
Video Enhanced Gigapixel Panoramas

Sören Pirk Michael F. Cohen Oliver Deussen Matt Uyttendaele Johannes Kopf
University of Konstanz Microsoft Research University of Konstanz Microsoft Research Microsoft Research

Figure 1: A gigapixel image with integrated sparse video clips. Combining high-resolution images with embedded video (example frames in
the top row) allows users to explore complex scenes in a new way.

Abstract

We present a method for embedding video clips within gigapixel
scale imagery. The combination of high-resolution imagery and
video enables users to pan and zoom across the gigapixel panorama
to explore complex scenes with motion. The sparsity of the video
content within the gigapixel context introduces several challenges
which we overcome by optimizing the traversal of the scene cou-
pled with appropriate playback of the embedded video. We also
discuss aligning the video clips both geometrically and photometri-
cally to reduce visible seams between the dynamic and static con-
tent. Embedding video in large scale panoramas fills a gap between
static gigapixel images and video footage and thus presents a new
interactive medium.

CR Categories: I.3.8 [Computer Graphics]: Applications;

Keywords: Gigapixel Panorama, Embedded Video, Interactive
Exploration

1 Introduction

Our eyes are efficient sensors for exploring very complex scenes.
They combine extreme sharpness in the center of our visual atten-
tion and a wide opening angle. By scanning a scene, we assemble
a high resolution mental image of our surroundings. In much the
same way, recent advances in hardware and software make it possi-
ble to capture ever increasing resolution (gigapixel) imagery. Auto-
mated panning hardware coupled with panoramic stitching software
provide simple tools for creating gigapixel sized images captured
over a period of minutes. The result itself is static. However, fully
exploring the detail in such an image requires dynamically panning
and zooming over the result.

An exciting next step would be to create a gigapixel scale video.
Such a capture would allow panning/zooming as well as playing
through time providing a much closer experience of “being there”.

Capturing a gigapixel image typically requires multiple shots cap-
tured over minutes which are stitched into a single image. This
precludes creating a full frame-rate (30fps) gigapixel video. High
end cameras let you trade off spatial resolution for temporal reso-
lution, but none are currently capable of capturing gigapixel video.
That said, most SLRs, point-and-shoot cameras, and mobile phone
cameras can also capture video, albeit at 1/1000th the resolution of
the full panorama.

Given this constraint, we enhance previously static gigapixel im-
agery by embedding short video clips of small sub-regions of the
full gigapixel panorama. These are captured with the same long
lens used to construct the original panorama. Our aim is to inte-
grate these videos into the gigapixel image and to create an expe-
rience of a lively animated high-resolution image that captures not
only the visual complexity and beauty of a scene but also its dy-
namism. Having only a sparse subset of the full gigapixel video
presents a number of challenges which we address in our work. In
particular, we provide user interface affordances for exploring the
dynamic elements within the scene while avoiding, as best we can,
artifacts introduced by the spatial and temporal edges of the video
clips. Spatial edges arise because motion may overlap the frame of
the region captured (e.g., cars driving into and out of the frame),
and/or due to photometric changes between the time when that area
of the panorama was captured and when the video was shot. Tem-
poral edges arise from the fact that only a short timespan is captured
for each clip thus the video has a distinct start and stop time.

Our approach to reducing the visual artifacts are two-fold. First we
position the video frames, adjust the photometric qualities as well
as mask foreground objects to blend the video frames into the gi-
gapixel background. Second, we optimize the pan and zoom path
from the current position to view a newly requested video clip. At
the same time we control when the video plays. This provides the
means to seamlessly view the video clips in context. By combin-
ing manual and automated controls over panning and zooming we
provide an immersive and dynamic experience.

