism, or bud
suppression by existing branches (apical dominance). This growth
model describes biological development as the iterative addition and
removal of nodes and edges of the plant graph (PG) describing the
branching structure. Furthermore, node attributes are recomputed
in each iteration as part of a model for long-distance signaling to
express physiological changes in response to the environment and
the adaptation of the plant structure. The output of this model is
a skeleton of the tree with additional attributes, such as the width,
age, position, and orientation.

Our goal is to combine the development of a skeletal graph with
a strand-based representation to model the volume of branches. A
strand is a fixed-radius generalized cylinder running from an end-
point of the skeletal graph down to the root node. We update the
strands after each developmental iteration to maintain a plausible
volumetric representation. We compute a planar profile that defines
the branch cross-section for each node in the PG. To compute the
location of a strand within the profile, we compute the packing
of strand positions to avoid collisions. Strands from multiple child
branches are packed into the parent branch profile by updating their
positions with position-based dynamics (PBD) [Bender et al. 2017;
Müller et al. 2007]. Furthermore, strand positions are updated based

Fig. 2. Multiple branch profiles: our method allows the definition of branch
profiles for any internode in the branch graph. Here, we show an example
where branch profiles have been defined for the trunk and a major branch.

on user-defined properties. This results in strands with unique posi-
tions at every branching point. We then generate strand geometry
by treating the strand positions at branching segments as control
points for B-splines. This leads to the expansion of the skeletal graph
to a 3D tree volume.

Our interactive framework allows users to modify the tree shape
during simulation with several intuitive operators defined for ei-
ther the plant graph or the strands. We allow the modification of
signal concentrations in the developmental simulation to invigorate
branches. Additionally, parameters from both representations can
be adjusted during simulation time, allowing the capture of a wide
range of developmental phenomena inherent to plants. This ranges
from rare events such as the merging of branches (inosculation) to
spiral growth facilitated through user-defined profiles (Fig. 2).

After the strands have been created, we generate a mesh based on
the geometric information of all strands, automatically identifying
any branching points. The interactivity of our framework extends
to the mesh generation phase. Users can fine-tune the smoothness
of the mesh to achieve the desired level of detail.

4 METHOD
This section outlines the individual components of our interactive
tree editing framework. First, we describe a procedural model of
tree development, then provide a detailed account of integrating
our novel strand-based model. Finally, we explain how to create a
mesh efficiently based on the strand representation.

4.1 Tree Graph Development
We procedurally compute a PG (inset figure) to represent tree devel-
opment using a recently proposed vigor-based signaling model [Li

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

x

y
(a) (b) (c)

Backplane

Front Planes

Front Plane

Merge

PBD

Packing

Profile

Backplane

Front Planes

Branch Graph

Strand
Particles

Strand
Particles

Strands

Strand
Particles

(d)
Backplane

v

Fig. 3. Overview of the strand particle placement and dynamics in tree branch modeling: (a) Initial placement of strand particles on the 2D local coordinate
system at the end nodes of the branch graph. Strand particles are placed within the circular profile boundary. (b) Projection process of strand particles from
the ’front planes’ of smaller branches onto the ’backplane’ of the main branch, with vector v illustrating the direction of displacement. (c) Integration and
packing of strand particles on the backplane. Strand particles from different branches are merged onto a single plane, followed by a PBD process to resolve
collisions and enforce packing constraints within the profile boundary on the front plane. This leads to the final positioning of strand particles that are ready
for further geometric processing. (d) After all strand particle positions have been computed for all branch segments, we generate strand geometry using
B-splines as trajectories for generalized cylinders.

et al. 2023]. We have adapted the model for the above-ground archi-
tecture, as the root development and environmental interactions,
are beyond the scope of this work. Specifically, our model defines a
PG to represent the plant’s architecture at the scale of individual
segments.
We define the PG as an

acyclic, directed graph 𝐺 =

{𝑁, 𝐸}, where 𝑁 are the nodes
and 𝐸 the edges connecting
the nodes. Our model simu-
lates plant growth through a
series of simulation steps that
update the attributes of the PG
nodes. These attributes encom-
pass the size and state of plant
organs, including apical buds and internodes. Specifically, graph
nodes define the attributes of position 𝑥 , diameter 𝑑 , length 𝑙 , shoot
flux signal 𝑆𝐹 , activation signal 𝐴, leaf number 𝑁𝑙 , lateral bud num-
ber 𝑁𝑏 , vigor 𝑉 , optimal growth direction 𝑔, and orientation 𝑜 . We
update the node attributes in a sequence of simulation steps, which
expresses long-distance signaling within a plant in the model. While
the developmental model introduced by Li et al. [2023] accounts
for environmental factors through coupled soil and atmospheric
models, our implementation does not include these components,
as we aim at interactive design. Consequently, our model does not
simulate the below-ground root development or the plant’s direct
interaction with varying environmental stimuli such as light, water,
and nutrients.

