
Image Stylization with a Painting Machine Using Semantic Hints

Thomas Lindemeiera, Sören Pirka, Oliver Deussena

aDepartment of Computer and Information Science, University of Konstanz, Germany

Abstract

In this paper we present and evaluate painterly rendering techniques that work within a visual feedback loop of
eDavid, our painting robot. The machine aims at simulating the human painting process. Two such methods and their
semantics-driven combination are compared for different objects. One uses a predefined set of stroke candidates, the
other creates strokes directly using line integral convolution. The aesthetics of these methods are discussed and results
are shown.

Keywords: Non-photorealistic rendering, painterly rendering, painting machine, visual feedback, image stylization

1. Introduction

In this paper, we present our painting machine,
eDavid, which was built two years ago for creating artis-
tic depiction with visual feedback. Using eDavid, we
can obtain a wide variety of painting styles. In this pa-
per, we compare and evaluate two of these styles based
on their aesthetic properties.

eDavid is a one-arm industry robot that we modified
and equipped for painting purposes (see [1] and figure
1). A camera observes the canvas, their images are com-
pared with a given target function (usually an image,
but could be a more complex representation such as a
3-d scene). New strokes are generated until the target
function is sufficiently approximated by the paint on the
canvas. Our rationale of building an industrial robot in-
stead of using a pen plotter comes from the fact that with
an industrial robot we are not restricted to use only one
type of physical instrument to create paintings. Our cur-
rent implementation of eDavid can successfully use any
brush or pencil. It can paint with a number of physical
colors ranging from ink to oil paint.

Furthermore, the feedback loop allows us to deal with
the inaccuracies of brush-stroke rendering and the un-
predictability of color interactions on a canvas. During
our tests this behavior proved to be very important since
it allows us not only to use quite inaccurate simulation
techniques but can also easily be adapted to different

Email addresses: thomas.lindemeier@uni-konstanz.de
(Thomas Lindemeier), soeren.pirk@uni-konstanz.de (Sören
Pirk), oliver.deussen@uni-konstanz.de (Oliver Deussen)

strategies for placing strokes. This lets us realize vari-
ous painting styles.

The whole eDavid experiment aims at approximating
the manual painting processes by a machine. We want
to find out to what extent we are able to produce artis-
tically looking paintings. In art history it is also well
known that physical limitations, e.g. interactions be-
tween ink and canvas, influence the formation of styles.
We are looking for new forms of visual representations
that are especially suited for painting machines; also we
want to find out how to introduce high-level semantic in-
formation into the process. In recent years methods for
image understanding developed a lot, so painting ma-
chines of the future could “know” what they draw and
automatically adapt their painting strategy.

Since eDavid approximates the target by a sequence
of strokes, we have to adapt methods for painterly ren-
dering to work within a feedback environment: based
on the target function and the currently distributed paint
on the canvas a sequence of new brush strokes has to be
computed that, if realized by the robot, creates a better
approximation of the target by the canvas. In this sense
greedy optimization is performed.

In this paper we compare two initial techniques for
such stroke placements. In both cases we assume the
target function to be a gray-scale image, thinned black
ink serves as paint. Furthermore, the capability of each
method, representing different objects is discussed. The
result of the combination of both methods with respect
to the semantic of objects is presented and compared to
the results of each of the initial methods. An in depth
exploration of color (and other media) is left for future

Preprint submitted to Computers & Graphics January 14, 2013

(a) (b) (c)

Figure 1: System setup of the painting machine: a) robot with canvas and camera; b) repository for colors and brush tools (front row), in the back
brush washing facility; c) brush tool and distance sensor.

works; however, an early result is shown in the last sec-
tion. Using black ink simplifies the setup and the needed
comparisons between target and canvas: color calibra-
tion can be simplified and we do not have to take care
about the 3-d structure of the paint layers. Nevertheless,
our framework is already able to work with color; which
is why we mention color issues at some places.

The visual quality of the two initial algorithms de-
pends on the target image. For some objects a set of
short and straight strokes (we call them stroxels) is bet-
ter suited due to their ability to create different visual
appearances than a set of curved strokes and vice versa.
After reviewing related works and describing our paint-
ing machine we compare their ability to represent differ-
ent classes of objects. In addition, the semantics-driven
and the region-based combination of both methods is
demonstrated. Results are given and discussed, future
works are outlined.