2 Related Work

Beautiful gigapixel images were first captured by the artist and en-
gineer Graham Flint using a specialized camera with very large
custom film back1. The uniqueness of the camera precludes nor-
mal users from creating such images. The alternatives in the digital

1http://gigapxl.org



Figure 2: System Diagram

world are to use a large array of lower resolution cameras, or a sin-
gle camera that pans over the scene capturing an array of individual
lower resolution images. In both cases, a set of individual images
must be stitched into a coherent whole. Panoramic stitchers such as
Adobe Photoshop2 and Microsoft Research ICE3 handle geometric
and photometric alignment across the scene. We use the latter in
our work.

Kopf et al. [2007] describe a pipeline to create gigapixel images us-
ing a standard SLR camera in combination with a motorized cam-
era mount. They also discuss dynamically varying the projections
of the imagery when viewing very wide angle panoramas and nar-
row zoomed in views of the same data. Recently, Gigapan4 has
developed inexpensive, easy to use motorized mounts for capturing
panoramic imagery which we use in our work.

Quicktime VR [Chen 1995] is a pioneering work in interactive
panoramas. In addition to introducing the notion of interacting
with panoramas, they demonstrated embedded video loops as well.
However, their work did not deal with the issues surrounding very
high resolution imagery.

A number of works integrate stochastic video textures into panora-
mas. Agarwala et al. [2005] show how to amend panoramic im-
agery with video textures such as water waves and blowing leaves
to enliven content. Rav-Acha et al. [2005] use a sweeping video
to create a panoramic video of, for example, a very wide water-
fall, by allowing time to vary across the panorama. In contrast, we
wish to depict less stochastic action such as people, cars, boats, or
airplanes traversing a scene embedded within very high resolution
panoramas.

The idea of embedding information in the form of text and audio
annotations in a gigapixel image was explored in the work of Luan
et al. [2008]. In this work, as one pans and zooms about the gi-
gapixel imagery, audio and text annotations are revealed much as
we embed video clips within the gigapixel image.

The work of Sargent et al. [2010] is the only work we are aware
of that truly depicts gigapixel scale video. In their work, due to the
constraint of requiring minutes to capture each gigapixel panorama,
they focus on gigapixel time lapse video. They demonstrate an im-
pressive system which deals with the challenges of accessing ap-
propriate parts of the gigapixel video as one pans and zooms. In
contrast, we wish to display motion that takes place at a normal
time scale, thus requiring 30fps capture. Our contributions address
the constraints of being able to only populate sparse regions of the
gigapixel imagery with video.

3 Overview

Creating the dynamic gigapixel imagery starts with gathering data.
Our setup includes one or two Canon SLR cameras with long (100–
400mm) lenses. One is mounted on a Gigapan Epic Pro which is

2http://www.adobe.com/products/photoshop.html
3http://research.microsoft.com/ivm/ice
4http://gigapan.com

able to pan over the scene to collect a sequential series of still im-
ages that can be stitched into a gigapixel panorama. Either the sec-
ond camera (if available) or the same camera (after the gigapan cap-
ture) records 1920x1080 pixel videos. For video clip collection, the
panning and zooming is under manual control and a user finds in-
teresting dynamic events in the scene and records short video clips
to be embedded in the panorama.

Figure 2 show the basic structure of the system. Hundreds of stills
are aligned and stitched using the Microsoft Research ICE stitcher,
which generates a pyramid of multi-resolution tiles. A viewer simi-
lar to Kopf et al. [2007] provides the means to interactively pan and
zoom over the scene.

The videos are further processed to align them to the panorama,
correct for color changes due to exposure and light differences, and
optionally create a coarse matte for the foreground object. Having
performed these steps the gigapixel image is integrated with video
and ready for interactive exploration. We discuss the alignment pro-
cesses in the next section. We then present two ways of exploring
the aligned and embedded videos: In the interactive mode (Section
5.1) the user has full control of the pan/zoom and videos are trig-
gered automatically. We also provide a mode where the user can
click on a thumbnail image in a side bar which triggers an automatic
transition (Section 5.2). This forms the heart of our contribution.

