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Fig. 1. Steps of our learning-based plant population method: we use satellite images (a) and predict coverage maps for vegetation (b). We use these maps to
identify regions for placing plants (c) and to learn the parameters for our procedural models when populating new virtual cities with complex plants (d), which
significantly increases the realism of urban landscapes (e).

The placement of vegetation plays a central role in the realism of virtual
scenes. We introduce procedural placement models (PPMs) for vegetation
in urban layouts. PPMs are environmentally sensitive to city geometry and
allow identifying plausible plant positions based on structural and functional
zones in an urban layout. PPMs can either be directly used by defining
their parameters or learned from satellite images and land register data.
This allows us to populate urban landscapes with complex 3D vegetation
and enhance existing approaches for generating urban landscapes. Our
framework’s effectiveness is shown through examples of large-scale city
scenes and close-ups of individually grown tree models. We validate the
results generated with our framework with a perceptual user study and its
usability based on urban scene design sessions with expert users.
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1 INTRODUCTION
The visual simulation of urban models and the generation of their
3D geometries are fundamental open problems in computer graph-
ics that have been addressed by many approaches. Existing methods
range from modeling façades, buildings, city block subdivisions,
to entire cities with viable street and road systems. Synthetically
generated city models already exhibit a high degree of realism. How-
ever, cities are immersed in vegetation, but only very little attention
was dedicated to the interplay of urban models and vegetation in
computer graphics. Many approaches have considered ecosystem
simulations. The prevailing algorithms use plant competition for
resources as the main driving factor of their evolution either on
the level of entire plants [Deussen et al. 1998] or on the level of
branches [Makowski et al. 2019]. Unfortunately, these approaches
fail in urban areas because urban trees have only limited space to
compete for resources. They are heavily affected by surrounding
urban areas and human intervention.
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The term urban forest refers to vegetation in urban areas [Miller
et al. 2015]. Vegetation has many practical functions: it controls air
movement, solar radiation, heat, humidity, and precipitation. It can
also block snow and diminish noise. Moreover, an essential function
of vegetation is to increase city aesthetics. Urban forests are not
planted at once but managed over time. Dead trees are removed,
and new trees are planted. Living trees are pruned for visibility or
utility services. In contrast to real cities, we face a different situa-
tion in computer graphics. An existing algorithm generates a city
model without vegetation, and we need to find suitable locations for
individual trees. Simulating urban forest evolution, i.e., by using the
algorithm by Benes et al. [2011], is time-consuming and challenging
to control.
We introduce a procedural method for the advanced placement

of vegetation to increase urban models’ overall realism. We are in-
spired by urban rules that control which trees and bushes can be
planted and how tall they can grow. These rules vary for individual
areas; they are relaxed in industrial zones. People also have more
flexibility in their properties, but they are enforced in public zones
of a city and around important landmarks. Therefore, we introduce
procedural placement models – strategies for generating plant po-
sitions – along with parameters to enable an automatic placement
of vegetation, faithful to the characteristic features of plant distri-
butions within the different municipality zones of a city. We show
that placement models and parameters together provide an efficient
means of controlling urban landscapes’ interactive modeling.

Moreover, we can populate city models with static tree geometry
and dynamic models of plants that can grow and change their shape
in response to environmental changes or human intervention. This
allows us to apply simulation models that describe how a city or
its areas would change if more or less effort could be spent on
maintaining them. Such dynamic urban ecosystems allow users to
visually predict and control gardening effects in a city and make
such models more realistic since they inhibit decay and different
order levels.
While procedural placements can be used directly to populate

urban layouts, we also show that placement models can be used
to learn plant distributions of real cities. We use satellite images
and land register data to train deep neural networks to learn trees
and other plants’ distributions in our procedural placement models’
parameter space. While placement models act as a strong prior to
regularize finding plausible placements, learning parameter values
also enable users to efficiently author scenes through intuitive pa-
rameters. The example in Fig. 1 shows a satellite image (a) and the
predicted coverage map (b). We use coverage maps to identify areas
where to place vegetation (c) and learn the procedural models’ pa-
rameters. Once the parameters are obtained, we can automatically
populate city models with complex models of plants (d) to increase
their realism (e).
Our main contributions are: (1) we advance the state-of-the-art

in modeling vegetation in urban landscapes by introducing a proce-
dural modeling framework that is based on the idea to factorize the
complexity of plant placement into manageable components; (2) we
introduce a set of procedural placement models along with their
parameterization to capture a large variety of placement patterns;
(3) we use a novel pipeline for learning plant distributions in cities

from satellite data; we convert satellite images into coverage maps
and then learn the placement parameters of our procedural models.

2 RELATED WORK
Only recently, researchers started exploring approaches tomodel vir-
tual environments with realistic traits of real urban landscapes [Sme-
lik et al. 2014]. Here, we focus on the problematic aspects of plant
and urban modeling, ecosystems, and learning-based methods.

Urban Modeling: urban structures are often modeled proce-
duraly [Watson et al. 2008]. In their seminal paper, Parish and
Müller [2001] used L-systems to model complex cities, and Wonka
et al. [2003] applied split grammars to procedurally define build-
ings that were later extended by using subdivision [Müller et al.
2006] and by more advanced operations [Schwarz and Müller 2015].
Purely procedural models of infinite cities were introduced by Mer-
rell and Manocha [2008; 2011], the procedural modeling of street
layouts has been described by using vector fields [Chen et al. 2008].
Similarly, procedural approaches have been successfully applied to
modeling façades [Müller et al. 2007]. Urban modeling has been
combined with urban simulation to generate viable cities [Vanegas
et al. 2009, 2010b], and city growth [Weber et al. 2009]. However,
most of the related work focuses solely on urban structures and
considers vegetation only as a decorative add-on.

Inverse Procedural Modeling: our approach is related to in-
verse procedural models, in that it learns plant placement from
real cities and attempts to transfer it to synthetic ones by fitting
parameters of a procedural model. An inverse procedural model for
façades has been introduced by AlHalawani et al. [2013] and Wu et
al. [2014]. Variations from a procedurally encoded single layout can
be generated by the work of Bao et al. [2013], the layered nature of
façades has been used for inverse procedural modeling in [Ilčík et al.
2015; Li et al. 2011b], exploiting structural symmetries was done
in [Dang et al. 2014; Zhang et al. 2013]. Interactive alterations of
shape grammars were utilized in [Dang et al. 2015]. Buildings can
be encoded as L-systems by using the inverse procedural approach
from [Vanegas et al. 2010a], modeled by using a procedural connec-
tion of structures [Bokeloh et al. 2010], or through binary integer
programs [Kelly et al. 2017]. Finding the procedural models’ param-
eters from existing data was investigated by Talton et al. [2011].
They used expressions of L-system strings of modules to fit a gener-
ated structure to an input. Ritchie et al. [2015] attempt to control
procedural programs and procedural models using stochastic Monte
Carlo methods. Structural patterns can be encoded by using the
approach of Yeh et al. [2013] or encoded as L-systems by the work
of Šťava et al. [2010]. Recently, trained deep neural networks have
been combined with inverse procedural modeling to allow for the in-
teractive design of buildings by using sketches [Nishida et al. 2016],
to find urban models from real world images [Zeng et al. 2018],
and for large-scale reconstruction [Kelly et al. 2017]. Inverse proce-
dural modeling has also been used to generate entire urban layouts
in [Martinovic and Van Gool 2013; Vanegas et al. 2012]. Inverse
procedural models primarily deal with regular structures (facades,
buildings, cities), and only a few focus on stochastic problems (trees,
distributions). Our approach is inspired by previous works in that it
attempts to define an inverse procedural model (urban forest) and
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finds its parameters. This, in effect, is used to augment an input
urban model with vegetation.
PlantModeling: research has long focused on defining plausible