2. Related Work

There is vast majority of publications in the field of
non-photorealistic rendering and computational aesthet-
ics work on simulating the painting process. Since we
deal with a real machine, we firstly cite methods for
painterly rendering that are applicable within a feedback
loop. Then we refer to drawing machines and robots
that artists use for producing different kinds of paint-
ings.

Painterly rendering was introduced in 1990 by Hae-
berli [2] who created artistic images using the mouse as

a virtual brush. Hertzmann [3] later published a gen-
eral approximation scheme for painterly rendering that
starts with a rough approximation of a given image that
is refined by smaller and smaller brush strokes in sub-
sequent steps. We use this idea for representing images
with a set of predefined stroke directions and lengths
(stroxels). In contrast to Hertzmann we therefore limit
ourselves to a fixed set of lengths and widths.

While the above algorithm just represents the col-
ors of the image, for many styles it is also important
to conserve salient image features such as edges or ob-
ject boundaries. Hays and Essa [4] introduce a set of
layers that refine a painterly representation at impor-
tant places. Collomosse and Hall [5] use a mapping of
strokes to geometric elements of different width accord-
ing to the image salience. Both algorithms work well
for NPR in general but are not easy to implement within
our sequential feedback loop since they reorder strokes.

Kang et al. [6] compute image gradients, smooth the
resulting vector field and use it to track important im-
age features by Line Integral Convolution (LIC). The
method enables them to create smooth outlines even
for low quality input. We use their method to produce
image-guided strokes. In contrast to their approach we
do not just draw outlines but try to represent the whole
gray-scale content of the image by such strokes.

An important aspect, especially when colors are used,
is the ordering of colors. Northam et al. [7] explore
different strategies such as painting lighter colors over
darker ones or vice versa to represent features optimally.
Since we currently use colors only to a limited extent,

2

we do not alter the order but will take this into account
in the future.

In the past, a number of machines were built to cre-
ate drawings mechanically. After early attempts in the
19th century, Jean Tinguely (1925-1991, see [8]) cre-
ated a number of sophisticated machines that were able
to create complex stroke patterns. In contemporary
art, Harold Cohens Aaron (see [9]) is the most famous
robot painting project, ongoing for many decades now.
However, the artist did not focus on faithfully repre-
senting image content but to realize abstract computer-
generated artworks. In the early times he built and used
a sophisticated painting machine, but recently he moved
to ordinary printers.

Early pioneers of computer graphics used plotters
(e.g. Frieder Naake, cf. [10]) and also robots (e.g.
Ken Goldberg, [11]) to create art works, numerous oth-
ers could be listed here. Today, a number of artists
uses such machines, but typically their main purpose is
to create abstract and artistic paintings. Ben Grosser
[12] and Holger Baer [13] are typical representatives.
Zanelle [14] by van Arman is a specialized plotter to
create pop-art like paintings and also somewhat more
realistic portraits. An interesting painting machine is
Vangobot [15], also a specialized plotter, that uses a
paint mixing hardware to create color variations. To our
knowledge, none of the mentioned approaches uses a
feedback loop for optimization.

The segmentation of images to acquire semantic in-
formation from a given image has been of interest for
many years [16, 17]. The knowledge of objects within
a scene allows overcoming the limitation of applying
NPR algorithms to the entire image and allows deci-
sions to be based on low-level characteristics like col-
ors or gradients. Recently Zeng et al. [18] presented
a semantics-driven approach for stroke-based painterly
rendering. Their approach allows interactively decom-
posing an input image into a hierarchy of its compo-
nents which is then used to apply different painterly ren-
dering styles.

More recently Deussen et al. [19] presented two dif-
ferent visual feedback dependent painting styles to use
with the eDavid System. They discovered, that each
style produces different results on the same input image
considering aesthetics. This leads to the conclusion, that
the choice of the painting style should depend on the
painted object. In addition to their approach this paper
describes the step to combine these painting styles to
increase the overall aesthetics. Two approaches of such
combination are presented and results are shown.

3. System

As shown in Figure 1, eDavid consists of a number
of components. The robot itself is equipped with a spe-
cialized picking device for grasping brush tools. Five
different brushes can be used in parallel by the system
(see Figure 1(b), front row).

The colors are stored in a repository, so far we are
able to use 24 different colors. The robot accesses a
color container by mechanically opening the cover plate
and dipping the brush into the color. A cleaning facility
(Figure 1(b), background right) is needed when chang-
ing the paint color of a brush.