4.2 Volumetric Modeling with Strands
The volumetric modeling of tree branches using strands begins by
establishing local coordinate systems at each node of the PG, which
we refer to as backplanes (see Fig. 3a). Each backplane is defined by
the position of a node (serving as the origin), the direction of the
outgoing edge from that node, and the direction pointing ‘upwards,’
which gives us the 𝑥 and 𝑦 axes. We determine the up vector of the

local frame, defining the backplane using parallel transport frames
to minimize differences in up-direction vectors. This defines a two-
dimensional frame of reference for strand placement around each
node. We initiate the process by computing 2D positions 𝑝𝑖 ∈ 𝑃 of
disk-shaped particles with a radius 𝑟𝑖 representing future strand
positions at various branching segments. We position these particles
for a set of strands 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} within a circular area centered
on each node’s backplane (see Fig. 3a). For each node, we start by
assigning a user-specified number of strands. These strands are then
projected first to a second plane of the same branch node called
the ’front plane’. Then, in case the underlying branch node is not a
branching point (i.e., connected only to one edge from above in the
PG), we project the strand particle positions from the front plane to
the backplane of the underlying branching node. We continue this
process along the chain of edges in the PG down to the root node.
Multiple front planes coming from different branches at each

branching point need to be merged into a single backplane via a
different method. To merge strands from multiple front planes, we
project the strand positions from the front planes of the overhanging
branches (child branches) onto the backplane of the underlyingmain
branch. The branch with the highest number of strands is positioned
around the origin of this main branch’s backplane. For branches
with fewer strands, their strand positions are projected further from
the origin. The direction of this displacement is determined by the
edge projection of the overhanging branch onto the main branch’s
backplane (see Fig. 3b): v = 𝐵e. Note that e is the vector representing
the edge of the overhanging branch, and 𝐵 is the 2 × 2 matrix
representing the backplane. The projection gives us a vector in the
plane of the main branch, indicating the direction in which the
strands from the smaller branch should be displaced. The distance
of displacement for these strands is then calculated based on two
factors: the furthest extent of strand positions already projected
onto the main branch from the larger branch and the largest extent
of the strand positions from the currently projected smaller branch.

4

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

t = 0

t = 1

t = tn
Interpolated
Strand Particle
Position

Strand Particle

Strand Particle

Interpolated Strand
Particle Positions

Connected Component
with Boundary

Delaunay

(a) (b) (d)

t = tn-1

Connect to previous boundary

(c)

Triangulation with edges greater
than component threshold

Triangle removal

Separated sets of strand
particles

t = tn

Fig. 4. Schematic representation of mesh construction via strand particle positioning for branch segmentation. (a) Demonstrates the spatial positioning
of strand particles, where t=1 represents the upper branch segment, t=0 signifies the lower branch segment, and t=n is an intermediate position showing
the interpolated strand particle position between the two segments. (b) Showcases the interpolation of strand particle positions and subsequent Delaunay
triangulation, leading to a connected component with a clearly defined boundary. (c) Illustrates the removal of triangles based on edge length criteria exceeding
a specific threshold, isolating strand particles into separate groups. (d) Shows the connection of the computed boundaries at spatial position t=n to the
previous boundary at t=n-1, thereby constructing a continuous mesh for branch segments.

The displacement for each strand 𝑝𝑖 ∈ 𝑃 is calculated as:

𝑑𝑖 = 𝐷large + 𝐷small, (1)

𝑝′𝑖 = 𝑝𝑖 + 𝑑𝑖 ·
v
∥v∥ , (2)

where 𝑝𝑖 is the original particle position, v the projected vector,
𝐷large the furthest extent of strand particle positions from the larger
branch,𝐷small the largest extent of the strand particle positions from
the smaller branch, and 𝑝′

𝑖
is the new displaced particle position.

Essentially, this means that the strands from the smaller branch are
positioned so that they do not overlap with those from the larger
branch but instead are adjacent to them (see Fig. 3b, blue and red
regions after projection on the backplane).
The disk-shaped 2D particles facilitate the avoidance of inter-

sections between strands by using PBD. During the PBD process,
if strands are found outside the user-defined or default profile B
(circular in default cases), they are moved towards the closest point
on the profile’s boundary. In case they are inside B, they are moved
towards attractors and/or the medial axis of B (see Alg. 1). Attrac-
tors are defined by the user as a sequence of line segments within
the 2D profile. The medial-axis is computed using the method by
Au et al. [2008]. The PBD process may move a border particle in one
plane out of the border in the following plane and vice versa, thus
moving some strands inside the tree and others outside. To resolve
this, we connect all matching strands, and a walker step sweeps
over all adjacent planes that might contain unmatched strands to
connect them. We use a user-defined maximum number of steps
to finalize the strand particle positions for all front planes of all
branch nodes. After finalizing the strand segment positions through
the PBD process, we generate the geometry of the strands. This is
accomplished by treating the finalized positions as control points
for B-spline curves, which we use to determine the direction of the
generalized cylindrical shapes of strands 𝑠𝑖 .

Fig. 5. Interactive invigoration (from left to right): a user continues develop-
ing a young tree by injecting vigor (blue circles) into individual branches.

4.3 Strand-based Mesh Generation
Our mesh generation method leverages the spatial information
of strand particles to generate a coherent mesh representing the
continuity of the branch segments. We use parametric linear inter-
polation with the parameter 𝑡 within a branch segment to label the
spatial locations of interpolated strand particles, with 𝑡 = 0 corre-
sponding to the position of the strand particle of a lower branch
segment and 𝑡 = 1 representing the end of the branch segment (co-
inciding with the beginning of the next). We interpolate the strand
particle positions for all strand particles at user-defined intervals
𝑡 ∈ {𝑡1, 𝑡2, . . . , 𝑡𝑝 } to cover the entire length of the branch (Fig. 4a).
Following this, a Delaunay triangulation of the strand particle posi-
tions is performed. We traverse the particle boundary and match
all particles belonging to the same strand. In the case of a single
branch segment, the subsequent triangulation results in a triangular
network connecting the particle points (Fig. 4b).