branching structures based on fractals [Aono and Kunii 1984; Op-
penheimer 1986] or L-Systems [Lindenmayer 1968; Prusinkiewicz
1986]. Other methods focus on rule-based modeling [Lintermann
and Deussen 1999], inverse procedural modeling of trees [Stava et al.
2010, 2014], and finding L-system for branching structures [Guo et al.
2020]. Moreover, sketch-based modeling techniques allow artists to
produce plant models interactively and in more nuanced ways [Ijiri
et al. 2006; Okabe et al. 2007; Wither et al. 2009]. Alternative ap-
proaches attempt to reconstruct plant models automatically either
from images [Li et al. 2021; Tan et al. 2008, 2007], videos [Li et al.
2011a], or scanned 3D point clouds [Livny et al. 2011; Xie et al. 2016].
Only just recently, several approaches also focus on the dynamic
and realistic behavior of plant models, including growth [Longay
et al. 2012; Pirk et al. 2012a], the interaction with wind or fire [Pirk
et al. 2017, 2014], or as established through realistic materials [Wang
et al. 2017; Zhao and Barbič 2013].
Modeling the plants’ response to its environment is of utmost

importance to obtain realistic branching structures when positioned
in groups or alongside obstacles [Měch and Prusinkiewicz 1996].
Approaches exist to model this phenomenon by considering the
self-organization of plants [Palubicki et al. 2009; Runions et al. 2007],
through explicitly modeling the plasticity of branches [Pirk et al.
2012b] or through the dynamic adaptation to support structures, as
can be observed for climbing plants [Benes andMillán 2002; Hädrich
et al. 2017]. The growth, decay, and pruning of buds and branches
play an essential role in plant development [de Reffye et al. 1988];
a phenomenon that is often parameterized in procedural models
to develop convincing branching structures [Stava et al. 2014]. In
our approach, once the location of the tree has been established, we
grow the trees in the given location and adapt their shape by laws
of competition for resources.
Ecosystems: various works focus on ecosystem simulation. The

seminal paper of Deussen et al. [1998] introduced a competition for
resources on the plant level, and this approach has been recently
extended towards the competition of individual trees in ecosys-
tems [Makowski et al. 2019]. Various techniques attempt to simulate
ecosystems considering different phenomena, such as erosion [Cor-
donnier et al. 2017] or wildfires [Hädrich et al. 2021], and even by
locally learning plant distributions and using them as interactive
brushes [Emilien et al. 2015; Gain et al. 2017]. Closely related to
our approach is the work of Benes et al. [2011] that models urban
ecosystems by combining wild ecosystem growth from [Deussen
et al. 1998] with controlled plant management. However, contrary
to our work, the initial plant placement is purely ad hoc, and their
approach does not allow for procedural plant placement that could
be connected with real cities. Our approach defines the procedural
models and learns their distributions to populate an empty urban
layout. Moreover, their approach is a simulation that seeds new
trees and eliminates others by competition for resources over time.
Our approach populates the entire city at once.
Learning-based Approaches: some works have started to ex-

plore the capabilities of learning-based methods for scene gener-
ation and object placement. While neural networks have shown

paramount performance on image classification, synthesis [Khan
et al. 2019; Wu et al. 2017], or inverse texture modeling [Guehl et al.
2020; Hu et al. 2019] tasks, properly placing objects into meaningful
configurations is still a challenging problem. For arranging scenes,
methods need to coherently generate plausible and continuous poses
(translation and orientation) of objects and to one another. How-
ever, most neural network architectures only allow operating on
fix-sized in- and outputs, which makes placing arbitrary numbers of
objects challenging. To this end, a number of approaches introduce
convolutional neural networks for scene generation [Li et al. 2019;
Ritchie et al. 2018; Wang et al. 2019] and Zeng et al. [2018] learn to
reconstruct buildings by learning parameters of a procedural model.
For outdoor scenes, Guerin et al. [2017] and Kelly et al. [2018] use
generative adversarial networks to author textures for terrain and
building details. While these methods only tangentially relate to
our work, they show the capabilities of neural networks for scene
generation. We also combine the advantages of image-based learn-
ing techniques with procedural modeling as we aim at learning the
parameters of procedural models with neural networks that place
plants realistically.

3 OVERVIEW
Generating plausible vegetation models for virtual urban landscapes
faces two significant challenges: first, plant placement varies across
different functional and demographic zones (Fig. 2a)– an industrial
zone may only have a small number of non-managed plants, while
residential areas not only have regularly placed trees alongside
roads but also in gardens and parks. The planting rules depend on
culture, habits, city rules, etc. They are difficult to quantify. Second,
plant models need to simulate growth and interaction with their
environment to generate vegetation with high visual fidelity. More-
over, urban trees are often pruned or may lack resources (water or
light), which hinder their growth and affect their structure.

To address these challenges, we propose a two-stage procedural
modeling pipeline. First (Fig. 2), we introduce PPMs (b) to generate
plausible plant positions based on placement strategies and known
planting rules for vegetation. A PPM can be defined for each func-
tional or demographic zone of a city (e.g., residential, commercial, or
industrial) and operates on single lots of land (realty). Each PPM has
a different set of rules parameterized by structural and positional
parameters to capture the various kinds of planting patterns found
in real cities. Second, once the plant positions are generated, we use
a state-of-the-art developmental model (Fig. 2, e) for growing plants.
Given the plant’s location and environment, the growth process
generates unique and realistic branching structures.
Finally, we have developed a novel learning-based pipeline for

populating models of real cities with vegetation. First, we convert
satellite images of urban landscapes to vegetation coverage maps
by using a style-transfer network (Fig. 13, b). The coverage maps
represent areas that are covered with above-ground vegetation. Sec-
ond, we learn a mapping from the coverage maps to the parameters
of our PPMs (Fig. 13, d). Given our pipeline and the parameter val-
ues obtained from real satellite images, we can generate vegetation
similar to what can be observed in the satellite images.
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Fig. 2. To place vegetation in urban environments we propose procedural
placement models (b) that implement placement strategies for vegetation
based on the geometry of individual lots, positional parameters, and a
zone identifier (a). After plant positions (c) have been generated we use
a developmental model (e) along with structural parameters (d) to jointly
grow plants, which results in realistic 3D plant models.

4 PLANTING RULES
Road networks define landscapes as administrative or functional
zones [Waddell et al. 2007], and they can be further classified into
rural, exurban, suburban, and urban areas [Miller et al. 2015]. All the
involved plants form the urban forest, an umbrella term referring
to trees, shrubs, and bushes found in urban and suburban areas.
A common way of introducing vegetation into an urban for-

est is by replacing a dead tree. Only newly created developments
have large areas directly populated by vegetation. When a new
neighborhood is built, a city will plant regularly spaced trees and
bushes parallel to roads and sidewalks by applying municipal tree
ordinances [Grey 1995] (see also [Miller et al. 2015, pg 254]). The
neighborhood is subdivided into blocks and blocks into individual
lots left to the owners to plant the vegetation as needed. Typically,
the city only defines specific planting rules such as the distance
between individual trees should depend on the tree height, or the
distance is derived from the soil the tree requires to survive [En-
dreny 2018]. Trees should not obstruct views at intersections. They
should have a certain distance from the curb and sidewalks [Blo-
niarz and Ryan 1993]. Vegetation must not block house entrances
for emergency purposes. These functional restrictions are also com-
bined with aesthetic constraints: vegetation should not be planted
in the proximity of windows [Miller et al. 2015]. Most of these rules
are incorporated into a so-called building activity area (or building
envelope) that is an extension of the building’s 2D projection by
about 600cm perpendicularly from each building wall and 150cm
from each driveway.
At a higher level, we aim to generate vegetation for the various

types of zones procedurally. Therefore, we assume that each urban
layout, either real or synthetically generated, can be divided into
such zones. Specifically, we use a zonal layout commonly used
in urban planning [Waddell 2002; Waddell et al. 2007] and urban
simulations [Vanegas et al. 2009, 2010b; Weber et al. 2009] and divide
an urban layout into five zones: 1) residential includes houses and
buildings where people live, 2) commercial consists of businesses
such as department stores, malls, and small stores, 3) industrial
zones include factories and other production services, 4) street zones,
which describe areas next to roads. We add a category (5) other
that includes parks, non-managed areas, areas close to railroads,
unassigned regions, etc.
As shown in Fig. 3, we further assume that a city layout is orga-

nized as individual lots, where each lot represents a property that
may be occupied by a building. Given a lot and its zone type, we
then define a PPM that places vegetation individually into each lot.

