Taskology: Utilizing Task Relations at Scale

Yao Lu1,2, Soren Pirk1,2, Jan Dlabal3, Anthony Brohan1,2, Ankita Pasad4, Zhao Chen5, Vincent Casser1,6, Anelia Angelova1,2, Ariel Gordon1,2

1Robotics at Google, 2Google Research, 3Toyota Technology Institute at Chicago 4Waymo LLC

In a nutshell

- We present a method for multitask learning at scale.
- Task models supervise each other through task relations, improving each other’s performance.
- We benefit from unlabeled or partially labeled data.
- We train distributedly and asynchronously: tasks can tolerate very stale predictions from their peers.

Method

- Task relations are represented as a consistency constraint, enforced by a differentiable loss term (\mathcal{L}^{con}), on unlabeled data.
- Tasks may also receive direct supervision from labeled data ($\mathcal{L}^{\text{labeled}}$).
- Each task trains on a separate machine. They communicate through \mathcal{L}^{con} only.

$$
\mathcal{L} = \sum_{i=1}^{n} \mathcal{L}^{\text{sup}}(\hat{y}_i(w_i, x), y_i(x)) + \mathcal{L}^{\text{con}}(\hat{y}_1(w_1, x), \hat{y}_2(w_2, x), \ldots, \hat{y}_n(w_n, x))
$$

Consistency improves the tasks’ performance:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Depth Error (Abs. Rel.)</th>
<th>Segmentation MDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Depth & motion only</td>
<td>0.165</td>
<td>0.455</td>
</tr>
<tr>
<td>B. Segmentation only</td>
<td>0.129</td>
<td>-</td>
</tr>
<tr>
<td>C. Frozen segmentation model B with depth & motion</td>
<td>0.129</td>
<td>0.471</td>
</tr>
<tr>
<td>D. Frozen depth & motion model C & segmentation</td>
<td>0.125</td>
<td>0.479</td>
</tr>
<tr>
<td>E. Depth, motion and segmentation training jointly</td>
<td>0.125</td>
<td>0.479</td>
</tr>
</tbody>
</table>

Datasets used: COCO for supervision, Cityscapes without the labels for consistency.

Example 1: Depth, motion & segmentation

These tasks are related through projective geometry, forming a differentiable consistency constraint:

- Segmenting moving objects allows decomposing motion to object motion & camera motion.
- With depth & motion, optical flow can be obtained & used to assert mask consistency & photometric consistency across frames.

Example 2: Detection & tracking in point clouds

A pair of LIDAR frames (Waymo Open Dataset)

Example 2 cont’d:

- Imposing consistency of tracking & detection improves test metrics. The less labels we used, the greater was the improvement provided by consistency.

Scalability of our method

- Parallelizable: Each task trains on a separate machine.
- Asynchronous: Each tasks sees stale predictions of its peers. Predictions as old as 2000 training steps did not hurt the accuracy.
- Agnostic to the internals of the tasks’ models. If it can output predictions and receive gradients, it’s a go.
- Easy to add tasks: Each model trains on its own hardware, with its favorite hyperparams, as published by its author.

Summary

- Main contribution: modular design for multitask training.
- Task relations are utilized through consistency losses.
- Unlabeled and simulated data can be used to improve performance in the underlabeled regime.
- Distributed, robust, asynchronous, scalable training algorithm.
- Future direction: Can learned differentiable constraints be used similarly?