We then remove from the triangular network any triangles where
the length of at least one triangle edge is larger than a user-specified
threshold 𝛼 . After the triangle removal, the graph may degenerate
into multiple connected components, indicating tree branching. We
determine this by randomly selecting interpolated strand particles

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

Fig. 6. Twisting operator: branches can be generated mimicking spiral
branch growth (right) and for comparison without twisting applied (left).

Fig. 7. Adventitious Bud Formation: A branch of a developed tree model
is pruned (a). By locally injecting vigor, our method enables mimicking
traumatic reiteration (forming new branches from older, already developed
branches) by developing adventitious buds (b). After the tree has developed
new branches, they continue to develop, leading to a complex tree shape (c,
d).

from a set of unvisited particles𝑈 to compute the connected com-
ponent, where we flag all interpolated particles as visited until 𝑈
becomes empty. The boundary of each connected component is
found by a traversal around it (Fig. 4c). The final step connects the
boundaries of the interpolated strand particle positions at each level
to obtain a surface mesh for the current branch segment (Fig. 4d).
This is achieved by first matching all boundary strands in both
planes. However, these matches can sometimes cross each other. To
resolve this, we search for such crossings and swap the matched
strands until this no longer occurs. Finally, we create triangles be-
tween two matched strand particles by sweeping over the boundary,
always maintaining two active vertices, one on the upper and one on
the lower plane, and connecting them to the next available particle
to form a triangle. This vertex then becomes the new active vertex
in its corresponding plane. We repeat this process for all branch
segments contained in the PG until meshes for all branches have
been generated.

5 INTERACTIVE TREE MODELING
Our implementation of natural tree development is computationally
efficient enough to allow users to interactively control the tree
model generation. We introduce several tree editing operators that
allow the intuitive adjustment of tree-shape features. We focus on
a number of natural phenomena important for tree development,
including branch twisting, invigoration, pruning, and formation of
adventitious buds. In particular, the operators that we defined are:
Interactive Invigoration. An important aspect of interactive tree

modeling is the ability of users to influence the growth and shape of
tree models directly [Longay et al. 2012]. The Interactive Invigoration

operator is designed to inject vigor into the tree growth simulation,
allowing users to enhance the growth of branches at specific po-
sitions. This is achieved by integrating a tree graph operator that
responds to user input within the graphical interface. When a user
clicks on a particular location on the tree model, the Interactive
Invigoration operator interprets this action as a signal to initiate
new growth. Specifically, the operator adds vigor to the selected
node corresponding to the click duration. The increased vigor at
the nodes subsequently results in longer internode formation and a
higher amount of lateral buds as described in Li et al. [2023]. This
allows for the real-time creation and modification of tree models by
amplifying the growth of arbitrary branches, which conform to our
model’s biologically plausible growth rules (Fig. 5).

Adventitious Bud Formation. Another operator in our framework
simulates the spontaneous generation of buds on mature sections of
the tree. This phenomenon, often observed in nature as a response to
environmental stress or injury, is replicated in our model to increase
the detail of the tree structure. Upon clicking on a node with the
operator selected, new lateral nodes are added to the PG connecting
to the clicked node. We calculate the growth direction and other
node attribute values based on the default setting of our model.
The growth directions of the new branches are determined by the
local surface normal and the phototropism factor that simulates the
branch’s tendency to grow towards light used by Li et al. [2023].
These new nodes develop into branches as part of the subsequent
tree growth simulation in a spiral phyllotactic pattern from around
the main branch segment associated with the node (Fig. 7).

Branch Twisting Operator introduces a twist to the branches, mim-
icking the natural torsion observed in many tree species. This oper-
ator allows users to apply a rotational transformation to the front
planes of neighboring branch nodes, creating the characteristic spi-
raling effect of the bark and branching structure. The operation is
performed by first converting the strand particle positions from
Cartesian to polar coordinates relative to the origin of the front
plane. A user-defined rotation angle is then added to the polar an-
gle component of the upper branch node (effectively rotating the
backplane). The subsequent B-spline calculation to define strand
geometry results in the branch’s spiraling appearance around its
longitudinal axis. Users can apply varying degrees of twists across
different branches to achieve a diverse range of natural appearances
and specify them also for selected branches only (Fig. 6).

6 IMPLEMENTATION AND RESULTS
In this section, we describe implementation details and modeling
results. We implemented our method in C++ with OpenGL for inter-
active visualization, and photorealistic results were rendered using
Blender. We used a computer with an i9-10850k, RTX 3090, and
32GB of memory to generate all models presented in this work.