Fig. 3. Urban layout: satellite images (left), zone data for individual lots
(middle), and coverage maps (right) are available in public datasets. We use
zone data and lot geometry as inputs to our procedural models and learn to
predict their parameter values from the coverage maps.

Based on the observations from municipal tree ordinances [Grey
1995; Miller et al. 2015] and previous work on urban forests [Benes
et al. 2011], we define six tree planting rules and show them in
different real-world images in Sec. 5.1. Semi-Random placement
within a lot follows a Poisson-disc distribution preventing trees
from being in close proximity. Trees are often planted along lot
boundaries as a noise barrier, but can also be clustered forming areas
with grass and shade. Along streets trees often serve as a barrier and
are planted in an equidistant manner along the medial axis of a lot.
We can also observe a single tree within a lot or a regular placement.

In addition, trees are rarely planted at once and their distributions
are mostly an emergent phenomenon of growth over long periods
of time. Our objective is to populate an empty urban model at once.
Thus we define the planting rules as geometrical distributions that
allow us to encode plant populations as procedural models, as shown
in the next section.

5 PROCEDURAL URBAN VEGETATION
Vegetation for an urban landscape is generated in two steps: first,
we apply a PPM to seed plants individually for each zone according
to their functional types. After the virtual plants have been planted,
we use a developmental model that dynamically grows them in their
locations while interacting with the surrounding environment. This
allows plant adaptation to their environment, such as bending and
shedding of branches due to the competition for resources, resulting
in vegetation with high visual fidelity.

5.1 Procedural Placement Models - PPMs
We seek to model plant morphology and the variance of plant place-
ment across different municipality zones to distribute vegetation in
an urban landscape realistically. Defining and parameterizing rules
for obtaining plausible plant positions, while adhering to urban
features such as buildings and streets, is intractable. Therefore, we
factorize the problem into specifying placement models for the dif-
ferent zones as denoted in Sect. 4 (industrial, commercial, residential,
street, and other) and for each lot.

The factorization allows us to define a manageable parame-
terization along with placement strategies for the different zones.
Each placement model defines a concise strategy to place vegetation
into a single lot. For example, we have models to place vegetation
randomly, along the edges of a lot, equidistantly, etc. Moreover, we
define the PPMs in a context-sensitive way. This means to maintain
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a global appearance, a PPM can query adjacent lots to adjust its
parameters (e.g., the distance between trees alongside a road in one
lot should be the same in the neighboring lot). A PPM is a tuple

M =
〈
Sд ,Pp ,Ps

〉
, (1)

where Sд is a function implementing a placement strategy (rules)
with д ∈ {R,B,C,E, S, I } (see Sect. 5.2 and Tab. 2), Pp is a set of
positional parameters to define the placement of plants, and Ps is
a set of structural parameters for the morphological appearance of
vegetation within the lot.

𝑉𝐻

𝑃𝐻 𝐸𝐻

𝐸𝐿

𝑉𝐿

Lots and
buildings are
defined as 2D
polygons possi-
bly concave and
with holes (see
Fig on the right): PL = {VL ,EL}, PH = {VH ,EH }, where VL and VH
denote the vertices of a lot (L) and buildings (H ) and EL and EH
the edges of the polygon for lot and building, respectively. A lot
can include multiple buildings (or other structures):U = {P iH }. The
polygon P = PL − ∪P ib ,∀P ib ∈ U , defines the area of a lot that can
be covered by vegetation; the PPM only places vegetation within
the geometric shape of the polygon P . A set of plant positions for a
single lot is then generated as

X = Sд(Vp ,Vs , P ,Z ,K), (2)

whereVp andVs denote the parameter values for positional Pp and
structural Ps parameters, P is the polygon of a single lot, Z is a zone
identifier, andK is the context of a lot. We use Z to select parameter
values for each lot. For example, a residential and a commercial
lot may use the same strategy (e.g., boundary) but differ in their
parameter values (e.g., different species are used). This is illustrated
in Fig. 4. Generating vegetation with the same value forZ produces a
uniform appearance (the same settings are used for every lot), while
varyingZ with the functional zones generates a diverse yet coherent
appearance. Put differently, Z allows us to control the placement
of vegetation on a global scale. Finally, we use K to modify the
input parameters according to the neighbors of a lot to allow for
consistent global appearance as detailed in Sect. 5.5.

To summarize: a PPM defines a placement strategy and structural
and positional parameters for populating single lots. Varying these
parameters’ values generates different plant positions within the
constraints of the strategy at a local scale while changing the pa-
rameters jointly – e.g., based on zoning types – allows us to vary
vegetation at a more global scale.

5.2 Placement Strategies
A placement strategy д ∈ {R,B,C,E, S, I } (Semi-Random, Boundary,
Cluster, Equidistant, Single, and Individual tree) defines rules for
placing the plants and how the parameters are used.
To implement the different placement strategies, we compute

active areas within each lot that define where the vegetation can
be placed. For the strategies semi-random and single the entire lot
polygon PL is used, while for the strategies boundary and cluster we
define active areas within the polygon; i.e., we define a boundary
along the edge of the polygon towards its center for boundary and

P

Select Placement Strategy

BoundaryCluster Select Parameter Values

PPM1

based on zone identifier Z

PPM2
PPM3

irregular regular

Fig. 4. Given a lot, we use a placement strategy to define the placement
of vegetation. The zone identifier Z is used to select parameter values
for structural Vs and positional parameters Vp . Together, strategies and
parameters allow us to generate vegetation with globally similar appearance
depending on the municipality zones within a city.

Fig. 5. Variations of positional parameters on a single lot with different
placement strategies. (a)-(c): strategy boundary with narrow (a) and wide
(b) boundary size, and less density (c). (d)-(f): strategy cluster with a single
cluster (d) and multiple clusters (e) of different sizes (f). (g)-(i): strategy
regular with no (g), medium (h), and high (i) jitter. (j)-(l): strategy semi-
random with low (j), medium (k), and high (l) density.

a circular area around a randomly selected point within the poly-
gon for cluster. For equidistant, we compute the medial axis of the
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polygon and then generate equidistant plant positions along the
axis. The strategy single defines a single plant’s random placement
within the entire lot. Finally, for regular we compute a lot-aligned
lattice and place plants at the center of each cell. Fig. 5 shows four
of our six placement strategies and their parameter variations.

5.3 Positional Parameters

Semi-Random Boundary Cluster

( )

( )

Fig. 6. Semi-Random, Boundary, and Cluster placement strategies use Vari-
able Radii Poisson-Disk Sampling to position trees.