Since painting with brushes needs precise interaction
we measure the surface characteristics of the canvas us-
ing a distance sensor which is mounted on the robot
arm. Besides working with (slightly) curved canvases
this allows us also to compensate for mechanical toler-
ances of the robot while moving the brush over the can-
vas. Such tolerances are in the sub-millimeter range but
still visible for image styles with long strokes and fine
brushes. Due to restrictions in the sensor (color depen-
dency of the precision) we so far measure the distance
only before we start painting for the entire canvas.

The visual feedback of the system is created by a
Canon EOS 5D Mark II SLR with a 21MPixel sensor
and a fixed 50mm lens. This provides us with a res-
olution of about 1mm on the canvas. Two specialized
fluorescent tubes with polarization filters are used to il-
luminate the canvas, also the SLR is equipped with a
polarization filter. Selecting the polarization direction
perpendicular to the canvas avoids specular highlights
of the paint color.

3.1. Software Setup

The robot is controlled by a assembler-like language,
therefore we built a server application that controls the
machine and accepts XML commands. Most com-
mands are plotter-like instructions such as pen selection
and drawing, but also specialized commands for mea-
suring the canvas and the handling of brushes and colors
have been implemented.

A second server is used for the camera. The Canon
SDK allows us to control all necessary functions from
the computer. Images are created in XYZ color space
and are calibrated by using geometric calibration pat-
terns and color sheets. The geometric calibration is
within the range of a pixel, the color calibration is about
5%, which is sufficient for our current applications but
has to be enhanced in the future.

3

4. Optimization via Visual Feedback

A typical application connects to the robot server
and the camera server. Based on the target function
and stroke placement strategy, the application creates
a number of new strokes. The strokes are realized by
sending them to the robot server; after painting, the
camera server is invoked to obtain the canvas image.

For producing paintings, a number of practical con-
straints have to be taken into account. Colors react dif-
ferently to overdrawing when they are still wet. To let
them dry we avoid painting on the same place within
a given time interval. Colors such as inks are filled
into specialized brush pens that allow the robot to draw
continuously without dipping the brush into an ink con-
tainer. For others, such as oil color, only short strokes
can be realized after dipping. These characteristics are
stored by the robot server in brush and paint color pro-
files.

4.1. General Optimization Strategy

In each iteration, a number of brush strokes is gen-
erated to minimize the difference between canvas and
target image. For the computation of the best approx-
imation, the application has to anticipate the effect of
painting a new stroke on the canvas. In our optimization
program we implement this based on OpenGL graphics
using a brush texture and opacity values that have been
determined for each color. A stroke path is generated
and the color application is simulated for all pixels un-
der the stroke. Based on this simulation the quality of
the stroke is computed, it determines how effective the
stroke minimizes the difference between canvas and tar-
get. For a large number of stroke candidates the quality
is computed and the best candidates are realized by the
machine.

Predefined stroke candidates: A simple implemen-
tation of this strategy is to predefine a set of stroke can-
didates. Such candidates are typically short stroke paths
in different orientations. For a position within the image
all candidates are translated to that position, the quality
is computed and the stroke with the highest local qual-
ity is selected and stored. For a large number of random
positions this is repeated, the strokes with the globally
highest quality are drawn within an iteration step.

Figure 2 shows the application of a static stroke set
for the portrait of a woman. A set of 180 predefined
stroke paths of the same length and width but different
orientations was given. After optimization, the selected
strokes approximate the given gray scale image quite
well. In subfigure (c) the paper was purposely crimped
to introduce an error to the realization by the robot.

(a) (b) (c)

Figure 2: Painting with predefined stroke candidates: a) input image
(original: Dominik Fusina, www.flickr.com) ; b) approximation with
a predefined set of 180 strokes in different directions that are applied
to positions in the painting that have the highest quality. c) approx-
imation with introduced realization error (thicker strokes are painted
on the right side of the face), the process adapts to this and reduces
the stroke density within this area.

Strokes on the right side of the portrait are drawn with
larger line width since the brush is closer to the can-
vas here. Due to the visual feedback loop the machine
adapts automatically to this error and the final gray scale
values are similar to the undisturbed version.

Dynamically generated strokes: For a given posi-
tion in the image, a stroke can also be generated dynam-
ically from the image content. As suggested by works
on painterly rendering (cf. [3]) a strategy for directing
strokes is to draw them perpendicular to the image gra-
dient. For each position a path is created, the effect on
the canvas is simulated and the corresponding quality is
computed, candidates with highest quality are realized.
Both methods will be described below.