We employ the method of Runions et al. [2007] based on parallel
transport frames to generate leaf positions and orientations. We
apply a rotation to the local frame of the branch segment to obtain
a new orientation for leaf geometries. The geometry of a leaf is
defined as a quad, which is textured using alpha blending.
We used the following parameter value settings to implement

the PBD step. Delta time is set to 0.002 with a damping factor of

6

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

ALGORITHM 1: Algorithm for Volumetric Modeling with
Strands and Profiles
Input: Skeletal graph representing tree topology.
Output: Volumetric model of the tree with detailed branch

structures.
1 Initialization:
2 | Initiate strand particles with a random position at end nodes of

the skeletal graph.
3 for each node 𝑁 in skeletal graph do
4 | Trace strands from 𝑁 to root, positioning along branch paths.
5 end
6 for each branch segment 𝐵 do
7 | Resolve local interactions and non-overlapping strand placement

at 𝐵 (Eqs. 1 and 2).
8 | Employ Particle-Based Dynamics for collision resolution.
9 end

10 Profile Integration:
11 | Apply user-defined or default profiles for cross-sectional shapes.
12 | Adjust strands to adhere to profiles using PBD, aligning with

profile boundary or attractors as necessary.
13 for each particle 𝑝𝑖 in 𝑃 do
14 | if 𝑝𝑖 is outside boundary B then
15 | | Let 𝑞𝑖 be the point in B closest to 𝑝𝑖
16 | | Move 𝑝𝑖 towards 𝑞𝑖 by a factor of 𝛽 :
17 | | 𝑝𝑖 ← 𝑝𝑖 + 𝛽 (𝑞𝑖 − 𝑝𝑖)
18 | else
19 | | for each attractor 𝑎𝑘 in 𝐴 do
20 | | | Move 𝑝𝑖 towards 𝑎𝑘 by a factor of 𝛾𝑘 :
21 | | | 𝑝𝑖 ← 𝑝𝑖 + 𝛾𝑘 (𝑎𝑘 − 𝑝𝑖)
22 | | end
23 | | Let𝑚𝑖 be the closest point on medial axis𝑀 to 𝑝𝑖
24 | | Move 𝑝𝑖 towards𝑚𝑖 by a factor of 𝛿 :
25 | | 𝑝𝑖 ← 𝑝𝑖 + 𝛿 (𝑚𝑖 − 𝑝𝑖)
26 | end
27 end
28 Strand Geometry Generation:
29 | Generate B-spline control points from strand positions.
30 | Create final strand geometry along each branch segment.
31 Finalization:
32 | Assemble complete tree model from all generated branch

segments.
33 end

0.02 to reduce oscillations. The maximum velocity is capped at 60 to
handle cases of overlapping particles and maintain the simulation’s
integrity under intensive scenarios. Particle softness is set to 0.1 for
minimal overlap and energy absorption during collisions. The at-
traction acceleration is kept high at 40,000 to facilitate rapid particle
arrangement. The maximum number of iterations is assigned to five
per particle, balancing the resolution and computational load. The
simulation’s timeout for branching and junction packing is set to
range from 300 to 6,000 steps, depending on the complexity of the
branch internodes. For profiles altered by users (e.g., by providing
contours), the timeout is extended to a range of 1,500 to 10,000 steps
to accommodate additional geometric complexities. For the results

Fig. 8. Having a single skeletal graph strand representation (a), the user
can control the separation of branches at bifurcation points using small
values for 𝛼 resulting in early separation (b), medium values for medium
separation (c), and high values for 𝛼 resulting in late separation (d).

shown in this paper, we distributed between one and five strands
per end node and generated five or more intervals (𝑝 ≥ 5) per
branch segment. Finally, we apply Laplacian mesh smoothing for
the final mesh to remove mesh artifacts.

6.1 Algorithm Details
We provide the pseudo-code of our interactive strand-based method
for generating tree models in Alg. 1. We first initialize the PG (lines
1-9), then we compute the positions of the strand particles (lines
10-27), and finally, we compute the geometry of strands (lines 28-
33). Please note that the symbols used in the description of the
pseudo-code are: 𝑞𝑖 the closest point on B to 𝑝𝑖 , used for aligning
particles outside the boundary; the coefficient 𝛽 controls the rate
at which particles outside B are moved towards 𝑞𝑖 . For particles
inside B, 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} denotes the set of attractor points
that exert an influence on the particles, with 𝛾𝑘 being the individual
influence coefficients for each attractor point 𝑎𝑘 ; The medial axis of
the profile is represented by𝑀 , and𝑚𝑖 is the closest point on𝑀 to
𝑝𝑖 , with 𝛿 as the coefficient determining the influence of𝑀 on the
particles’ movement. Finally, the updated position of a particle after
adjustment is given by 𝑝𝑖 .

Particles in the system move at relatively low speeds during the
PBD collision resolution step. Therefore, we do not use substep or
continuous collision detection to improve the stability and accuracy
of the simulation, which requires more calculation time. The num-
ber of steps in our implementation is user-specified. Higher step
numbers allow the modeling of smoother branch shapes.

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

Fig. 9. Closeups of trunks for a tree model with a fixed number of nodes
(21K) with one (b,d) and four strands per end node (a, c). Using more strands
gives a smoother and more separated branch appearance.

6.2 Results
User-defined Profiles. Our framework allows users to sketch 2D pro-
files for backplanes of individual nodes interactively. This allows
for the generation of a variety of different branch shapes with our
strand-based model. In Fig. 13a and b, we show a tree with elongated
trunks from two perspectives. By sketching a c-shaped profile, users
can model cavities Fig. 13c. Users can model complex inosculations
Fig. 13d and e if multiple profiles are provided. Precise control over
profiles becomes particularly important when designing the shape
of mature trees, which are often characterized by intricate trunk
shapes Fig. 16.
Strand-based Control of Branch Shape. Our strand-based model

relies on a few parameters, one of them is the maximum number
of PBD steps during the strand particle packing step. By selecting
different values, our method can express a variety of branching
point shapes. In Fig. 14c-f, we show the same branching point in a
tree model once with a low number of maximum steps (c, d) and
a high number of steps (e, f). The branches separate earlier in the
former and later in the latter, leading to visibly different yet plausible
organic shapes of branches.