4 Alignment

In a preprocess we align each image to the gigapixel background.
For geometric alignment we use a standard feature based approach
[Szeliski 2006]. Next, we align the embedded video frame by frame
photometrically by matching its color histogram to the underlying
gigapixel area.

To seamlessly blend the video frames with the background we de-
velop a matte for each frame. For videos with moving objects
across the field, we simply feather the outer portions of the rect-
angle. For videos with a single moving object, we use off-the-shelf
software (Adobe After Effects) to track the object of interest in a
given sequence and to generate the mattes.

5 Exploring the gigapixel+videos

Given a set of videos that have been aligned with an underlying
gigapixel panorama, we are challenged with the task of deciding
when to play each video clip. In addition to allowing freeform in-
teractive panning and zooming, we also allow users to easily find
video clips by clicking on a representative frame of the video. In
this second mode, we optimize a path through the pan and zoom
parameters to create a more seamless experience.

5.1 Interactive Exploration

In the first exploratory mode, interactive exploration allows the user
full control of the view pan and zoom. The question is how to trig-
ger the embedded videos. We want to avoid artifacts from videos
“popping” in or out randomly as much as possible, however this
is not always possible. Also, we want to make sure that the user
can find the embedded videos, as they might be sparsely distributed
across the gigapixel image.

During interactive exploration, videos are embedded in a frozen
state with their first frame appearing. When the user navigates suffi-
ciently close to one of the videos it starts to play. To indicate where
the videos are we render a colored bounding box when the user is
zoomed out. As the view comes closer to the video we fade the
bounding box out.



Figure 3: State machine diagram for the interactive exploration
mode. The start state is indicated by a thick arrow.

The details of the modes is formally described with a state machine
diagram (Figure 3). Every video is in one of two states: playing (P)
or frozen (F). In addition there is a time parameter t. Videos begin
frozen on their first frame, i.e., t = t0. During the course of panning
and zooming if a video is determined to be nearby, then it begins
to play and continues until the end or the view moves sufficiently
far away. Time is reset to the start only when the current and first
frames of the video are out of view. We have defined nearby to
mean there is at least some spatial overlap of the current view and
video frame, and the field-of-view of the current view is no more
than 0.4 radians larger than the video’s field-of-view.

5.2 Automatic Transitions

A more convenient way to explore the dynamic aspects of the gi-
gapixel+video panorama is to simply select a thumbnail of a video
and have the system automatically transition the pan and zoom to
best view that clip. To create a smooth camera path from an initial
view position to follow a video, we optimize three curves through
time, t, as shown in Figure 5. The first curve is through the two di-
mensional space of the panorama which we notate as x for the view
center, and v for the video’s center. The view begins at x(−2),
two seconds before the video begins to play, and proceeds to match
up with the view at x(1) = v(1), one second after the start of the
video. The video’s path through space is defined by the alignment
process above. In the case of a locked down camera filming a single
location in the scene the path is simply a constant.

Optimizing in Space

We define an optimal path to be one that matches the start and end
points, matches the velocity of the video’s path at t = 1, and does
not intersect the video’s frame at t = 0 to avoid popping. For
smoothness we determine a Bezier cubic curve defined by four con-
trol points, c0..c3. The first, c0, is located at the start point, x(−2),
and the last, c3, is located to coincide with v(1). c1 is free to roam,
providing two degrees of freedom. c2 is constrained to lie along the
tangent of v(t) at t = 1, thus has one degree of freedom. In the
case of a still camera we constrain c2 to lie along a line between c0
and c3. To optimize the curve through space we satisfy several high
level goals:

1. the path should be smooth and continuous,
2. it should be connected with the video along the preferred di-

rection,
3. while avoiding intersecting the video on the first frame (pop-

ping)

Part of these goals are satisfied by the choice of a Bezier cubic and
the degrees of freedom. However, practically, for the path to appear
smooth we also wish to avoid high curvatures (“bends”). We can
express the smoothness using an energy term

Esmooth =

∫ 1

−2

κ (s (t))

∣∣∣∣ds(t)dt

∣∣∣∣ dt, (1)

where κ(s) is defined as the reciprocal radius of the osculating cir-
cle at position s.