4.2. Computing Stroke Quality

A number of factors influence the quality for a stroke
candidate. These factors are not only responsible for the
style of the result, but also for the painting strategy, i.e.,
the order in which strokes are painted to form the final
image.

In general, strokes can only be applied at places
where the color difference between target image and
canvas can be lowered by applying a brush stroke with
the selected paint. For gray-scale input this is equivalent
to the gray-scale difference of all pixels under the stroke
being larger than the opacity of an additional layer of
paint, in the chromatic case this has to be measured for
all color channels.

We compute the difference d(T,C) between canvas
image C and target image T and select the regions with
sufficiently high image differences for the given color i.
These regions, we call them di(T,C), are our candidate
regions for adding new brush strokes.

4

As mentioned above, for the practical realization and
for implementing both styles, some factors have to be
considered:

Overdrawing: Often it is not intended to paint wet-
on-wet, the colors may mix in an unpredictable way
or the paper might even crimp due to too much ink.
Therefore regions where strokes have been applied are
avoided for a predefined and color-specific time dura-
tion. This is done by intersecting di(T,C) with a map
R that shows recently painted strokes. The resulting
map Mi = R ∩ di(T,C) specifies the regions where new
strokes can be placed.

Brush size: The width of the brush is a property, that
influences the granularity of the results. Each brush
width can be provided with a weight. This makes it
possible to make specific brush widths more dominant
to increase the usage of a brush width. Detailed input
pictures are better represented with thin strokes, while
pictures with large uniform areas are painted more vi-
sually appealing with thicker strokes. Each brush stroke
sc is provided with a brush weight b(sc).

Proximity: The color (the amount of ink) that is
needed to alter the pixels under a stroke candidate to-
wards the intended color in T should be approximated
optimally by one of the given paint colors. So we com-
pute the average color of those pixels and determine the
closest paint color. The comparison is done on the ba-
sis of the color hue, the average difference in brightness
ci(sc) is an additional factor for the quality of the stroke.

The difference weight ci(sc) for an estimated color i
is then defined as the normalized sum of the differences
of all pixels, that are contained in sc:

ci(sc) =
1
n

n∑
p=0

cap − tp, (1)

with the number of pixels in the stroke n, the target im-
age t and the canvas ca.

4.2.1. Additional Factors for Predefined Strokes
Since this method only generates strokes with ran-

dom directions, some further factors are needed to eval-
uate the orientation of stroke candidates.

Homogeneity: The pixels under a stroke candidate
sc within M should have a large homogeneity h(sc) or a
small color variance, rsp., to be represented effectively
by a single color. This automatically selects strokes per-
pendicular to the image gradient since in this direction
there is a higher probability of having small color vari-
ances. Stroke directions of many painting styles are set
according to this rule.

Orientation: Many painting styles prefer a uniform
orientation of strokes, at least in areas where the im-
age gradient is not too large. Examples are crosshatch-
ings as well as impressionist or expressionist styles. The
orientation of the strokes can therefore be weighted by
a function o(sc) that, e.g., prefers strokes in horizontal
and vertical direction.

The orientation weight o(sc) is calculated as follows:

o(sc) = 2(|cos(α − β)100| − 0.5), (2)

with the initial angle of the brush from the texture α and
the preferred angle β.

Values for orientation and proximity are typically in
conflict and have to be balanced against each other. For
some styles a direction field could be given that lets
strokes follow a predefined pattern.

Our standard method to determine stroke quality for
predefined strokes in a color i is to combine h(sc), o(sc),
b(sc) and ci(sc) and find a path within Mi that maxi-
mizes:

q(sc) = w·h(sc)+(1−w)·o(sc)+ci(sc)+bw·b(sc),(3)

with w, bw ∈ [0..1] being weight factors. More complex
functions could perform a non-linear balancing between
h(sc) and o(sc).

4.2.2. Additional Factors for Dynamically Generated
Strokes

Geometry: The dynamic version of the drawing al-
gorithms as described in [19] generates whirl strokes.
This results from whirls in the vector field. A bigger
smoothing kernel for the vector field suppresses most of
these artifact, but does not remove all of them. A fast
approach to reduce the whirls is to compute the ratio of
the bounding rectangle R of a stroke sc and compare it
to its current length l(sc). The whirls and the improved
results can be seen in figure 3.