Semi-Random, Boundary, and Cluster: placement strategies
are parameterized by the positional parameters shown in Tab. 1. We
use the Variable Radii Poisson-Disk Sampling [Mitchell et al. 2012]
to generate plant positions within active areas of a lot (see Fig. 6).
More specifically, we are interested in generating a set of points X
with spatially varying point density. A new position sample y is
assigned a radius r (y) : Ω → N(µ,σ ), where N denotes a normal
distribution with mean µ and variance σ . The new position sampley
is accepted and added to the set if |y − x | ≥ r (x) + r (y)∀x ∈ X.

For the boundary placement strategy we define the boundary size
as parameter β that defines an area along the normal of the edge of
a polygon towards its center. To implement the cluster strategy, we
randomly sample points in a lot and define the cluster area as a circle
with a radius κ. A lot can have a variable number of clusters with
the maximum number defined by π . For both strategies, boundary
and cluster, we first compute the active regions (boundary, cluster
circles) before generating sample positions.

Equidistant Regular
𝜔

𝜔 𝜂

𝜂𝜔

𝜔 ± 𝜓
Regular and
Equidistant:
allow for semi-
regular vegeta-
tion placement.
For the regu-
lar strategy, we
compute a regu-
lar lattice based
on the bound-
ing box of a lot
and define the size of cells with ω and their orientation with η. We
optionally jitter the positions using ψ within each cell. To imple-
ment the equidistant strategy, we first compute the medial axis of
the lot polygon PL [Choi et al. 1997] and then equidistantly place
plants along the axis based on the distance parameter δ . We model
the density of vegetation for all placement strategies by defining the
parameter τ , which deactivates position samples in X. A value of

τ = 1 activates all samples, while a value of τ ≤ 1 randomly deac-
tivates them until all samples are deactivated (τ = 0). Finally, we
define the radius ξ for the context K of a lot. The context is defined
as the adjacent lots, and we use it to model context-sensitivity (see
Sec. 5.5).

Single

Single: Finally, we
sample one random
position in the lot
for the strategy sin-
gle (see right).

Building Envelope: Trees should not be too close to buildings
and should not obstruct doors andwindows.We adopted the concept
of building envelopes [Miller et al. 2015] that defines the clearance
distances from the buildings. Moreover, we extend the envelope in
front of doors and windows to avoid their blockage (see Fig. 7).

Fig. 7. Left: the building envelope (blue) defines a zone where plants cannot
be planted to avoid proximity to walls and blockage of door and windows.
Right: plant placement without considering the building envelope.

Tab. 1 summarizes the positional parameters along with their
ranges, and Tab. 2 shows the placement strategies and their corre-
sponding positional parameters. Examples of changing the values
of positional parameters are shown in Fig. 5.

5.4 Structural Parameters
We define structural parameters to model the morphology of indi-
vidual trees as well as the plant population within a lot. Based on
the computed plant positions we define a plant seed as the tuple

T = ⟨ p,α ,ϕ,γ ⟩ , (3)

where p ∈ X is the plant position, α its maximum age, ϕ denotes a
species identifier, and γ is a pruning factor. To generate branching
structures we grow a plant with a developmental model (see Sec. 5.6)
and jointly simulate its growth with all other plants in a lot.

We define several species (n = 10) for the whole urban landscape
by selecting parameter values for our developmental model [Palu-
bicki et al. 2009]. We then use the species identifier ϕ to associate
one of the species to a seed. We further control this selection by
using the parameter ρ, which defines the tree vs. shrub ratio in a
lot. A value of ρ = 1 assigns all seeds tall-growing species, while a
value of ρ = 0 only associates short growing ones.
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Table 1. Positional and Structural Parameters for PPMs

Parameters Meaning Range/Dimensions

Po
si
ti
on

al

µ Plant envelope mean [1m - 10m]
σ Plant envelope variance [0.1 - 2]
τ Vegetation density [0-1]
β Boundary size [0m - 5m]
κ Cluster radius [1m - 20m]
π Max number clusters [0 - 5]
ω Regularity grid size [5m - 50m]
ψ Regularity jitter [0 - 1]
η Regularity orientation [0 - 180°]
δ Equidistant spacing [0m - 10m]
ξ Radius of context [0m - 300m]

St
ru

ct
ur

al α Max plant age [0 - 100 years]
ρ Tree vs shrub ratio [0 - 1]
θ Species diversity [0 - 1]
γ Pruning factor [0 - 1]
λ Num. species [1 - 10]

Table 2. Placement Strategies and used Positional Parameters.

Strategy Symbol µ σ τ β κ π ω ψ η δ ξ
Semi-Random R ✓ ✓ ✓ ✓
Boundary B ✓ ✓ ✓ ✓ ✓
Cluster C ✓ ✓ ✓ ✓ ✓ ✓
Equidistant E ✓ ✓ ✓ ✓ ✓
Single S ✓ ✓ ✓ ✓
Regular I ✓ ✓ ✓ ✓ ✓ ✓ ✓

To vary the number of used species in a lot, we use the parame-
ter θ . We randomly select one of the species as the dominant species
in a lot and use θ as a ratio to control the number of seeds associated
with the dominant species and all other available species. A value
of θ = 0.5 sets half of the available seeds to the dominant species
and the other half with randomly selected ones.
Finally, we may prune a plant by a bounding volume for the

tree crown of a fully developed model. This allows us to generate
a more organized appearance of vegetation, e.g., along avenues or
highways. Branches that reach out of the volume are cut off. We
scale this volume by γ ; a value of γ = 1 will leave a plant unpruned,
while a value of γ ≤ 1 scales the bounding volume and therefore
results in a pruned plant. After pruning, we again simulate the
plant growth to develop smaller branches and leaves. Fig. 11 shows
an example of the pruning of trees; other variations of structural
parameters are shown in Fig. 8.

5.5 Context-Sensitive Rules
So far, lots have been treated as individual units without any mu-
tual relationship. However, each lot has its context that are its sur-
rounding roads and neighboring lots. The neighbors often share
similar planting rules provided by the applying municipal tree ordi-
nances [Grey 1995; Miller et al. 2015]. To account for the context of
lots we want to adjust planting rules.
Let us recall that each PPM from Eqn. (1) has associated a place-

ment strategy Sд and two sets of parameters Pp and Ps . Each lot
has a set of parameter values from Eqn. (2)Vp andVs . Moreover,
it considers the context (i.e., the neighborhood) K of the lot that is
being populated with plant positions Eqn. (2). Further, let us denote
a particular lot L and its parameter values as VL . In the following
text, we will omit the lower index s and p because the parameters
are calculated in the same way. The context is the set of lots within
radius ξ centered on the lot L and weighted by a 2D Gaussian. The

Fig. 8. Variations of structural parameters. Top row: variations of age pa-
rameter from young (left) to old (right). Middle row: changes of tree to shrub
ratio from only shrubs, to mostly trees. Bottom row: variations of species
diversity from a single species (left) to multiple species (right).

Fig. 9. Context-sensitivity: we calibrate the parameter values of a lot with
those of adjacent lots (context). Here we show two lot configurations with
regular placement strategy and variations over the parameters µ and σ . For
the lots shown in the top row context-sensitivity is turned off and plant
placement changes abruptly from one lot to another, while for the bottom
row we show context-sensitivity across lots and the resulting calibration of
parameters (context radius: ξ = 180m).

values of the corresponding parameters (see Tab. 1) of the neighbors
and the lot L are weighted according to the distance resulting in a
context-updated parameter set ṼL as:

ṼL =
∑

∀VK ∈K

w
(
d(L,LK )

)
VK , (4)

wherew
(
d(L,LK )

)
is the Gaussian-weighted distance between the

center of the lot L and LK within the investigated context, and
VK are the values of the parameters of the lot LK . The updated
parameter values ṼL are then used for the PPM.
Note that this process can be considered as a diffusion of the

parameters within radius ξ . Fig. 9 shows the effect of using context-
sensitivity on a regular placement of trees. The first row shows
two lots with regular tree placement with an abrupt change to a
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random placement in neighboring lots that is smoothed out into a
semi-random transition when the context is used (bottom row).