Ablation Study. Our volumetric approach considerably increases
the realism and controllability of branch shapes. Fig. 10 shows a
comparison to Li et al. [2023] who use generalized cylinders to
compute the tree mesh. For the same skeletal graph, our method
produces more detailed and realistically bent branch shapes (Fig. 10,
right). In contrast, a method based on generalized cylinders produces
less natural branch shapes (Fig. 10, left).

Fig. 10. Comparison of our method (right) with the generalized cylinder
method (left) by Li et al. [2023]. The tree model used to calculate the two
meshes depends on the same skeletal graph. Our method produces more
complex and natural-looking branch shapes.

Branch Point Modeling. The PBD-based mesh generation allows
the user to specify the shape of a branch bifurcation, which is an
important aspect of accurately representing detailed tree forms [Gal-
braith et al. 2004]. The tree models in this example use the same
skeletal graph and strand model (Fig. 8a), but the shape is controlled
by a single parameter. Specifically, we use the parameter 𝛼 to de-
termine a threshold controlling the removal of triangles based on
their edge lengths during the Delaunay triangulation. A low value
for 𝛼 specifies an early separation of the mesh branches as shown
in Fig. 8b. Increasing the values of 𝛼 delays the separation (Figs. 8c
and d) as observed in many oak or elm trees.
Complex Examples. The combination of procedural modeling of

tree development and our detailed volumetric representation al-
lows the synthesis of a large variety of plausible shapes. In Fig. 11,
we demonstrate our framework’s capability to construct diverse
tree architectures. Fig. 11a exemplifies how the Interactive Invigo-
ration operator can guide the development of branches, allowing
users to influence tree growth actively. Variations in naturalistic
tree responses are evident in Fig. 11b, c, where the Twisting opera-
tor is employed. Fig. 11d showcases a complex branching structure
that can be achieved by carefully applying user-defined profiles. In
Fig. 11e, we show the design of an unusual tree shape by employing
a combination of the Twisting operator and sketched profiles. A
Joshua tree’s stark and characteristic shape is captured in Fig. 11f,
highlighting the framework’s versatility. Fig. 11g, h depict the com-
plex and mature growth patterns that our system can replicate. In
Fig. 14a, b, we use a combination of the Invigoration and Twist-
ing operators to craft a tree with a split trunk, demonstrating the
detailed control our framework offers for tree modeling.

6.3 Runtime Performance
We analyzed the computational performance of our tree generation
method across various metrics such as number of nodes, strands,
particles, profile calculation time (s), and mesh generation time (s) as
shown in Table 1. The data indicates that the time required for pro-
file calculation and meshing increases as tree complexity increases.

8

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 11. An array of complex tree structures generated by our interactive tree modeling framework. (a) Shows user-guided branch growth through the
Interactive Invigoration operator. (b) and (c) features the dynamic forms achievable with the Branch Twisting Operator. (d) Highlights the intricate branching
structure of a mature tree model. (e) Features an unusual tree form achievable through user-defined profiles. (f) Captures the stark silhouette of a Joshua tree.
(g) represents a result achieved using the Adventitious Bud Formation and Twisting operator to generate a Juniper tree model. (h) Illustrates the application of
both the invigoration and user-defined profiles to model a tree with a split trunk.

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

Table 1. Performance characteristics of tree models with different levels of
complexity. PC = Profile calculation time in seconds; M = time in seconds
for computing a surface mesh.

Figure # Profile Nodes # Strands # Particles PC M

Fig. 9a 21,345 6,240 564,632 3,38 2.75
Fig. 9b 21,354 24,960 2,258,528 13,28 10.31
Fig. 12a 5,668 2,149 95,976 0.81 0.48
Fig. 12b 15,219 4,541 357,276 2.13 1.51
Fig. 12c 21,425 6,252 585,672 3.29 2.38
Fig. 12d 32,256 9,389 1,079,838 5.26 4.16
Fig. 12e 41,470 12,206 1,602,270 8.73 6.09

For example, trees with 5,668 nodes took approximately 0.81 sec-
onds for profile calculations and 0.48 seconds for meshing, whereas
trees with 41,470 nodes required around 8.73 seconds for profile
calculations and 6.09 seconds for meshing. The number of required
strands scales approximately linearly with the number of nodes for
an experiment on the temporal progression of tree development
(Fig. 12). We also evaluated the runtimes for a tree model with a fixed
node number (21K) and the increasing number of strands introduced
per endpoint ranging from 1 to 4 (Fig. 9). Trees with four strands per
end node exhibit the highest complexity, totaling 24,960 strands and
requiring over 13 seconds for profile calculations and 10 seconds
for meshing. Here, we observe an approximately linear increase in
mesh generation and profile computation times. The total time to
generate a tree depends on the mesh and profile computation times
and the time needed for an artist to design a tree. For the results in
this paper, we used between 30 seconds and 10 minutes to design
tree models.