The geometric weight g(sc) is then defined as:

g(sc) = 0.5
max
l(sc)

+ 0.5
(
1 −

min
max

)
, (4)

with:

min = min(Rwidth,Rheight)
max = max(Rwidth,Rheight).

Our standard method to determine stroke quality for
dynamically generated strokes in a color i is to combine
b(sc), ci(sc) and g(sc) and find a path that maximizes:

q(sc) = w · g(sc) + (1 − w) · b(sc) + ci(sc), (5)

with w ∈ [0..1] being a weight factor.

5

Figure 3: Predefined (left), dynamically generated (middle) and the improved version of dynamically generated strokes (right).

5. Realization of two Painting Styles

As mentioned above, in this paper we compare two
styles to represent a target image: predefined stroxels
and dynamically generated longer strokes. After we
introduced the two styles in the previous section we
now describe their practical realization to produce robot
paintings. The two styles can be implemented as a gen-
eral drawing algorithm shown in algorithm (1). The al-
gorithms have some steps in common and only differ
in the generation of the strokes in line 5 of the algo-
rithm. Both have different representational abilities and
are well suited for different objects. We will discuss this
in the next section.

5.1. Predefined Strokes

Our predefined set of paths for this style has three dif-
ferent lengths (5,10 and 20mm) and three widths (2mm,
3mm, 4mm) in 60 different directions each. This results
in 540 paths that we test against thousands of random
positions in Mi. The stroke candidates with the highest
quality are selected and painted. We take care that they
do not overlap by using a paint map R.

The upper and lower left paintings of figure 3 show
objects painted with this method. Within each iteration
300 strokes were painted. This number is a good com-
promise between painting speed and quality. The qual-
ity will get better if fewer strokes are painted in each it-
eration, but the painting time will increase enormously.

6

Algorithm 1: Drawing algorithm
Input : input picture
Output: picture on the canvas
Data: target← input picture

1 while enough strokes generated in previous step do
2 feedback← picture from camera;
3 seeds← random seed points;
4 foreach Point p in seeds do
5 generateStroke(p, feedback);
6 end
7 sort strokes according to their scores;
8 draw k-best strokes;
9 end

Increasing the number of strokes per iteration, results in
too much false prediction and overpainting. This leads
to a lower painting quality.

The strokes are determined in sets of five strokes
each. These sets are the top stroke candidates from 1000
random positions according to Eq. (3) with w = 0.5 and
o(cs) = 0 (no orientation preference) and algorithm (2).
Sixty of these sets are painted in a single iteration. If a
stroke was selected, its simulation is added to the maps
R and Mi to prevent the ongoing simulation from over-
drawing strokes within the current iteration.

Algorithm 2: generateStroke - Pre Defined Strokes
Input : point, feedback
Output: evaluated stroke
Data: sw← brush size weight, ow← orientation

weight, pw← proximity weight, hw←
homogeneity score

1 sc← get random brush from pre defined textures;
2 h(sc)← homogeneityScore(stroke);
3 b(sc)← brushScore(stroke);
4 o(sc)← orientationScore(stroke);
5 ci(sc)← differenceScore(stroke);
6 qsc ← hw ·h(sc)+ sw ·b(sc)+ow ·o(sc)+ pw ·ci(sc);

5.2. Dynamically Generated Strokes

In a second method we compute strokes dynamically
on the basis of the image information and its gradient.
The image gradient is computed using a Sobel operator,
subsequently it is filtered to allow larger and smoother
strokes (cf. Kang et al. [6]). This gradient is used to
produce stroke paths that later guide the brush strokes.

In each iteration of the visual feedback loop, a large
number of initial random positions is generated. For

each position a path is generated using Line Integral
Convolution (LIC) of the gradient vector field (see
Cabral et al. [20]). This lets the strokes follow what
Kang et al. call “edge tangent flow”. We use a Runge-
Kutta integration method of fourth order. Uniform re-
gions can be filled with predefined directions or by com-
puting a distance transform [21].

Since with this method many paths are directed to-
wards the edges of the image, we store the already
drawn paths in a separate file. We test if a new path
overlaps existing ones and if the difference at the over-
lap position of the canvas and the target image bright-
ness is less than zero, the path will be cut (see algorithm
(3), line 1-16). If the remaining stroke is shorter than
the minimum length minLen it will be deleted (see al-
gorithm (3), line 17).