5.6 Developmental Plant Model
After generating plant positions, we jointly grow the plants in the
computed locations of a single lot. Our developmental model is based
on the work of Palubicki et al. [2009]; a tree is a modular system
(leaves, buds, stems, and internodes). An internode is a plant stem
between two or more leaves, and a tree is composed of a succession
of internodes.
The primary plant development is controlled by the expansion

of buds that are either apical (terminal) or lateral (axial). Branches
expand at their tips by expanding their apical buds or on sides by
growing lateral buds. Buds use signaling by the growth hormone
Auxin to prevent overgrowth and to control apical dominance [Ke-
brom 2017]. Secondary plant development (cambial growth) is the
thickening of a tree trunk and branches [Kratt et al. 2015] simulated
by expanding their radii using da Vinci’s rule (see [Minamino and
Tateno 2014] for a discussion).

Trees compete for space by seeking light (phototropism) and
avoiding collisions and overcrowding. Many different algorithms
have been implemented to capture plant competition for resources
(see [Měch and Prusinkiewicz 1996; Runions et al. 2007] and [Pirk
et al. 2016] for an overview). We use the space occupation ap-
proach of [Palubicki et al. 2009; Runions et al. 2007], which controls
the growth by randomly scattered particles that attract growing
branches. We also simulate phototropism by computing buds’ illu-
mination and bending the growth direction towards the brightest
spot visible from a bud. Apical control and branching parameters
are simulated by using the growth model from [Stava et al. 2010]
with the set of parameters.

6 LEARNING VEGETATION PLACEMENT
Learning plant positions directly from image data is a challenging
problem that cannot be easily addressed by existing neural net-
work architectures or other methods. To obtain plant positions in
an end-to-end manner, a network would have to either output a
variable number of plant positions or operate on a fixed size domain,
such as an image. The latter requires to obtain plant positions as a
post-processing step, which is error-prone. Furthermore, generat-
ing ground truth data pairs of satellite images and plant positions
(e.g., GPS coordinates) for training a neural network is challeng-
ing (see Sect. 8.3 for a discussion). Moreover, an end-to-end deep
learning-based system would sacrifice an in-depth understanding of
the underlying mechanisms. It would not allow for low-level control
that is needed in interactive editing.
Therefore, to recover the placement and appearance of natural

urban landscapes, we aim to learn plant distributions in our param-
eter space of positional parameters. This has the advantage that our
above-defined PPMs act as a prior, which helps to regularize the
training of our network and, in turn, to generate plausible plant
positions. Furthermore, learning the procedural model parameters
maps images to comprehensible and intuitive parameters, providing
an efficient way to further edit plant placements.

Fig. 10. Top row: trees grown in different environmental conditions. From
left to right: two trees close to each other, close to a set of buildings, and
underneath a balcony. Bottom row: the growth response of a group of trees in
an urban environment generates complex and unique branching structures.

Fig. 11. Branch pruning allows for the adjustment and organization of tree
form. Here trees along a street are severely pruned to form a hedge (γ = 0.7).

6.1 Learning Plant Placements
We use a two-stage neural network pipeline to learn the param-
eters of our PPMs: first, we translate satellite images to semantic
maps that describe vegetation coverage (Fig. 13, a-c). Second, we
learn the positional parameters from coverage maps with a light-
weight convolutional neural network (Fig. 13, d, e). This pipeline
has the advantage that we do not need to rely on pairs of satellite im-
ages and positional parameters for training, but instead on pairs of
coverage maps and positional parameters, which can be generated
synthetically with our PPMs.
To translate satellite images to coverage maps, we used a style-

transfer deep neural network [Isola et al. 2016]. A coverage map is
a flat-colored image where every pixel color is based on whether
the corresponding pixel in a satellite image represents vegetation.
Coverage maps have less complex visual traits and are similar to real
and synthetic data. Therefore, the network can learn this transfer.
We used pairs of satellite images and coverage maps publicly avail-
able for some cities [NYCOpenData 2019] to train the style-transfer
network to learn coverage maps from satellite images. This allows
us to obtain coverage maps of cities for which coverage data does
not exist. Fig. 23 (Appx. B) shows examples of training data and
generated coverage maps.
We then train a neural network to obtain positional parameter

values (µ,σ ,τ , β ,κ,π , see Tab. 1) from the coverage maps. Training
is done on synthetically generated pairs of coverage maps and posi-
tional parameters obtained from our PPMs. Specifically, we define
the generated coverage maps as q ∈ Q for which we know the
corresponding positional parameters Pp ∈ U. The network can
thus be defined as

f (q) : Q → U.
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To summarize: stage one of our pipeline learns coverage maps
from satellite images, which – in stage two – enable us to obtain
the positional parameters of our PPMs. Together this allows us to
generate vegetation positions for individual lots with similar char-
acteristics as observed in the satellite imagery (e.g., plant distance,
density, etc.). Once the parameters are generated, we stencil the
coverage map with each lot’s geometry and identify areas to place
vegetation for a reconstruction. We convert the regions into poly-
gons and then use our semi-random placement strategy to generate
plant positions within the covered areas of a lot (Fig. 12). Please
note that the semi-random strategy is regularized by the positional
parameters values (Tab. 1) learned by the CNN neural network (see
Fig. 13, d, e). As a coverage map defines the areas where vegeta-
tion should be placed within a lot, it is sufficient to only rely on a
semi-random placement here.

6.2 Data and Training
For training the Pix2Pix style-transfer network, we rely on the pub-
licly available implementation of the original model implemented in
Python. We train the network on 20K pairs of satellite images and
coverage maps. This data is generated in three steps: first, we obtain
satellite images from Google maps with a resolution of 256 × 256
pixels per image. The images correspond to the lowest level of the
tile graph. Second, we use the vector data of streets, buildings, and
lots from NYCOpenData [2019] and render them into image tiles of
resolution 256x256. Third, we generate coverage maps by convert-
ing the vegetation coverage data provided by NYCOpenData (total
rasterized resolution of 316K x 312K pixels) by reprojecting the data
– provided in the geospatial data format: EPSG:2263 - NAD83 / New
York Long Island – for each tile to match the Mercator projection
used by Google Maps. We use the default hyperparameter settings
for Pix2Pix [Isola et al. 2016]; the network converged after training
for 200 epochs. We then use the network to convert satellite images
of urban landscapes to coverage maps. The geometry of single lots is
also obtained from the NYC Open Data. Our urban modeling frame-
work operates on longitudinal and latitudinal coordinates, which
allows us to register satellite images, lot data, and coverage maps,
enabling us to render satellite images and publicly available maps
(e.g., Open Street Maps) in the same framework. Our regression
CNN consists of five convolutional layers (32 units) followed by two
dense layers (64 units) with relu activations for all except the last
layer. We use our PPMs to synthetically generate 21K pairs of (cov-
erage map, positional parameter value)-pairs to train the network.
To regress the positional parameters, we use mean squared error
as loss function and can achieve 95% accuracy for predicting the
validation data’s parameters. We use an 80% – 20% split for training
and testing data. All results shown in the paper are generated from
validation data.

7 IMPLEMENTATION AND RESULTS
Our interactive framework for modeling and rendering urban land-
scapes was implemented in C++ and OpenGL. All results have been
generated on an Intel(R) Core i7-7700K, 8x4.2GHz with 32GB RAM,
and an NVIDIA GeForce RTX 2080 GPU with 12 GB RAM.