Figure 5: Optimizing a pan and zoom path from two seconds be-
fore video starts (t=-2) to one second after (t=1). Three curves
are determined: First, a Bezier cubic path in space (left) that cre-
ates a smooth transition from the start position of the view, x(-2),
the view position 2 seconds before the video starts, to the position
and velocity of the video one second after it begins, x(1) = v(1).
Second, the time along the path, top right, a Hermite cubic curve
s(t) that matches the start and end positions and velocities indi-
cated in red. Third, bottom right, zoom as a function of time, z(t),
that matches position and velocities at start and end, but also tries
to keep the visual flow on the screen within bounds as defined by
Igarashi et al. [2000].

We define another energy term

Epopping =
R(t)

D(t)2
, (2)

that measures how well we avoid the popping.

Here, R(t) denotes the ratio of the view at time t that is filled by
the video (a value of zero at time 0 means that we avoid popping).
Minimizing R(t) alone is not sufficient because it has a local min-
imum when the view is centered on the video due to the distortion
of perspective projection. We thus divide by D(t), the distance of
the center of the video to the center of the view at time t. Dividing
by the distance to the center adds a strong desire to move the video
“out of the way”.

We use both error terms for a combined optimization problem,

min
ci

Esmooth + λEpopping, (3)

where λ = 1000 is a balancing coefficient.

We minimize the energy with the Nelder-Mead method as imple-
mented in the GNU Scientific Library1. Since the number of DOFs
is only 3 (two for c1, one for c2), the algorithm converges rapidly to
a local minimum. To better approximate the global minimum, we
start the optimization from 100 random initial states and retain the
result that yields the lowest energy.

Optimizing speed and zoom along the path

We still have two more aspects of the path to select. The first is
how fast to move along the curve, c, that we just computed. A path
length parameterization, s(t), is used for the curve. Let l be the
length of the curve. A function s(t) maps from time to a location
along the curve (x(t) = c(s(t))) with s(−2) = 0, and s(1) = l
according to the above given assumptions.

The tangent at the start point ds
dt
(−2) is given by the current speed

of the view (i.e. zero if the view is resting, or positive if the user
is panning). The tangent at the end point, ds

dt
(1), is given by the

motion of the video. We define s(t) as a cubic Hermite spline that

1http://www.gnu.org/software/gsl



Figure 4: Two gigapixel images with integrated sparse video clips. Left: Zurich Airport; Right: Constance Bridge.

Dataset GP #Images #Clips (Used) Size (GB)

Lake Union 1,09 324 134 (12) 33,6

Lake Constance 1,98 180 18 (5) 6,2

Zurich Airport 2,53 189 34 (13) 7,8

Table 1: Summary of the acquired data.

matches the given start and end values and tangents (see the plot of
s(t) in the upper right of Figure 5).

Next, we define a function z(t) that maps from time to a zoom level
(see Figure 5 lower right). The simplest mapping would be to derive
it analogously to s(t) as a cubic Hermite spline from the start/end
values and tangents. However, if the current view is zoomed in
and spatially distant from the video this leads to a very high appar-
ent velocity, because the view appears to move rapidly while being
zoomed in. This rapid visual flow is avoided by zooming out and
then zooming back in. Igarashi et al. [2000] describe a method to
set the zoom level automatically depending on the speed.

Since we cannot simultaneously satisfy the start and end constraints
and the “desired zoom level” as defined by Igarashi et al.at all times,
we instead add one more constraint, to examine the “desired zoom
level” only at the middle of the transition. If the desired zoom level
is zoomed further in than the zoom we would get from the naive
Hermite spline we are fine because the apparent speed will not be
too large. However, if the desired zoom level is zoomed further out
than the spline we change our spline by forcing it to interpolate the
desired zoom level in the middle of the transition. This additional
fifth constraint leads to an analytically defined quartic spline in this
case.

