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ABSTRACT

Many real-world tasks for autonomous agents benefit from un-
derstanding dynamic inter-object interactions. Detecting, analyzing
and differentiating between the various ways that an object can be in-
teracted with provides implicit information about its function. This
can help train autonomous agents to handle objects and understand
unknown scenes. We describe a general mathematical framework to
analyze and classify interactions, defined as dynamic motions per-
formed by an active object onto a passive one. We factorize interac-
tions via motion features computed in the spatio-temporal domain,
and encoded into a global, object-centric signature. Equipped with
a similarity measure to compare such signatures, we showcase clas-
sification of interactions with a single object. We also propose a
novel acquisition setup combining RGBD sensing with a virtual re-
ality (VR) display, to capture interactions with purely virtual objects.

Index Terms— interactions, classification, object affordances,
scene analysis, motion descriptor

1. INTRODUCTION

Understanding the functionality of objects is essential for exploring
unknown scenes. An autonomous robotic agent attempting to nav-
igate and operate in an unknown, unstructured environment could
benefit from reasoning about the function of the various present ob-
jects. Since an exhaustive list of functionalities for all possible object
categories is infeasible, the agent should ideally be able to deduce
their function independently, for example through interaction [1, 2,
3]. A typical interaction example [4, 5] is grasping - much research
has focused on learning its nuances [6] to enable motion planning of
automatic grasps in high-uncertainty unstructured environments [7,
8]. The affordance of an object, namely the ways in which it can
be handled and interacted with, can be crucial for understanding its
functionality. Thus, building a knowledge base for detecting possi-
ble interactions becomes an important task in order to improve au-
tonomous robotic operation [9].

Other than autonomous navigation, learning the set of possible
interactions with objects and how to detect them can be an impor-
tant tool for building smart environments that respond to human in-
tent [10, 11]. A particular interaction is correlated to the state of the
object and what the human intends to do - for example, one might
grasp a bottle from the side to pour liquid into a glass, or grasp it
from the top to unscrew a screw cap. Building tools to distinguish
the different possible interactions performed on an object shape can
thus facilitate determining human intent [12].

Regardless of the application, a first step in creating such a
knowledge base of object affordances is to build tools for capture
and classification of the allowed interactions [13]. This is similar
to establishing an encyclopedia of possible interactions with classes
of objects by detecting, understanding and organizing the possible

interactions for each object. Based on such a database, intelligence
capabilities could then be built to apply this knowledge to new ob-
jects: by interacting with a new object and matching the interactions
to the database, the agent may be able to better decode its environ-
ment. We focus on the first step: identifying and labeling different
physical interactions that can be performed on an object.

Current interaction representations can be either too abstract,
providing high-level descriptions (e.g. human language) of the in-
volved motions, or too detailed, requiring thorough simulation of
the underlying processes (e.g. for motion control of robots) [14, 15].
In contrast, we define an intermediate representation for close-range
interactions that abstracts the underlying complexity while providing
nuanced details. We provide an object-centric way to distinguish be-
tween the various affordable interactions. Since object shape largely
determines the set of possible interactions, we leverage shape infor-
mation: a coffee mug with a handle can be grasped from the side
or the top, or it can be held by the handle. We focus not only on
spatial [16], but also temporal aspects of real interactions, which we
model as motions caused by a moving object (e.g. a hand), exerted
on the static object, e.g. a cup, and captured through standard RGBD
sensors. Our current dataset consists only of hand-based interac-
tions, detectable via dedicated hand-tracking solutions [17, 18, 19].
However we envision accommodating much more variable interac-
tions in the future (e.g. sitting on chairs, opening doors) and there-
fore also showcase generic RGBD tracking techniques. To help with
common occlusion problems [20], we couple RGBD sensing with a
virtual reality (VR) feedback loop into a novel capture setup, and ob-
serve hand motions performed on virtual objects, extracted e.g. from
repositories [21, 22]. Finally, we design a novel object-centered in-
teraction descriptor and a corresponding interaction similarity mea-
sure for classification experiments.