Fig. 12. Vegetation placement based on real data: we use vegetation cover-
age maps (middle) to identify active regions for individual lots and populate
them with our PPMs. This allows us to generate plant distributions (right)
similar to what can be observed in satellite images (left).

Coverage Map
(Flat Color Image)

Style Transfer 
Network

CNN
(Regression)

Satellite 
Image

(a) (b) (c) (d) (e)

Parameter 
Values

Encoder-Decoder
[Isola et al. 2018]

Fig. 13. Neural network pipeline: we use a style-transfer network (b) trained
on data pairs from NYCOpenData [2019] to convert satellite images (a) to
coverage maps (c). To learn parameter values for our PPMs (for which no
ground truth data for satellite images exist) we generate pairs of coverage
maps and parameter values with the PPMs of our framework. We then train
a CNN (d) to obtain parameter values (e) for the estimated coverage maps
of the real satellite images.

The most demanding online task is the generation of tree geome-
try. We simplify this by representing trees by their skeletons that
are generated on the CPU. We further offload the mesh generation
of the branch surfaces into a geometry shader on the GPU. Similarly,
leaves are generated as textured quads that are also generated on the
fly. Buildings and other structures are rendered as extruded outlines.
While we cannot render large plant populations in real-time, our
framework allows us to explore placement strategies and parameter
settings. To render large scenes (e.g., Fig. 22), we use a level-of-detail
scheme that successively replaces tree geometry with billboards and
point primitives according to the distance from the camera. Appx. A
(Tab. 4) shows parameter values for most figures shown in the paper.

7.1 Interactive Authoring
We demonstrated that PPMs can automatically place vegetation into
urban landscapes based on the lot data. The geometry of individual
lots can either be obtained from publicly available datasets or as a
part of the modeling process, for synthetically generated layouts.
However, PPMs operate on polygons, and they were designed

with interactive authoring in mind. The user can use a brush tool to
draw an area on a map. We then convert the sketch to a polygon
and assign a PPM. Depending on its placement strategy, the PPM
will then generate plant positions according to the geometry of the
polygon and its associated placement strategy (Fig. 14). Furthermore,
a user can directly draw the vegetation coverage for individual lots
or polygons. Like learning the coverage maps from satellite images,
sketching a coverage map replaces the placement strategy for a lot.
The PPM then places plants based on the positional and structural
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Fig. 14. A user can interactively sketch placement zones with a brush
tool (left). Each placement zone is converted to a polygon and assigned
a placement strategy to grow plants (right). Here we show the strategies
medial axis (blue), single (yellow), and semi-random (red).

Fig. 15. The placement of vegetation changes with the size of the active
areas within a lot. While the used cluster strategy initially generates plants
in the entire lot, transitioning to less available space due to a larger building
(white) generates more organized plant positions at the boundary of the lot.

parameters, which provides a convenient way for more nuanced
vegetation placement.

This process also allows us to generate even more diverse zones
if necessary. For example, it is possible to define individual zones
for back and front yards, the vegetation along streets, or even parks.
Our approach’s key idea is to factorize the complexity of defin-
ing a complex procedural model into more manageable placement
strategies. A PPM only works on a single polygon and generates
plant positions for this geometry. This way, it is easy to extend our
approach by new placement strategies.

7.2 Results
Figs. 1, 17, and 22 show perspective and top-down renderings of
urban landscapes along with the vegetation generated by our frame-
work. For these results, we used coverage maps to reproduce veg-
etation placement similar to the real scenes. Fig. 16 shows results
where we only used our procedural model, without additional cov-
erage maps. For both cases, the produced plant populations show
characteristic visual traits found in real vegetation distributions
at the city-scale. Based on our placement strategies, we can gen-
erate complex urban vegetation patterns in combination with the
positional and structural parameters.
Moreover, we show vegetation placements for the different mu-

nicipality zones (residential, park, commercial) in Fig. 16. Positional
parameters allow us to generate planting patterns as commonly
found in these areas. At the same time, we can also produce struc-
tural variations by selecting the number of species, their height,
and their age (Fig. 8). Additionally, we can control the pruning of
plants to generate more organized plant shapes (Fig. 11). In an urban
setting, buildings often shade larger areas. Trees growing in these
regions strive to grow out of the shadow toward the light. This
interaction of a tree with other trees and close-by buildings gener-
ates complex and unique branching structures. Fig. 10 shows the
modeling result of trees grown in varying environmental conditions.

Figs. 14 and 15 show the capabilities of our framework for the
interactive authoring of urban landscapes. In Fig. 14, a user drew
regions for vegetation onto the ground of an urban layout; each
brush tool was assigned a different placement strategy and set of
parameter values. Our method then converted the sketched areas
to polygons and applied different PPMs. Fig. 15 shows how the
placement of vegetation changes when the size of a building on
a lot increases. While with a small building, there is more space
for random plant configurations, the placement transitions to more
organized plant positions when the building’s size increases.

Figs. 21 and 22 show vegetation placement results for large scenes
generated with our framework. To generate the results in Fig. 21 we
manually defined the entire park as a single lot (middle) or generated
multiple smaller lots (right). For the result shown in Fig. 22 we rely
on the lot data provided by NYCOpen Data [2019] for the vegetation
placement. When lot data is provided, our framework enables the
efficient generation of realistic urban scenes.

Fig. 17 shows a comparison of using different placement strategies.
Given the satellite images of different urban scenes (a), our method
is able to closely approximate the real scenes by using coverage
maps and PPMs (c). Additionally, we compare our results to different
variation as ablation studies. In (d) we place plants randomlywithout
any parameter regularization (fully random), but we use the coverage
maps to define areas where vegetation can be placed. This setup
does not account for the coherent parameterization of plants, which
results in less realistic populations of plants. Tree species and their
age are not selected consistently and plants are placed too close to
buildings and to other plants. In (e) we show the result of our semi-
random placement strategy that generates random plant positions
with regularized structural parameters. The result of placing plants
fully random, without coverage map and without any regularization
across the positional and structural parameters is shown in (f). To
validate our results we also manually labeled plant positions and
used their longitude and latitude coordinates to render them at their
real positions in our framework (b). This allows us to evaluate the
visual quality of synthetically generated plant positions compared
to real plant distributions.

Finally, Fig. 18 shows the result of generating a scene by carefully
fine-tuning the parameters of our PPMs (semi-random, boundary,
and cluster strategies) against a real urban environment.

8 EVALUATION, DISCUSSION, AND LIMITATIONS
To validate point distributions generated with our placement models,
we performed a user study to evaluate the perceived realism of plant
distributions generated with our PPMs and real data. Additionally,
we asked expert users to compare the usefulness of our modeling
approach for authoring plant distributions compared to the manual
placement of individual plants. Finally, we measured the distance
of generated and ground truth point sets of plant positions.

8.1 Perceptual User Study
We generated two sets of images for the user study, one with trees
placed by our PPMs and another based on real data. It is difficult
to generate images resembling satellite photographs, because of
varying lighting, scattering, etc. To avoid this bias and to maintain
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Fig. 16. Top-down renderings of plant distributions for three municipality zones generated with different placement strategies. Top row: the placement
strategies boundary, semi-random, cluster, and regular for a residential lot of buildings. Middle row: the placement strategies boundary, cluster, and regular for
the lot of a public park. Bottom row: the placement strategies cluster, boundary for a commercial lot (left) and the placement of trees with medial axis along
streets with equidistant spacing set to: δ = 13m (right).

a similar appearance, we rendered real and synthetic plant distri-
butions by using our framework (see Fig. 17f). We identified 30
lots with varying plant placements and produced plant positions
using all placement strategies for these lots and rendered them
as top-down images using our framework. We generated the real
data by manually identifying plants in satellite images of these lots
and marked their positions. We then loaded these positions into
our framework and rendered them in the same rendering style for
both categories. Furthermore, we chose top-down views for evalu-
ating placement strategies, as this allows us to assess the respective
distributions of plants.

