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In a nutshell Example 1: Depth, Example 2 cont’d:

e \We present a method for multitask learning at scale. motion & segmentation Consistency Imposing consistency of tracking & | Method Labels | 3D mAP/mAPH (%)

: : : : imposed b ' ' ' No Consist 5% 17.6/9.6

e Task models supervise each other through task relations, improving These tasks are related aloss) gl_re]tectllon |r|n|;)3rolves test ”(‘jet”ils- Adding £ | 5% 235150

each other’s performance. through projective geometry, € less fa esh we used, e |G & nsistency | 20% 30.8/16.4

e \We benefit from unlabeled or partially labeled data forming a  differentiable greater ‘was ne IMprovement | Adding " 29% S1.6/19.1

: ConSiStency constraint —— prov|ded by consistency. No (;0n31stency 100% 53.0/47.6

e We train distributedly and asynchronously: tasks can tolerate very | Adding L™ 100% 54.2/49.6

e Segmenting moving objects
allows decomposing motion
to object motion & camera
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stale predictions from their peers.
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Method motion. I'- e Parallelizable: Each task trains on a separate machine.
e Task relations are represented as a consistency constraint, enforced e With depth & motion, optical 1 e Asynchronous. Each tasks sees stale predictions of its peers.
by a differentiable loss term (£"), on unlabeled data. flow can be obtained & used = Predictions as old as 2000 training steps did not hurt the accuracy.

to assert mask consistency

. . e Agnostic to the internals of the tasks’ models. If it can output
& photometric consistency

e Tasks may also receive direct supervision from labeled data (L)

predictions and receive gradients, it's a go.

e Each task trains on a separate machine. They communicate through across frames.
Lo only. e Easy to add tasks: Each model trains on its own hardware, with its
n | | | favorite hyperparams, as published by its author.
r — rsup (g Consistency improves the tasks’ performance:
= E L; gi(wi, ), yi(z) S .
I : epth Error | Segmentation = 0.5 — 1 r r
Logg i=1 Con ﬁguration ( Abs. Rel) MIOU g Staleness (minutes): — 0 — 1 — 2 — 5 — 10 20 SEtf;z(r;]teS(S)f pece):] mof[jhe;
con [ ~ A A A. Depth & motion only 0.165 - = fraini f depth &
—+ L (yl (wl, .’L'), yz(’wz, .’L'), c ey yn(’wn, .’L')) B. Segmentation only - 0.455 § ergcl)rr]rllrc])%ior?: usi?lrg); peer
C. Frozen segmentation model B with depth & motion 0.129 - fij predictions as stale as
D. Frozen depth & motion model C & segmentation - 0.471 g - 2000 training steps old
E. Depth, motion and segmentation training jointl 0.125 0.478 3 (20 minutes) - resulted
Sl - ZCpH, g £J y ’ ’ E In no adverse effect on
| - . - - ; o 0.2} :
- Datasets used: COCO for supervision, Cityscapes without the labels for consistency. g the test metrics.
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Example 2: Detection & tracking in point clouds

Summary
Task I: 3D object detection _ _ _ . _ _ o
q A pair of LIDAR frames m Main contribution: modular design for multitask training.
¢ (Waymo Open Dataset) . m Task relations are utilized through consistency losses.
m Unlabeled and simulated data can be used to improve performance
INn the underlabeled regime.
[y

m Distributed, robust, asynchronous, scalable training algorithm.

m Future direction: Can learned differentiable constraints be used
similarly?