2. METHOD

Our input is a set of interactions, each comprising a static (S) and a
moving (M ) object. We capture the motion of M during the inter-
action is captured as moving 3D points in the space around S .

2.1. The interaction descriptor

From the input (moving point cloud), we design an object-centric
descriptor of each interaction, which considers both the 3D point
motion and the object shape. The descriptor is computed via a set
of virtual “sensors” (or “cells”), built in the 3D space around the
object. Each sensor captures the motion of the moving object M
inside a particular region of surrounding 3D space.

Sensor setup and layout. To create the layout for our virtual
sensors, we place an axis-aligned 3D grid around the static ob-
ject S, large and enough to cover the entire shape and its sur-



rounding space, in which the relevant motion of the interaction
occurs. Instead of a fixed-resolution regular grid, we use an
adaptive oct-tree structure with more grid cells closer to the ob-
ject (inset), in order to capture the motion flow in more detail
there - this renders the sensor layout shape-aware. Each grid
cell is associated with a static virtual sensor that measures the
interaction inside that cell; the sensors are independent (don’t
intersect). The adaptive oct-tree structure of the grid imposes a

natural “layering” on the sen-
sors: each sensor Cli is as-
signed to a single layer l ∈
{1, . . . L} depending on the
level of the oct-tree at which
it lies. Sensors at l = L are
on the leaf nodes of the oct-
tree, lie closest to the object
and are the smallest in size;
sensors at l = 1 are larger,
further away from the object,
and “near” the root in the oct-

tree. Each layer contains similarly sized sensors roughly equidistant
to the object.

Sensor functionality and output. Each sensor is designed to cap-
ture the part of the interaction that occurs inside its designated grid
cell. We assume that a sequence of moving 3D point clouds has been
obtained for the interaction via data acquisition. At every time tκ of
the sequence, each sensor Ci (layer index omitted for clarity) counts
the number of points Φκi of the point cloud that lie inside its asso-
ciated 3D cell. The output of the sensor is a time-sequence (“flux”)
Φi := {(tκ,Φκi )}1≤κ≤n. The number of time steps n is fixed for
all sensors for a given interaction. For a given interaction, we call
a particular sensor active, if it has captured a signal for the interac-
tion, i.e. if the time-sequence above has recorded a non-negligible
amount (≥ 10) of moving 3D points during the interaction.

The descriptor. The interaction descriptor is a concatenation of (a)
the list of active sensors at each layer l and (b) for each active sensor
i, a n × 1 vector Φi measuring the number of 3D points inside the
sensor at each time.

2.2. Similarity measure between interaction descriptors

Given two interactions I1, I2 on the same object, comparing the
output of the sensor layouts gives a notion of difference between the
motion flows of the two interactions. For this, we design a similar-
ity measure to compare them by comparing the active sensor out-
puts. The similarity measure only compares sensors of the same
layer to each other: for each layer l, we calculate the similarity mea-
sure Dl(I1, I2) between the captured outputs of that layer for I1,
I2. Given the adaptive sensor layout, this allows for more resolution
closer to the object. This is useful in various hand grasp scenarios,
where the final finger configuration in the grasp is only attained when
the hand reaches the object. We then add the per-layer distances to
form the global interaction similarity measure.

Similarity cost between sensors. We compare two identical layers l
(with possibly different active sensors) for two interactions by com-
puting a similarity cost between any two active sensors of that layer.
The most straightforward pairwise cost simply measures the sensors’
proximity in 3D space - in theory, having two close-by sensors in

space being active for both interactions is a strong indicator that the
interactions are similar. However, this type of cost measure is not
rotation-invariant: if an object is grasped twice in the same way but
from a different direction, far-away sensors in the same layer might
fire up.