6 Results

We have captured and processed three scenes. In each case, mul-
tiple videos were captured along with the gigapixel panorama
stitched from multiple individual photos. Videos were recorded
over a period of a few hours each. Examples of the results can
be seen in the accompanying video and static representations are in
Figures 1 and 4. Some statistics of the data is shown in Table 1.

Similarly to Kopf et al. [2007] we store the Gigapixel images as
pyramids and use a multi-threaded architecture to fetch and cache
image tiles. They are internally represented as cube maps. We
store the embedded videos as jpeg sequences on a RAM disk for
fast random access. All results were produced on an Intel Core i7-
2600K CPU at 3.40 GHz with 16GB memory and a NVIDIA GTX
580 GPU with 1.5 GB GPU memory. The user interface for the
viewer uses standard panning and zooming controls. Imagery is
rendered using a perspective projection.

7 Conclusion

We have extended static gigapixel panoramic images by embedding
video clips within them to create a more dynamic medium for ex-
ploration. We have shown how to align the videos both spatially and

photometrically and blend them with the background panorama.
Most importantly, we demonstrated two user interfaces for moving
between the embedded videos and triggering them to play. A sim-
ple interactive mode triggers the videos when the view approaches
them. Panning and zooming to the videos in an automated user
interface provides an optimized path to each video that avoids arti-
facts due to the sparse nature of the videos in space and time. We
have found the dynamic nature of the results quite exciting to inter-
act with.

There is clearly a lot more that can be done both at the detailed
level and for the broader goal of developing this dynamic medium.
At the detail level, we need to do a better job with aligning videos
especially in areas where the background does not provide suffi-
cient features, such as boats on the water, or airplanes in the sky.
We also are working on means to automate turn taking for the dis-
play of overlapping videos. At a higher level, we wish to integrate
multiple time scales of video. In the photograph of the setup in
the accompanying video, there are two additional cameras, one of
which took a medium resolution photograph every second. This
provides a time lapse over a number of hours. We are exploring
ways to integrate this with the real-time videos, and/or use the time
lapse to help solve the lower level issue listed above of registering
the detailed videos.

Even static gigapixel images provides serendipitous surprises as
one pans and zooms around the scene. The addition of dynamic
elements truly brings the immersive experience to life.

References

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., CO-
HEN, M., CURLESS, B., SALESIN, D., AND SZELISKI, R.
2005. Panoramic video textures. Proc SIGGRAPH 2005 24.

CHEN, S. E. 1995. Quicktime VR: an image-based approach to
virtual environment navigation. Proc SIGGRAPH ’95, 29–38.

KOPF, J., UYTTENDAELE, M., DEUSSEN, O., AND COHEN,
M. F. 2007. Capturing and viewing gigapixel images. Proc
SIGGRAPH 2007 26, 3.

LUAN, Q., DRUCKER, S., KOPF, J., QING XU, Y., AND COHEN,
M. 2008. Annotating gigapixel images. UIST 2008.

RAV-ACHA, A., PRITCH, Y., LISCHINSKI, D., AND PELEG, S.
2005. Dynamosaics: Video mosaics with non-chronological
time. Proc CVPR ’05, 58–65.

SARGENT, R., BARTLEY, C., DILLE, P., KELLER, J., NOUR-
BAKHSH, I., AND LEGRAND, R. 2010. Timelapse gigapan:
Capturing, sharing, and exploring timelapse gigapixel imagery.
Fine International Conference on Gigapixel Imaging for Sci-
ence.

SZELISKI, R. 2006. Image alignment and stitching: a tutorial.
Found. Trends. Comput. Graph. Vis. 2, 1 (Jan.), 1–104.

TAKEO IGARASHI, K. H. 2000. Speed-dependent automatic
zooming for browsing large documents. UIST 2000, 139–148.