The minimum length is set to 5 pixels. Strokes with a
length below 5 pixels tend to look similar to strokes pro-
duced with the previous method. The maximum length
maxLen used for the results in this paper is set to 80 pix-
els. Strokes longer than this have the characteristics to
overpaint themselves. In addition, this maximum stroke
length fits best the size of the painted objects. Within
each iteration 100 strokes instead of 300 were painted,
since this method generates larger strokes than the pre-
vious one to counteract false prediction and overpaint-
ing as mentioned in section 5.1.

In a second step (see algorithm (3), line 18-27) the
remaining part of the path is tested for rendering ac-
cording to Eq. (5). We take Mi and compute the stroke
quality for a stroke with maximum width. Typically the
stroke will overlap with already drawn parts and there-
fore possibly extend outside of Mi, which is penalized
in the quality function. The stroke width is gradually
reduced and the quality is determined again. The width
with maximum quality is added to a candidate list. The
robot realizes the candidates with the highest quality.
The method automatically prevents the machine from
overdrawing, therefore no additional overlap test is ap-
plied here.

5.3. Practical Considerations

Both styles were drawn with a specialized fiberglass
brush pen, a mixture between a brush and a pen. This
brush is very robust and thus convenient for our appli-
cation. We extended its ink cartridge to be able to draw
many thousand strokes without refilling it. This allows
us to paint 2000-3000 strokes per hour. Unfortunately,
higher speeds are prohibitive since the acceleration may
cause unintended spurting of ink on the canvas and re-
duces the accuracy.

7

Algorithm 3: generateStroke - Dynamically Gener-
ated Strokes

Input : point, feedback
Output: evaluated stroke
Data: v← edge tangent flow, minLen← minimum

stroke length, minScore← minimum score,
sw← brush size weight, gw← geometry
weight, pw← proximity weight

1 lp← point;
2 for i← 0 to maxLen/2 do
3 lp← RungeKutta4Forward(v, lp);
4 if f eedbacklp − targetlp > 0 then
5 append copy of lp to stroke;
6 end
7 else break;
8 end
9 lp← point;

10 for i← 0 to maxLen/2 do
11 lp← RungeKutta4Backward(v, lp);
12 if f eedbacklp − targetlp > 0 then
13 prepend copy of lp to stroke;
14 end
15 else break;
16 end
17 if length of stroke < minLen then return;
18 foreach brush size bsize do
19 sc← createBrushStroke(bsize, stroke);
20 b(sc)← brushScore(s);
21 g(sc)← geometryScore(s);
22 ci(sc)← differenceScore(s);
23 qsc ← sw · b(sc) + gw · g(sc) + pw · ci(sc);
24 end
25 choose brush stroke with highest score q;
26 if best q < minScore then reject stroke;
27 else accept stroke

The ink was thinned by a factor of 1:15 to have the
ability of gradually darkening the canvas. Interestingly,
we had many problems with highly thinned ink be-
cause it has the tendency to sublimate and block the pen
brush, which then dries out. All images have a size of
40-60cm and were drawn with approx. 30.000-40.000
brush strokes. Painting took between 10 and 15 hours
depending on the type of brush strokes and the overall
speed of the machine.

Using the set-up described so far, a number of practi-
cal constraints are imposed on the simulation and feed-
back loop of our active visual control:

Termination: For each iteration we record the num-
ber of unsuccessful stroke placements (no stroke with
sufficiently high quality was found within 1000 random
positions). If too many failures occur in a sequence we
stop the iteration (see algorithm 1, line 1). This kind of
stopping criterion seems to be much more stable than
other methods such as root mean squared pixel errors
(RMS) between target image and canvas. This is due to
the fact that a lot of visual noise is created during our
approximation leading to unstable image-based termi-
nation criteria.

Color Calibration: Since color calibration never
works perfectly we have to take into account that the
saturation on the canvas will possibly not reach the ex-
act amount of our prediction. Therefore tolerances have
to be added, otherwise the process would not terminate
and the robot would repeatedly overdraw already satu-
rated regions.

Camera Lens: Though we have a relatively high res-
olution camera, the feedback image is blurred. Small
strokes are sometimes not shown exactly at the right
position and thus can also introduce repeated overdraw.
On the other hand the blur seems to stabilize the itera-
tion. In his approximation scheme Hertzmann [3] also
uses blur for distributing the introduced error. Maybe a
similar effect is introduced here.