7 DISCUSSION AND LIMITATIONS
While innovative and robust, our method also has limitations. For
one, the detailed and realistic modeling of trees, especially when
considering secondary growth and complex branching structures,
can be computationally intensive. We refrained from modeling the
annual growth of the cambium in a temporally coherent manner
and chose a profile-driven approach instead. This approach forfeits
the biological plausibility and accuracy of describing tree growth
phenomena for interactive control. Second, every time the skeletal
graph changes, all strands have to be recomputed, and further code
optimizations could be implemented to alleviate this problem. Third,
modeling individual trees with high fidelity is feasible, but scaling
this to large environments like forests can be challenging. This in-
cludes not only the computational complexity but also ensuring
that the ecological interactions and variations across a large number
of trees are realistically represented. While our model simulates
interactions with environmental factors, the dynamic integration of
these factors (like changing weather, seasons, or soil conditions) is
complex and may not always yield realistic results. Other methods
employ mesh refinement approaches to introduce detailed botanical
features to tree models [Bloomenthal 1985; Xie et al. 2015]. A volu-
metric approach like ours, while computationally more demanding,
allows us to model more complex branch geometries, including
holes, as shown in Figs. 2 and 14.

Fig. 12. Tree models of different levels of complexity: 2K strands (a), 4K
strands (b), 5K strands (c), 9K strands (d), 12K strands (e). More details for
each of these models are provided in Tab. 1.

8 CONCLUSIONS AND FUTURE WORK
We presented a novel approach for tree modeling in computer graph-
ics, addressing the need for realistic and biologically plausible tree
forms in various applications. Compared to existing approaches, we
focus on both primary and secondary growth of trees, introducing
the concepts of interactive invigoration and strand-based modeling,
along with a robust meshing algorithm and a set of tree editing op-
erators. The strand-based modeling approach, a significant advance-
ment over traditional methods, allows for the detailed representation
of branch volumes. This technique captures the natural appearance
of branching points, such as twists in branch shapes. The meshing
algorithm we introduced efficiently leverages the strand-based rep-
resentation to obtain detailed structural models in a graphics-ready
state. Finally, our novel set of tree editing operators enables users to
interactively design and modify tree forms while preserving their
structural and biological plausibility. This feature is particularly
important for applications requiring specific tree shapes, such as
urban planning or forestry simulations.

Given the current state of our work, there are several avenues for
future research: For one, we aim at quantitative comparisons with
observations of real trees to validate the results of the strand-based
model, i.e., assessing how approximate our methods for describ-
ing wound healing or burl formation are. Second, integrating our
tree modeling approach with dynamic environmental simulation
tools could lead to even more realistic models. This includes the
interaction of trees with varying weather conditions, soil types,
and interaction with other flora and fauna. Finally, incorporating
machine learning techniques could further refine the procedural
generation of tree models, potentially allowing for the automated
generation of species-specific traits based on a set of biological
parameters.

ACKNOWLEDGMENTS
This research was supported by the Foundation for Food and Agri-
culture Research Grant ID: 602757 to Benes. The content of this
publication is solely the responsibility of the authors and does not
necessarily represent the official views of the Foundation for Food
and Agriculture Research. This project was also sponsored by USDA
NIFA, Award #2023-68012-38992 grant “Promoting Economic Re-
silience and Sustainability of the Eastern U.S. Forests” to Benes.
This work is based upon efforts supported by the EFFICACI grant,
#NR233A750004G044, under USDA NRCS to Benes. The views and
conclusions contained herein are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government or NRCS. The U.S. Government
is authorized to reproduce and distribute reprints for governmental
purposes, notwithstanding any copyright annotation therein.

10

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 13. Branch profile sketches: our method enables users to sketch branch profiles for any node in a branch graph. Possible profiles range from single
branches and branches with cavities to split branches.

Fig. 14. (a, b): Example of strand-based tree shape editing: complex tree models can be generated conveniently by interactively injecting vigor and drawing
branch profiles. (c-f): our strand-based modeling together with the meshing procedure enables generating different branch bifurcations.

Fig. 15. An old tree generated with our framework. Using strand-based
modeling allows for defining plausible branching structures and complex
secondary growth.

REFERENCES
F. Anastacio, M. C. Sousa, F. Samavati, and J. A. Jorge. 2006. Modeling Plant Structures

Using Concept Sketches (NPAR ’06). ACM, 105–113.
M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Computer

Graphics and Applications 4(5) (1984), 10–34.
O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering

of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55–67.
O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. 2008. Skeleton extraction

by mesh contraction. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article

44, 10 pages. https://doi.org/10.1145/1399504.1360643
J. Bender, M. Müller, and M. Macklin. 2017. A survey on position based dynamics, 2017.

In Proceedings of the European Association for Computer Graphics: Tutorials (Lyon,
France) (EG ’17). Eurographics Association, Goslar, DEU, Article 6, 31 pages.

B. Benes, N. Andrysco, and O. Št’ava. 2009. Interactive Modeling of Virtual Ecosystems.
In Proceedings of the Fifth Eurographics Conference on Natural Phenomena (Munich,
Germany) (NPH’09). Eurographics Association, Goslar, DEU, 9–16.

J. Bloomenthal. 1985. Modeling the mighty maple. SIGGRAPH Comput. Graph. 19 (July
1985), 305–311. Issue 3. https://doi.org/10.1145/325165.325249

D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction
and Synthesis of Dense Foliage. ACM TOG 32, 4, Article 74 (2013), 74:1–74:10 pages.

X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. 2008. Sketch-Based Tree
Modeling Using Markov Random Field. ACM TOG 27, 5, Article 109 (Dec. 2008).