We then performed a two-alternative force check (2AFC) on the
images, for which we generated pairs of images showing real and
synthetic plant distributions. The synthetic data shows distributions
generated with our placement strategies (semi-random, boundary,
cluster, regular), the reconstruction based on the coverage maps
(reconstructed), using the planting strategy introduced by [Benes
et al. 2011], and an entirely random placement (fully random). The
semi-random placement strategy places plants based on Poisson Disk
sampling, which generates random plant positions. However, only
the positions are randomly generated, and the other parameters are
selected in the same way as for the other strategies. This allows us
to create plant distributions with a similar visual appearance. On the
other hand, placing plants fully random means that all parameter
values are sampled fully randomly, which results in incoherent and
thus unrealistic plant distributions.

For fully random parameters of the PPM are not regularized at all
but instead each parameter value is chosen randomly in its defined

range, which may result in a very unrealistic appearance (e.g., trees
may stand unrealistically close to each other). The methods for plant
placement of [Benes et al. 2011] are based on blocks and not individ-
ual lots. Consequently, these placement strategies assume a specific
layout of buildings that cannot be used for individual lots (see Appx.
Fig. 24) - the majority of areas selected for the user study have a
layout that reflects that limitation. In total, we have selected 30 city
blocks in New York City of up to 26 lots and populated them with
our strategies (see Fig. 19). We randomly shuffled their arrangement
(left-right) and their order. The image pairs (see Fig. 19 a) were
shown to 107 users from Mechanical Turk (MT), and we made sure
that only MT masters (reliable users) were answering the study. We
asked the users, "Which plant distribution looks more realistic (left
or right)?" The user had to choose one image. Each PPM category
and real data received multiple rankings from every user.

The results of this evaluation are shown in Fig. 20 (left plot). The
green bar shows the selection of scenes that were generated by
reconstructing vegetation based on coverage maps. The blue bars
show the selection results of placements with our pipeline, and the
red bars shows the result for the baseline [Benes et al. 2011] and
fully random placement. When comparing the results, the placement
with coverage maps and our semi-random PPM strategy was selected
to be realistic in 50% of the cases. This indicates that our method
generates plant distributions that cannot be distinguished from real
distributions. Out of our PPM strategies, semi-random was selected
as the most realistic. In 53% of the cases, it was perceived as more
realistic compared to the real placement. The strategy boundary was
preferred in 44% of the cases, cluster placement in 48%, and regular
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Fig. 17. We seek to generate plant populations as observed in satellite images of urban scenes (a). To validate our results, we manually labeled plant positions
and used their longitude and latitude coordinates to render them at their real positions in our framework (b). This allows us to evaluate the visual quality of
synthetically generated plant positions compared to real plant distributions. By using coverage maps and PPMs (semi-random strategy) our method is able to
generate highly similar plant populations (c). Additionally, we compare our results to different variations as ablation studies. In (d) we place plants randomly
without any parameter regularization (fully random), but we use the coverage maps to define areas where vegetation can be placed. The result of using no
coverage map along with our semi-random placement strategy is shown in (e). In (f), we show the result of placing trees without a coverage map and without
any regularization of parameters (fully random). In (g), the trees have been placed using the method of [Benes et al. 2011].
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Fig. 18. Given a reference satellite image (left), we can create a similar distri-
bution of plants by manually choosing the strategies and the corresponding
parameters. Here we used the strategies semi-random, boundary, and cluster
for the different lots (right).

was perceived as more realistic in 30% of the cases. The fully random
placement – as the lower bound baseline, without any PPM strategy
involved – was perceived as realistic only for 16% , the baseline of
[Benes et al. 2011] was chosen only in 35% of the cases of the shown
image pairs.

8.2 Usability for Content Creation
To validate ourmethod’s effectiveness for content creation, we asked
expert users (five 3D artists) to compare our placement strategies
to random placement of plants. These strategies serve as presets to
generate a realistic plant placement. In contrast to manually defining
the details of every single plant (e.g., the position, species, age, size,
etc.), they automatically generate plant positions while respecting
structural and positional constraints. We created a simple GUI with
two brush tools: one for the manual placement of plants and one for
the placement with PPM strategies. When using the manual brush
tool, users have to specify the brush radius and the tree parameters.
The user then interactively (by clicking with the mouse) generates
multiple trees in the radius of the brush with random unconstrained
positions. To precisely place a single tree, a small radius with a
single mouse click can be used. The second brush tool uses the PPM
strategies. Here a user defines the PPM parameters and sketches
an area in a lot to automatically place plants with the selected and
configured strategy.

We asked five experts to populate a given lot (inset figure) based
on a predefined set of requirements: (1) ensure that the trees are
not too close to the buildings; (2) populate the border of the lot
with trees in the red marked area with consistent space and width;
(3) populate the orange areas with randomly placed trees – with
high density in the right and low density in the left area; (4) populate
the green area regularly; and (5) create 2-3 clusters of trees within
the blue area. The participants first received a brief introduction to
the system and were then tasked to familiarize themselves with the
UI without knowing the problem definition. After this introductory
phase, the subjects were shown the problem definition and asked to
solve the task once with manual placement using the manual brush
tool and another time with the PPM brush tool. Whether to start

with the manual or the PPM brush tool was changed for each expert.
We then asked the experts to rank their experience based on several
questions (Tab. 3). We used five-level Likert scale (Strongly Agree,
Agree, Undecided, Disagree, Strongly Disagree. The results of this
assessment are shown in Fig. 20 (right plot). For each question (a-j),
we show the distribution of answers as box plots for the manual
placement (left, red) and the PPM placement (right, blue).

These results show that our method provides an effective means
to populate urban scenes with vegetation efficiently, since PPMs
were rated as favorable for vegetation placement compared to man-
ual placement. In addition we performed a qualitative study, in
which the users commented that while the manual placement pro-
vides more control to precisely place plants, it takes much longer
time to populate larger areas. The users also stated that generat-
ing realistic distributions is more difficult with manual placement.

Finally, we asked the ex-
perts to automatically place
trees by selecting a strat-
egy and a lot, without brush-
ing placement regions. For
this setup, the experts unani-
mously stated that this tech-
nique provides less control but
allows for fast and realistic
vegetation placement in large
areas. They further mentioned
that the PPM brush tool and
the automatic PPM placement produced excellent overall results and
were preferred over manual placement to quickly achieve realistic-
looking results. They also noted that a combination of manual and
PPM-based placement would be desired when vegetation needs to
be placed toward specific objectives.

Question
a) I think that I would like to use this system frequently.
b) I found the system unnecessarily complex.
c) I thought the system was easy to use.
d) I think the outcome of the result was easy to control.
e) I was satisfied with the outcome of the result.†

f) I think the results look convincing/realistic.†

g) I think it was able to meet the constraints.†

h) I was satisfied with the outcome of the result.‡

i) I think the results look convincing/realistic.‡

j) I think it was able to meet the constraints.‡

Table 3. Expert users were asked to rate their experience between 1 (strongly
disagree) to 5 (strongly agree) with respect to the questions above. †: before
showing real images; ‡: after showing real images.

