

Yao Lu^{1,2}, Soren Pirk^{1,2}, Jan Dlabal², Anthony Brohan^{1,2}, Ankita Pasad³, Zhao Chen⁴, Vincent Casser⁴, Anelia Angelova^{1,2}, Ariel Gordon^{1,2}

¹Robotics at Google, ²Google Research, ³Toyota Technology Institute at Chicago ⁴Waymo LLC

In a nutshell

- We present a method for multitask learning at scale.
- Task models supervise each other through task relations, improving each other's performance.
- We benefit from unlabeled or partially labeled data.
- We train distributedly and asynchronously: tasks can tolerate very stale predictions from their peers.

Method

- Task relations are represented as a consistency constraint, enforced by a differentiable loss term (\mathcal{L}^{con}), on *unlabeled* data.
- Tasks may also receive direct supervision from labeled data (\mathcal{L}_i^{sup})
- Each task trains on a separate machine. They communicate through \mathcal{L}^{con} only.

$$\mathcal{L} = \sum_{i=1}^{n} \mathcal{L}_{i}^{sup} \left(\hat{y}_{i}(w_{i}, x), y_{i}(x) \right) + \mathcal{L}^{con} \left(\hat{y}_{1}(w_{1}, x), \hat{y}_{2}(w_{2}, x), \dots, \hat{y}_{n}(w_{n}, x) \right)$$

Example 1: Depth, motion & segmentation

These tasks are related through projective geometry, forming a differentiable consistency constraint:

- Segmenting moving objects allows decomposing motion to object motion & camera motion.
- With depth & motion, optical flow can be obtained & used to assert mask consistency & photometric consistency across frames.

Consistency improves the tasks' performance:

	Depth Error	Segmentation
Configuration	(Abs. Rel.)	MIOU
A. Depth & motion only	0.165	-
B. Segmentation only	-	0.455
C. Frozen segmentation model B with depth & motion	0.129	-
D. Frozen depth & motion model C & segmentation	-	0.471
E. Depth, motion and segmentation training jointly	0.125	0.478

Datasets used: COCO for supervision, Cityscapes without the labels for consistency.

Example 2: Detection & tracking in point clouds

Example 2 cont'd:

Imposing consistency of tracking & detection improves test metrics. The less labels we used, the greater was the improvement provided by consistency.

Method	Labels	3D mAP/mAPH (%)
No Consistency	5%	17.6/9.6
Adding \mathcal{L}^{con}	5%	23.5/12.0
No Consistency	20%	30.8/16.4
Adding \mathcal{L}^{con}	20%	31.6/19.1
No Consistency	100%	53.0/47.6
Adding \mathcal{L}^{con}	100%	54.2/49.6

Scalability of our method

- Parallelizable: Each task trains on a separate machine.
- Asynchronous: Each tasks sees stale predictions of its peers. Predictions as old as 2000 training steps did not hurt the accuracy.
- Agnostic to the internals of the tasks' models. If it can output predictions and receive gradients, it's a go.
- Easy to add tasks: Each model trains on its own hardware, with its favorite hyperparams, as published by its author.

Effect of peer model staleness on the training of depth & egomotion: using peer predictions as stale as 2000 training steps old (20 minutes) resulted in no adverse effect on the test metrics.

Summary

- Main contribution: modular design for multitask training.
- Task relations are utilized through consistency losses.
- Unlabeled and simulated data can be used to improve performance in the underlabeled regime.
- Distributed, robust, asynchronous, scalable training algorithm.
- Future direction: Can learned differentiable constraints be used similarly?