Paint Interaction: On the canvas, colors mix in a
much more complex way than we can simulate on the
computer. Therefore we use highly thinned colors to
correct our prediction errors by repeated overdraw dur-
ing the feedback iterations. Even in the gray-scale case
such complex interactions have to be taken into account.

5.4. Visual Analysis

Both algorithms terminate with a valid visual repre-
sentation of the object. It is hard to determine their qual-
ity by means of absolute measurements since their char-
acteristics are too different and the approximations are
too rough to use quantitative pixel-based error metrics
such as RMS.

In Figure 4 we compare a simulation of stroxels and
their practical realization. Typically different strokes
are drawn in our simulation and by the robot within the
feedback loop; in general, however, the gray-scale val-
ues are simulated quite faithfully. Some differences can
be seen though: strokes are darker than assumed, their
width is larger and also their shapes do not really match

8

our simulation. As mentioned above, our feedback loop
allows the process to adapt to the so far created gray-
scale values on the canvas. This limits the overall error.

A very informal investigation of members of the uni-
versity did not yield a clear preference for one of these
styles (please refer to [22] for a review of evaluation
methods based on user studies). While the stroxels look
more “technical”, the dynamically generated strokes
have more curly and “expressionistic” look that might
be better suited for organic forms.

Both styles incorporate enough “artistic” attributes to
be considered “beautiful”. If predefined paths are not
restricted in their direction, the textures of technical ob-
jects such as the building are sometimes rendered too
arbitrary, orientation preferences could help here.

Figure 4: Simulation of stroxels (left) and their practical realization.

6. Semantics

Both introduced algorithms handle the whole picture
uniformly. Each painting technique described in section
4 generates strokes that only depend on the brightness
and gradients. There is no differentiation between ob-
jects. A common technique in the art of painting is to
change the painting style according to objects. Back-
ground is painted with less detail, while the foreground
is painted with thinner strokes to enhance the details
and to let the foreground appear sharper [18]. Humans
recognize semantics of objects and adapt their paint-
ing style. Grass for example is painted with short thin
strokes, which are aligned perpendicular to the ground.
Skin is represented by strokes, which are painted into
one another to construct a uniform area. There are only
a few painterly rendering techniques that take seman-
tics and the differentiation of objects into account. Most
of the algorithms like Hertzmann’s painterly rendering
method [3] just use region information to choose the
size of the brushes used. Since the use of the additional

information about objects could improve painterly ren-
dering results, this suggests a fruitful direction for fu-
ture work, which would be to explore painting different
styles.

6.1. Combination of two Painting Styles

The two styles described in section 4 create different
representations of the objects from the input image. The
short static strokes tend to represent details with more
precision and fill areas in a more natural way. It per-
forms better with technical, clearly defined objects. The
dynamic method produces larger curvier strokes, which
follow the flow of the objects. It creates nice results on
using it with organic objects like trees or hair. The com-
bination of both styles can produce results with a more
appealing overall look.

There are two different approaches to combine the
two methods:

Region based approach: Since the dynamic
method uses the image gradients to generate strokes it
comes to mind to draw only lines, that follow strong gra-
dients. Only lines, whose total gradient magnitude lies
above a fix threshold are drawn. Noisy uniform regions
are rejected and later filled with predefined strokes. The
results are shown in figure 6. The strong edges at the
beak and feathers are drawn with dynamically gener-
ated strokes. The dark areas and details are later filled
with predefined strokes.

Object based approach: A more semantics-driven
approach is to manually select objects and to split the
input image by this objects. Each object is now painted
alone with each corresponding algorithm. It could also
be possible to select objects with the techniques men-
tioned in [18], but at the moment it is sufficient to se-
lect the objects manually. The results are shown in fig-
ure 5. The tree is painted with dynamically generated
strokes. The more flowing style creates the illusion of
wind. The grass is painted with predefined strokes. The
short strokes represent the grass stalks more realistic
and appealing.

9

Figure 5: Predefined (top), dynamically generated (center) and the semantic driven combination (bottom).

10

Figure 6: Predefined (top left), dynamically generated (top right) and the region based combination (bottom).

11

7. Conclusion and Future Work

We presented a mechanical painting system that
works with visual feedback and an optimization loop.
An industry robot is used to move a brush over the can-
vas and a set of specialized tools was developed to en-
able experiments with different brushes and paint col-
ors. Two painting styles and a semantics-driven combi-
nation were investigated and discussed together with a
number of results.