To overcome this limitation, we compare two sensors by con-
sidering their time-sequence outputs: two sensors are similar if they
captured similar signals (numbers of 3D points passing through) over
time. Directly comparing the two time-sequences frame-per-frame
is not possible: two interactions may have different time durations,
and a sensor’s response can be stretched/squeezed in time depending
on the speed at which an interaction is performed. Such variability
in interaction speed is typically unavoidable in datasets where more
than one different users are handling an object.

Instead, we first apply a step of dynamic-time warping-DTW [23]
to the two sensor outputs. DTW aligns these in time, accounts
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for different av-
erage speeds,
and random ac-
celerations and
decelerations in
the subject’s mo-
tion. Given

two time-sequences Φi := {(tκ,Φκi )}1≤κ≤ni) and Φj :=
{(tλ,Φλj )}1≤λ≤nj ), for two sensors Ci, Cj , DTW optimally
stretches/squeezes them in time onto a common set of time instants
of the same duration ñ: Φi is mapped to Φ̃i := {(t̃τ , Φ̃τi )}1≤τ≤ñ,
Φj is mapped to Φ̃j := {(t̃τ , Φ̃τj )}1≤τ≤ñ (inset) and the pairwise

similarity cost is given by cDTW(Ci, Cj) =
ñ∑
τ=1

(
Φ̃τi − Φ̃τj

)2

.

We found that normalizing the two time sequences by dividing
by their respective maximums Mi = max

κ
Φκi , Mj = max

λ
Φλj prior

to DTW is beneficial. We account for differences in magnitude by
scaling the cost cDTW(Ci, Cj) by max(Mi,Mj)

min(Mi,Mj)
after DTW.

Optimal transport between two sets of sensors. Recall that we
can associate to each interaction L disjoint sets of sensors, corre-
sponding to the various layers. Let l ∈ {1, · · · , L} be the index of
such a layer. For our distance metric between two interactions I1

and I2, we will compare the sensors belonging to the same layer.
Let Il1 and Il2 denote the sets of sensors belonging to the lth-layer
that were active for the two interactions; also, let N l

1 and N l
2 denote

the cardinality of those sets (the number of active sensors in l for I1

and I2). Given our pairwise sensor similarity cost cDTW, we define
the per-layer similarity cost between the sets Il1 and Il2 by solving an
optimal transport problem [24].

We first define the probability measures µl1 and µl2 on respec-
tively Il1 and Il2. For a sensorCi at layer l, letA1(Ci) :=

∑
κ Φκi |I1

denote the total number of 3D points that passed through the
sensor throughout the video sequence for interaction I1. Let
also Al1 =

∑
i∈Il1

A1(Ci) denote the sum of these accumulated
numbers for all the sensors of layer l. Then we define µ1 by
µl1(Ci) = A1(Ci)/A

l
1 for every Ci ∈ Il1 and represent it as a

column vector with N l
1 entries. Similarly for interaction I2, one

defines µl2(Cj) = A2(Cj)/A
l
2 for every Cj ∈ Il2. We then denote

by Σ(µl1, µ
l
2) the set of transport plans between µl1 and µl2. Each

element π ∈ Σ(µl1, µ
l
2) is an N l

1 × N l
2 matrix with positive entries

that satisfies π1Nl
2

= µl1 , πT1Nl
1

= µl2, where 1N is a column
vector with N entries equal to 1.



Fig. 1. Left - a novel capturing setup: RGBD camera coupled with a VR headset, which enables interaction with virtual objects. Middle and
right- modalities for capturing the moving point clouds: generic RGBD scene flow, and hand-tracking.

With the above definitions, we define the total similarity cost
Dl(I1, I2) between two equivalent layers l for the two interactions
as the optimal transportation cost between the probability measures
µl1 and µl2 for the cost cDTW:

Dl(I1, I2) := min
π∈Σ(µl

1,µ
l
2)

∑
i∈Il1,j∈I

l
2

πi,jcDTW(Ci, Cj). (1)

Note that the valueDl(I1, I2) is always larger than the minimal cost
between any two sensors and lower than the maximal cost between
any two sensors. In practice, we compute an approximation of this
cost based on an entropic regularization [25]. If Il1 = Il2 = ∅, then
we define the cost as being zero. If only one set is empty, we set
Dl(I1, I2) = 1.