M. Cieslak, U. Govindarajan, A. Garcia, A. Chandrashekar, T Hädrich, A. Mendoza-
Drosik, D. L. Michels, S. Pirk, C.-C. Fu, and W. Palubicki. 2024. Generating Diverse
Agricultural Data for Vision-Based Farming Applications. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshop: Vision for Agriculture
(2024).

C. Galbraith, L. Mündermann, and B. Wyvill. 2004. Implicit Visualization and Inverse
Modeling of Growing Trees. Computer Graphics Forum 23, 3 (2004), 351–360.

J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and H. Huang. 2020.
Inverse Procedural Modeling of Branching Structures by Inferring L-Systems. ACM
Trans. Graph. 39, 5, Article 155 (June 2020), 13 pages. https://doi.org/10.1145/3394105

R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees.
Comput. Graph. Forum 28, 2 (2009), 523–532.

T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring
of Climbing Plants. Comput. Graph. Forum 36, 2 (2017), 49–61.

T. Hädrich, J. Scheffczyk, W. Palubicki, S. Pirk, and D. L. Michels. 2020. InteractiveWood
Fracture. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation -
Posters. The Eurographics Association.

M. Holton. 1994. Strands, Gravity and Botanical Tree Imagery. Computer Graphics
Forum 13(I) (1994), 57–67. https://doi.org/10.1111/1467-8659/1310057

11

https://doi.org/10.1145/1399504.1360643
https://doi.org/10.1145/325165.325249
https://doi.org/10.1145/3394105
https://doi.org/10.1111/1467-8659/1310057

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Li, et al.

Fig. 16. A number of different tree species generated with our framework ranging from hazel (a), elm (d), and poplar (f) trees to different spruces (c, g) and
acacia trees (b, e). Our method is able to generate plausible shapes for younger tree models (c, f) as well as older trees with more defined trunks (a, b, c, e, g).

H. Honda. 1971. Description of the form of trees by the parameters of the tree-like body:
effects of the branching angle and the branch length on the shape of the tree-like
body. Journal of Theoretical Biology 31 (1971), 331–338.

T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and
Subsequent Detail Editing in Flower Modeling. Comput. Graph. Forum 25, 3 (2006),
617–624.

J. Kałużny, Y. Schreckenberg, K. Cyganik, P. Annighöfer, S. Pirk, D. Michels, M. Cieslak,
F. Assaad, B. Benes, and W. Palubicki. 2024. LAESI: Leaf Area Estimation with
Synthetic Imagery. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop: Synthetic Data for Computer Vision (2024).

E. Kleiberg, H. Van de Wetering, and J. Van Wijk. 2001. Botanical visualization of huge
hierarchies. In IEEE Symposium on Information Visualization, 2001. INFOVIS 2001.
IEEE, 87–94.

J. Kratt, M. Spicker, A. Guayaquil, M. Fiser, S. Pirk, O. Deussen, J. C. Hart, and B. Benes.
2015. Woodification: User-Controlled Cambial Growth Modeling. Comput. Graph.
Forum 34, 2 (May 2015), 361–372.

J. J. Lee, B. Li, and B. Benes. 2024. Latent L-Systems: Transformer-Based Tree Generator.
ACM Trans. Graph. 43, 1, Article 7 (2024), 16 pages.

B. Li, J. Kałużny, J. Klein, D. L. Michels,W. Pałubicki, B. Benes, and S. Pirk. 2021. Learning
to Reconstruct Botanical Trees from Single Images. ACM Transaction on Graphics
40, 6, Article 231 (12 2021).

B. Li, J. Klein, D. L. Michels, B. Benes, S. Pirk, and W. Pałubicki. 2023. Rhizomorph: The
Coordinated Function of Shoots and Roots. ACM Trans. Graph. 42, 4, Article 59 (jul
2023), 16 pages.

C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating
Moving Trees from Video. ACM TOG 30, 6, Article 127 (2011), 127:1–127:12 pages.

Y. Li, X. Fan, N. J. Mitra, D. Chamovitz, D. Cohen-Or, and B. Chen. 2013. Analyzing
Growing Plants from 4D Point Cloud Data. ACM TOG 32, 6, Article 157 (2013).

B. Lintermann and O. Deussen. 1996. Interactive Modelling and Animation of Branching
Botanical Structures. In Computer Animation and Simulation’96 (Springer Computer
Science). Springer–Verlag Wien New York, 139–151.

Y. Liu, J. Guo, B. Benes, O. Deussen, X. Zhang, and H. Huang. 2021a. TreePartNet: Neural
Decomposition of Point Clouds for 3D Tree Reconstruction. ACM Transaction on
Graphics 40, 6, Article 232 (Dec. 2021), 16 pages.

Z. Liu, K. Wu, J. Guo, Y. Wang, O. Deussen, and Z. Cheng. 2021b. Single Image Tree
Reconstruction via Adversarial Network. Graphical Models 117 (2021), 101115.

Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011.
Texture-lobes for tree modelling. In ACM SIGGRAPH 2011 papers (Vancouver, British
Columbia, Canada) (SIGGRAPH ’11). ACM, New York, NY, USA, Article 53, 10 pages.

S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: Interac-
tive Procedural Modeling of Trees on a Tablet. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling (Annecy, France) (SBIM ’12).
Eurographics Association, Goslar, DEU, 107–120.

