
Example 1: Depth, 

motion & segmentation

These tasks are related

through projective geometry,

forming a differentiable

consistency constraint:

● Segmenting moving objects

allows decomposing motion

to object motion & camera

motion.

● With depth & motion, optical

flow can be obtained & used

to assert mask consistency

& photometric consistency

across frames.

Consistency improves the tasks’ performance:

Datasets used: COCO for supervision, Cityscapes without the labels for consistency.

Example 2: Detection & tracking in point clouds
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In a nutshell

● We present a method for multitask learning at scale.

● Task models supervise each other through task relations, improving

each other’s performance.

● We benefit from unlabeled or partially labeled data.

● We train distributedly and asynchronously: tasks can tolerate very

stale predictions from their peers.

Method

● Task relations are represented as a consistency constraint, enforced

by a differentiable loss term (ℒcon), on unlabeled data.

● Tasks may also receive direct supervision from labeled data (ℒi
sup)

● Each task trains on a separate machine. They communicate through

ℒcon only.

Example 2 cont’d:
Imposing consistency of tracking &

detection improves test metrics.

The less labels we used, the

greater was the improvement

provided by consistency.

Scalability of our method
● Parallelizable: Each task trains on a separate machine.

● Asynchronous: Each tasks sees stale predictions of its peers.

Predictions as old as 2000 training steps did not hurt the accuracy.

● Agnostic to the internals of the tasks’ models. If it can output

predictions and receive gradients, it’s a go.

● Easy to add tasks: Each model trains on its own hardware, with its

favorite hyperparams, as published by its author.

Summary

■ Main contribution: modular design for multitask training.

■ Task relations are utilized through consistency losses.

■ Unlabeled and simulated data can be used to improve performance

in the underlabeled regime.

■ Distributed, robust, asynchronous, scalable training algorithm.

■ Future direction: Can learned differentiable constraints be used

similarly?
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Effect of peer model

staleness on the

training of depth &

egomotion: using peer

predictions as stale as

2000 training steps old

(20 minutes) resulted

in no adverse effect on

the test metrics.