Global similarity measure. We define the global similarity measure
between interactions I1 and I2 as the weighted sum of the per-layer
optimal transportation costs over the L pairs of sensor layers

D(I1, I2) :=

L∑
l=1

wlDl(I1, I2)/W, W =

L∑
l=1

wl (2)

The per-layer weights wl are designed so that pairs of sensor
layers with large total numbers of accumulated 3D points contribute
more. This accounts for the difference in size between the sensors at
different layers - the outermost sensors are fewer, but larger, hence
they accumulate more points on average. Additionally, the weights
penalize pairs of layers whose total number of accumulated points
differ significantly. Namely

wl =

(
1 +

|Al1 −Al2|
max(Al1, A

l
2)

)
Al1 +Al2
A1 +A2

, (3)

The coefficient (Al1 +Al2)/(A1 +A2) gives an importance pro-
portional to the accumulated values of the pairs of subsets. The
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Fig. 2. Classification accuracy, with scene-flow [26] input.

other term penalizes the asymmetry of the accumulated values. Note
that this formula handles the case when one set Il2 is empty (hence
Al2 = 0) as well as when both are empty.

3. EXPERIMENTS

3.1. Data capture and extraction of moving point clouds

Our novel data capturing setup consists of an RGBD camera (Intel
RealSense RS300, 48Hz) and a head-mounted display (HMD) de-
vice (Oculus DK2, 30Hz) (Fig. 1). The depth sensor captures the
human subject’s motion as point clouds and is calibrated to match
the rendering space of the HMD [27][28]. In real-time, the captured
point clouds are rendered into the HMD, so that the subject perceives
their own motion virtually from a first-person perspective. The 3D
model of the target object is then placed in the same virtual space and
displayed in the HMD. The subject interacts with the virtual object
using the point cloud rendering of their body parts through the HMD
as the only visual feedback. Moving 3D interaction point clouds are
extracted from raw RGBD data via two different modalities (Fig. 1).

Scene Flow. For every two consecutive RGBD video frames, we
utilize [26] to convert the input per-pixel RGBD data into a dense
point cloud and its associated per-point motion field (referred to as
scene flow in the computer vision literature). This yields a subset of
the raw sensor point cloud data that can be reliably tracked between
frames. We discard the point velocities and only use the detected
points for generating our interaction descriptor. We prune any points
that are far away (≥ 30cm) from the object.

Hand-Tracking. The point cloud data acquired via [26] contains
noise and outliers, due to RGBD capturing artifacts. Additionally,
our single sensor setup only captures frontal views of the moving
hand, often yielding incomplete point clouds. A dedicated hand
tracker [18] yields a full tracked 3D mesh of a human hand, which
produces cleaner 3D point trajectories. Naturally, this modality is
only relevant if the moving objects are hands, and thus less appro-
priate than [26] for our overarching goal of accommodating more
general types of interactions. However, it is still valuable as a more
accurate testing baseline (although not entirely error-free in the pres-
ence of rapidly-changing hand-poses).

3.2. Results and Discussion

To evaluate our pipeline, we used our descriptors and interaction
similarity measure to performed interaction classification. We cap-
tured a total of five different interactions performed onto the same
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Fig. 3. Classification with a simpler, Euclidean proximity inter-sensor cost versus dynamic time warping. Left: Euclidean, on the original,
non-rotated dataset. Middle resp. Right: Euclidean/DTW, on the dataset with the added rotated variants. With Euclidean cost, interaction
“grasp-from-handle” is not reliably detected, and the distance matrix is highly non-diagonal.

virtual coffee mug: grasp from the side, the handle, or the top, hit
from the side, and touch with one finger. Each interaction was per-
formed at least 4 times by 3 different subjects, yielding 61 sequences.
We used an oct-tree with L = 4 layers for our experiments, with a
total of 568 sensors.