8.3 Discussion and Limitations
Our framework allows us to place and simulate vegetation in urban
landscapes. To this end, our focus was on generating convincing
distributions of plants for synthetic and real city models. Because
defining rules for all possible variations of plants in urban land-
scapes is intractable, we factorized the problem of placing plants
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(a) The GUI used in the user study. (b) Reconstructed (c) Semi-Random (d) Boundary

(e) Cluster (f) Regular (g) Fully Random (h) [Benes et al. 2011]

Fig. 19. Examples of images shown to the participants of the user study. Random pairs of images were selected, and the participants were asked which plant
populations looks more realistic.
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Fig. 20. Left: the results of a user study. Subjects were asked to select the more realistic vegetation placement based on various strategies compared to real
plant distributions. The green bar shows the selection of scenes generated by reconstructing vegetation based on coverage maps, placement based on the PPM
strategies (blue), and the baselines fully random placement and [Benes et al. 2011] (red). Right: experts’ rating of manual plant placement (red bars) compared
to using the PPM strategies (blue bars). Questions a-j are listed in Tab. 3.

into several placement strategies. Each strategy provides a concise
set of rules and parameters to describe the positional and structural
properties of vegetation within individual lots. Together, placement
strategies and parameters allow us to generate realistic distributions
of plants within an urban layout’s functional zones. Besides, we use
a state-of-the-art developmental model for plants to simulate their
environmental response.
We generate distributions of vegetation that resemble what can

be observed in satellite imagery; our focus was not on precisely
reconstructing every plant of a real environment. While this is ar-
guably important, it would require further analysis (e.g., through
deep learning) of satellite images and additional data sources, such
as coverage maps. To this end, we think that procedurally generated
vegetation can help to generate training data for more advanced
analysis pipelines. Compared to manually placing vegetation, our
method provides more control and capabilities for the efficient au-
thoring of vegetation placement for city models.
As an alternative to learning parameters with the neural net-

work pipeline from Fig. 13, we experimented with learning plant
positions with Pix2Pix [Isola et al. 2016] in an end-to-end manner.
We used satellite images as input and images with plant positions

and building geometry as an output for this setup. The goal was to
obtain the plant positions from the images in a post-processing step.
Training this network was not successful for two reasons: it is chal-
lenging to get ground truth data pairs of satellite images and plant
positions. While some datasets contain trees’ GPS positions, they
only store these positions for trees along streets, which is not useful
for learning plant positions of an entire city. Second, the results of
the network produced were not satisfactory. We suspect that the
ground truth images were too sparse (i.e., too few tree positions and
building geometry) to provide a meaningful training signal.
A limitation of our current implementation is that we cannot

obtain structural parameters with our learning pipeline. Such pa-
rameters cannot be learned from coverage maps; learning them from
top-down satellite images was unsuccessful. Another limitation of
our current approach is that we focus on medium and large trees
and do not place smaller plants, such as flowers, bushes, or grass.
While fixed models of flowers could be placed with our placement
strategies (for example, by using agent-based models [Benes et al.
2003]), there exists no integrated developmental model that would
allow us to develop trees and flowers jointly. Therefore, we decided
only to simulate the growth response of trees to their environment.
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Furthermore, we do not model plants that are shaped through ad-
vanced topiary. More research would be required to explore how
pruning affects growth, e.g., for hedges.

9 CONCLUSION AND FUTURE WORK
We have presented a novel framework for populating synthetic and
real urban landscapes with vegetation. To this end, we introduced
procedural placement models that allow us to generate plant po-
sitions realistically and grow individual plants into individual lots
jointly. The key idea to our approach is that complex vegetation
patterns among different zoning types of a city can be factorized
into a set of simple placement rules. A PPM implements these rules
and – together with their parameterization – allows to generate
complex vegetation patterns with high visual fidelity. Moreover, the
PPMs are context-sensitive and read the immediate neighborhood,
enabling us to smooth out abrupt changes in placement.
To populate vegetation into real city models, we have used a

state-of-the-art style-transfer network to translate satellite images
to vegetation coverage maps. These coverage maps allow us to
determine the distribution of vegetation within individual lots of
a city, which allows us to reconstruct vegetation similar to what
can be observed in real data. Instead of reconstructing vegetation at
city scale precisely – which is intractable – our goal is to generate
convincing and plausible details for reconstructing existing cities
or populating entirely new virtual cities with vegetation.
We see several avenues for future work. First, it would be inter-

esting to explore physical functions in an urban context affected by
vegetation, such as heat transfer, shading, wind, and sound barriers.
Second, further exploring how neural networks can generalize to
more diverse urban data and use them to learn parameters for scene
generation seems like a promising direction for future research.
Tree position detection in a satellite image is an open problem. If
we could detect the tree position, we could automatically detect
what kind of procedural model should be applied to a lot. Our user
study focused on validating the placement strategies. Another study
should focus on aesthetic criteria, such as the building envelope and
window visibility. Finally, we want to explore enhanced placement
strategies to capture more of the variation of vegetation placements
that can be observed in real cities.
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Fig. 21. Left: Google maps view of New York (Central Park). Our framework generated two variations of plant placements (middle, right) for an initially empty
city model. Middle: 54k plant positions were generated in about 60 seconds with a random strategy. Right: a different plant population generated with the
strategy cluster (16k plants).

Fig. 22. Our framework enables to efficiently place vegetation for large urban areas. To reconstruct vegetation for larger urban areas we predict coverage maps
and populate the detected areas with our semi-random strategy for each lot.
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A PARAMETERS
Table 4. Parameter values we used to generate the figures in the paper.

Fig. Strategy µ σ τ β κ π ω ψ η α ρ θ λ
5 a B 3.13 0.35 1.0 4.0
5 b B 3.13 0.35 0.8 10.0
5 c B 3.13 0.35 0.4 10.0
5 d C 3.13 0.35 1.0 10.0 1
5 e C 3.13 0.35 1.0 10.0 3
5 f C 3.13 0.35 1.0 15.0 3
5 g I 3.13 0.00 1.0 9.0 0.00 30°
5 h I 3.13 0.00 1.0 9.0 0.30 30°
5 i I 3.13 0.00 1.0 9.0 0.55 30°
5 j R 3.13 0.35 0.2
5 k R 3.13 0.35 0.4
5 l R 3.13 0.35 1.0
8 a R 3.4 0.15 0.2 14 0.0 0.0 4
8 b R 3.4 0.15 0.2 20 0.0 0.0 4
8 c R 3.4 0.15 0.2 30 0.0 0.0 4
8 d B 2.2 0.0 0.9 10 20 1.0 0.0 4
8 e B 2.2 0.0 0.9 10 20 0.7 0.0
8 f B 2.2 0.0 0.9 10 20 0.5 0.0 4
8 g C 3.2 0.25 1.0 10.0 3 16 0.0 0.0 4
8 h C 3.2 0.25 1.0 10.0 3 16 0.1 0.3 4
8 i C 3.2 0.25 1.0 10.0 3 16 0.2 0.4 4
15 C 3.5 0.35 1.0 20.0 18 16 0.0 0.0 1

B SATELLITE AND COVERAGE MAP DATA

Fig. 23. Learning of coverage maps: we use satellite images (top) and ground
truth coveragemaps (middle) fromNYCOpenData to train a neural network
for style-transfer. After training the network is able to predict coverage maps
(bottom) from satellite images.

C PLACEMENT WITH [BENES ET AL. 2011]

(a) (b) (c)

Fig. 24. The method presented in [Benes et al. 2011] places the trees ac-
cording to procedural rules by using a single strategy for a whole block.
Managed ecosystem simulation then makes the trees grow, seed, and die by
competition leading to semi-random distributions. Our method works on
individual lots, places all plants at once and does not require simulation to
populate the urban model. a) With the method of [Benes et al. 2011] trees
planted at the front and back of the block and along its main axis. b) An
overlay of the same block with the actual lots of individual properties. This
indicates that the method does not consider lot boundaries. c) When the
method of [Benes et al. 2011] is used for a single lot plants are placed in an
unrealistic manner as buildings and other lot features (e.g. lot shape) are
not considered.
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