F. Maggioli, J. Klein, T. Hädrich, E. Rodolà, W. Pałubicki, S. Pirk, and D. L. Michels. 2023.
A Physically-inspired Approach to the Simulation of Plant Wilting. In SIGGRAPH
Asia 2023 Conference Papers (SA ’23). ACM, Article 66, 8 pages.

R. Měch and P. Prusinkiewicz. 1996. Visual Models of Plants Interacting with Their
Environment. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’96). Association for Computing Machinery,
New York, NY, USA, 397–410. https://doi.org/10.1145/237170.237279

M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics.
Journal of Visual Communication and Image Representation 18, 2 (2007), 109–118.

B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-Based Tree-Modeling
using Particle Flows. ACM Trans. Graph. (Proc. of SIGGRAPH 2007) 26, 3 (2007).

T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban Forestry.
ACM Trans. Graph. 41, 2, Article 20 (March 2022), 18 pages.

12

https://doi.org/10.1145/237170.237279

Interactive Invigoration: Volumetric Modeling of Trees with Strands Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using
Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses (San
Diego, California). ACM, Article 26.

P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees.
SIGGRAPH Comput. Graph. 20, 4 (1986), 55–64. https://doi.org/10.1145/15886.15892

W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz.
2009. Self-organizing tree models for image synthesis. ACM Trans. Graph. 28, 3
(2009), 1–10.

S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood
Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov.
2017), 12 pages.

S. Pirk, T. Niese, O. Deussen, and B. Neubert. 2012a. Capturing and Animating the
Morphogenesis of Polygonal Tree Models. ACM Trans. Graph. 31, 6, Article 169
(Nov. 2012), 10 pages.

S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing
Stress Response for Developmental Tree Models. ACM TOG 33, 6, Article 204 (2014),
204:1–204:11 pages.

S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O Deussen.
2012b. Plastic Trees: Interactive Self-adapting Botanical Tree Models. ACM Trans.
Graph. 31, 4, Article 50 (July 2012), 10 pages.

P Prusinkiewicz. 1986. Graphical Applications of L-systems. In Proceedings on Graphics
Interface ’86/Vision Interface ’86 (Vancouver, British Columbia, Canada). Canadian
Information Processing Society, Toronto, Ont., Canada, Canada, 247–253.

P. Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants.
Springer-Verlag New York, Inc.

L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang. 2006. Image-Based Plant
Modeling. ACM TOG 25, 3 (July 2006), 599–604.

E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree
Animation. IEEE TVCG 24, 5 (2018), 1717–1727.

W. T. Reeves and R. Blau. 1985. Approximate and Probabilistic Algorithms for Shading
and Rendering Structured Particle Systems. SIGGRAPH Comput. Graph. 19, 3 (July
1985), 313–322.

A. Runions, M. Fuhrer, B. Lane, P. Federl, A. Rolland-Lagan, and P. Prusinkiewicz. 2005.
Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24, 3 (2005),
702–711.

A. Runions, B. Lane, and P. Prusinkiewicz. 2007. Modeling Trees with a Space Colo-
nization Algorithm. (2007), 63–70. https://doi.org/10.2312/NPH/NPH07/063-070

H. Shao, T. Kugelstadt, T. Hädrich, W. Pałubicki, J. Bender, S. Pirk, and D. L. Michels.
2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.

O. Stava, S. Pirk, J. Kratt, B. Chen, R. Mech, O. Deussen, and B. Benes. 2014. Inverse
Procedural Modelling of Trees. Computer Graphics Forum (2014), n/a–n/a.

P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM
TOG 27, 5, Article 108 (2008), 7 pages.

B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics.
ACM Trans. Graph. 36, 4, Article 135 (jul 2017), 13 pages.

J. Weber and J. Penn. 1995. Creation and Rendering of Realistic Trees. In Proceedings
of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’95). ACM, New York, NY, USA, 119–128. https://doi.org/10.1145/218380.
218427

J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new
paradigm for fast sketch-based design of trees. Comput. Graph. Forum 28, 2 (2009),
541–550.

S.-K.Wong and K.-C. Chen. 2015. A Procedural Approach toModelling Virtual Climbing
Plants With Tendrils. Comput. Graph. Forum (2015).

K. Xie, F. Yan, A. Sharf, O. Deussen, H. Huang, and B. Chen. 2015. Tree modeling with
real tree-parts examples. IEEE Transactions on Visualization and Computer Graphics
(2015).

H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling of
laser-scanned trees. ACM TOG 26, 4 (2007), Article 19, 13 pages.

Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM
TOG 32, 4, Article 84 (2013), 12 pages.

X. Zhou, B. Li, B. Benes, S. Fei, and S. Pirk. 2023. DeepTree: Modeling Trees with
Situated Latents. IEEE Transactions on Visualization and Computer Graphics (2023),
1–14.

13

https://doi.org/10.1145/15886.15892
https://doi.org/10.2312/NPH/NPH07/063-070
https://doi.org/10.1145/218380.218427
https://doi.org/10.1145/218380.218427

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Method
	4.1 Tree Graph Development
	4.2 Volumetric Modeling with Strands
	4.3 Strand-based Mesh Generation

	5 Interactive Tree Modeling
	6 Implementation and Results
	6.1 Algorithm Details
	6.2 Results
	6.3 Runtime Performance

	7 Discussion and Limitations
	8 Conclusions and Future Work
	Acknowledgments
	References