Classification accuracy. We group the interaction sequences ac-
cording to the type of interaction performed (5 groups). We then
use our descriptor and similarity measure to compute the average
pairwise distance between interactions in the same group - e.g. be-
tween all pairs of “grasp-from-side” interactions; we call this the
“intra-group” distance for this group. The “inter-group” distance
is the average pairwise distance between interactions of this group
and interactions in other groups. A smaller “intra-group” rather than
“inter-group” distance indicates successful interaction classification.
We report these results together with a pseudo-color rendering of the
the pair-wise inter-group distances in Fig. 2.

Input modality. The classification results with the hand-tracker in-
put modality are shown in Fig. 4. The overall increase in accuracy
is due to the cleaner input: the scene-flow based input only contains
partial point-clouds, due to our single camera setup. Instead, the
hand-tracker provides full point clouds of the hands, without outlier
points from other surfaces and typically at much higher resolution
(tracking of individual fingers).

Rotation invariance. In an interaction classification pipeline, a side
grasp should always be classified as such, regardless of from which
side it is performed. To test for rotational invariance, we augmented
our dataset of real interaction point clouds with sequences produced
by synthetically rotating the point cloud data around the object axis
at various angles. This produced 149 new sequences, each with in
own interaction type group. We used these sequences as a “test”-
set, and computed average pairwise inter-group and intra-group dis-
tances with the interactions in the “training”-set (the original un-
rotated sequences)

Results are shown in the rightmost columns of Fig. 3. Note that
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Fig. 4. Classification accuracy, with input from a hand-tracker [18].

the classification accuracy is not significantly different than Fig. 2,
which indicates that our pipeline is able to correctly classify interac-
tions even when they are performed from various angles and at dif-
ferent orientations. This means that to a certain extent the descriptor
is invariant to in-plane changes of camera orientation. In compari-
son, the two leftmost plots in Fig. 3 show the results (without and
with rotations in the dataset) where the pairwise inter-sensor cost in
the optimal transport is the 3D Euclidean proximity distance (Sec-
tion 2.2). This simple cost works well when no rotations are present,
but fails in the more general case.

Timings. Our experiments were performed on a 2013 Mac Pro com-
puter with an 3.5 GHz 6-Core Intel Xeon E5 processor and 64 GB
of RAM. We used C++ for constructing the oct-tree sensor layout
and extracting the descriptors, and MATLAB to compute the inter-
action classification distance. With L = 5 oct-tree layers, extracting
the descriptor takes approximately 20.1 sec for a single interaction
(around 385 RGBD video frames). Evaluating the distance for a pair
of interactions takes approximately 7 seconds.

Interaction similarities. Our pipeline is able to detect similari-
ties between different types of interactions. The pseudo-color plots
shown in Fig. 3(right) indicate that similar interactions (e.g. a side
grasp and a handle grasp) are detected to be closer together than to
significantly different interactions.

4. CONCLUSION

Detecting and labeling dynamic, proximal interactions with objects
can be an important prior for deducing object functionality, which
can greatly aid autonomous agents by navigating in unstructured en-
vironments. We considered the problem of representing and classi-
fying such human-centric interactions, captured through our novel
hardware setup combining an RGBD sensor and a VR feedback
loop. We introduced and validated (via classification experiments)
a descriptor and a matching similarity measure for interactions.

In the future, we will exploit more advanced properties of the
motion flow, e.g. velocity vectors of the captured motions in addition
to raw point cloud data, to achieve a more nuanced differentiation
of interactions. Capturing such directional information reliably for
general interaction scenarios remains challenging, especially with a
single view sensor setup. We also intend to work on tools for trans-
ferring knowledge of interactions and affordance between objects of
the same class (e.g. as found in repositories), and for identifying
different objects through the space of their possible interactions. We
envision a large scale repository of human interactions similar to [6]
for robotic interactions - which would allow us to explore our de-
scriptor in the context of deep learning approaches.
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