A methodologically interesting question for the fu-
ture would be a numerical evaluation of the painting re-
sults. Appropriate statistical means have to be found to
compute the quality of different artistic representations.

In the future we want to further extend our experi-
ments to colors, an early result is shown in Figure 7.
First trials with oil colors showed that this medium is
quite difficult to handle, different colors have different
viscosity, the handling of brushes is much more com-
plex. Furthermore, the mixing of colors has to be im-
proved, a solution similar to VangoBot [15] could help
here. Nevertheless, we consider our set-up as a good test
bed for many experiments, and in the future we plan to
invite artists to explore the space of creative possibilities
opened by eDavid.

Figure 7: Color Result. Created after a painting of David Lobenberg.

References

[1] O. Deussen, eDavid, a Painting Robot, http://graphics. uni-
konstanz.de/, 2012.

[2] P. Haeberli, Paint by numbers: abstract image representations,
in: Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’90, ACM,
New York, NY, USA, 1990, pp. 207–214.

[3] A. Hertzmann, Painterly rendering with curved brush strokes of
multiple sizes, in: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, SIGGRAPH
’98, ACM, New York, NY, USA, 1998, pp. 453–460.

[4] J. Hays, I. Essa, Image and video based painterly animation,
in: Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering, NPAR ’04, ACM, New
York, NY, USA, 2004, pp. 113–120.

[5] J. P. Collomosse, P. M. Hall, Painterly rendering using image
salience, in: 20th Eurographics UK Conference, Eurographics
Assoc., 2002, pp. 122—128.

[6] H. Kang, S. Lee, C. K. Chui, Coherent line drawing, in:
ACM Symposium on Non-Photorealistic Animation and Ren-
dering (NPAR), pp. 43–50.

[7] L. Northam, J. Istead, C. S. Kaplan, Brush stroke ordering tech-
niques for painterly rendering, in: Computational Aesthetics
2010 Eurographics Workshop on Computational Aesthetics in
Graphics Visualization and Imaging Victoria British Columbia
Canada May 2830 2009, Eurographics Association, 2010, pp.
59–66.

[8] Wikipedia, Tinguely art machines, http://en.
wikipedia.org/wiki/Tinguely, 2012. March 13th, 2012.

[9] H. Cohen, Aaron, http://crca.ucsd.edu/ hcohen/, 2012. March
13th, 2012.

[10] Wikipedia, Frieder Naake, http://de.wikipedia.
org/wiki/Frieder Nake, 2012. March 13th, 2012.

[11] Wikipedia, Ken Goldberg, http://en.wikipedia.
org/wiki/Ken Goldberg, 2012. March 13th, 2012.

[12] B. Grosser, http://bengrosser.com/, 2012. March 13th, 2012.
[13] H. Baer, http://www.holgerbaer.com/, 2012. March 13th, 2012.
[14] P. van Arman, Zanelle, http://www.vanarman.com/, 2012.

March 13th, 2012.
[15] L. Kelly, D. Marx, The vangobot project, http://vangobot.com,

2012. April 30th, 2012.
[16] Z. Tu, X. Chen, A. L. Yuille, S. C. Zhu, Image parsing: Unifying

segmentation, detection, and recognition, in: Toward Category-
Level Object Recognition’06, pp. 545–576.

[17] Z. Tu, S.-C. Zhu, Parsing images into regions, curves, and curve
groups, Int. J. Comput. Vision 69 (2006) 223–249.

[18] K. Zeng, M. Zhao, C. Xiong, S. C. Zhu, From image parsing to
painterly rendering, ACM Trans. Graph. 29 (2009).

[19] O. Deussen, T. Lindemeier, S. Pirk, M. Tautzenberger,
Feedback-guided stroke placement for a painting machine, in:
Computational Aesthetics, pp. 25–33.

[20] B. Cabral, L. C. Leedom, Imaging vector fields using line inte-
gral convolution, in: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, SIGGRAPH
’93, pp. 263–270.

[21] T. Saito, J.-I. Toriwaki, New algorithms for euclidean distance
transformation of an n-dimensional digitized picture with appli-
cations, Pattern Recognition 27 (1994) 1551 – 1565.

[22] A. Hertzmann, Non-photorealistic rendering and the science
of art, in: Proceedings of the 8th International Symposium
on Non-Photorealistic Animation and Rendering, NPAR ’10,
ACM, New York, NY, USA, 2010, pp. 147–157.

12

