Modeling Long-horizon Tasks
as Sequential Interaction Landscapes

Soren Pirk Karol Hausman Alexander Toshev Mohi Khansari
Google Al Robotics at Google X
{pirk, karolhausman, toshev}@google.com khansari@x.team

Abstract: Task planning over long time horizons is a challenging and open prob-
lem in robotics and its complexity grows exponentially with an increasing number
of subtasks. In this paper we present a deep neural network that learns depen-
dencies and transitions across subtasks solely from a set of demonstration videos.
We represent each subtasks as action symbols, and show that these symbols can
be learned and predicted directly from image observations. Learning symbol se-
quences provides our network with additional information about the most fre-
quent transitions and relevant dependencies between subtasks and thereby struc-
tures tasks over long-time horizons. Learning from images, on the other hand,
allows the network to continuously monitor the task progress and thus to inter-
actively adapt to changes in the environment. We evaluate our framework on two
long horizon tasks: (1) block stacking of puzzle pieces being executed by humans,
and (2) a robot manipulation task involving pick and place of objects and sliding
a cabinet door with a 7-DoF robot arm. We show that complex plans can be car-
ried out when executing the robotic task and the robot can interactively adapt to
changes in the environment and recover from failure cases. A video illustrating
live-action captures of our system is provided as supplementary material.

Keywords: Robotic Manipulation, Long-horizon Planning, Sequential Modeling,
Action Primitives, Visuomotor Control

1 INTRODUCTION

Enabled by advances in sensing and control, robots are getting more capable of performing intricate
tasks in a robust and reliable manner. In recent years, learned policies for control in robotics have
shown impressive results [1]. However, learning a single black-box function mapping from pixels to
controls remains challenging. In particular, complex manipulation tasks require to operate on diverse
sets of objects, their locations, and how they are manipulated. Simultaneously reasoning for both,
the what’ (e.g. which object) and the "how’ (e.g. grasping), is a challenging problem. Additionally,
due to the long time horizon of many tasks, the model can only observe a small portion of the full
task at any given time. This partial observability increases with longer tasks and higher complexity.

Current learning-based planning approaches either focus on object representations [2], on learning
sequences of symbols without rooting the plans in the actual environment [3], or generate plans
based on explicit geometric representations of the environment [4, 5]. Formulating plans without
feedback from the environment does not easily generalize to new scenes and is inevitably limited
to static object arrangements. Generating plans based on image data, e.g. by predicting future
images, limits the planning horizon to only a few steps [1]. More recently, reinforcement learning
approaches have shown initial success in solving robot manipulation tasks [6, 7], however, the end-
to-end learning of long-horizon, sequential tasks remains challenging.

In this paper, we propose a two layer representation of complex tasks, where we use as an inter-
mediate representation a set of abstract actions or sub-tasks (see Fig. 1). Each action is represented
by a symbol that describes what needs to happen to complete a sub-task in an abstract manner (e.g.
move cup). This discretization allows us to reason about the structure of tasks without being faced
with the intricacies of real environments and the related physics (e.g. object pose).
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Each symbol is then used to select an in-
dividual policy that describes how an ob-
ject or the agent itself need to be manipu-
lated toward the higher-level goal. When
executing an action we can then con-
sider the complexity imposed by the real
scene, such as finding an object or iden-
tifying its pose to grasp it. Our goal
is to execute complex and long-horizon
tasks by learning the sequential depen-
dencies between task-relevant actions. To
learn sequences of sub-tasks while re-
specting changes in the scene, we employ
a sequence-to-sequence model, commonly

used for natural language processing, to (E!) :('!; -(g -(dl) (e!,) j(f)f
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to action symbols [8, 9]. © Move Ball with Cup (O No action

We test the capabilities of sequence pre-
diction by evaluating our framework on
two environments. First, we use a robot
arm to manipulate objects in an office en-
vironment, where the goal is to find ob-
jects in a cabinet, perform operations on
the objects, and to move them back into
the cabinet. In the environment shown in
Fig. 1 the task is to find a cup, to put a ball
in the cup, and to move both objects together back to the cabinet. Different sequences of sub-tasks
can lead to a successful completion of the task. For example, while the robot has to first open the
cabinet door, it can then either move the cup or the ball outside the cabinet, to eventually put the ball
in the cup and both objects back into the cabinet. For the second experiment, we perform a stacking
task that requires to move blocks from an initially random configuration to three stacks of blocks.

Figure 1: Robot performing a long-horizon manipula-
tion task of re-arranging objects inside a cabinet. We
decompose these tasks into a sequence of abstract ac-
tions, e. g. ‘close door’, ‘move cup’, etc. Thus, a
task spanning over hundreds of image frames can be
compactly summarized as a sequence of abstract sym-
bols, which (1) can be accurately predicted at execution
time; and (2) precisely executed by a robot.

We evaluate and discuss the success of these experiment and demonstrate that using action symbols
allows us to organize tasks as sub-tasks. We empirically evaluate our model, both in an off-line and
on-line fashion on two manipulation tasks. In summary, our contributions are: (1) we propose a
deep learning approach that learns dependencies and transitions across subtasks as action symbols
from demonstration videos; (2) we introduce a framework that integrates our proposed approach into
existing state-of-the-art robotics work on motion primitives [10]; (3) we embed IMU sensors into
objects to track object motion and in turn to automatically obtain action symbols; (4) we evaluate the
learned sequence model on two long-horizon tasks, showing that sequences of action symbols can
be predicted directly from image observations and be executed in a closed-loop setting by a robot.

2 RELATED WORK

The topic of long-term planning has received a considerable amount of attention in the past. Here
we provide an overview of related work with a focus on planning and learning-based approaches.

Motion and Manipulation Planning: traditionally, approaches for planning have focused on com-
puting trajectories for robotic motion to, for example, arrange objects in specified arrangements [11].
Many approaches jointly solve for planning tasks and motion to enable more informed robotic be-
havior. Examples include: focusing on the explicitly modeling of geometric constraints as part of
task planning [12], leveraging physics-based heuristics [13], hierarchical planning [14, 11], proba-
bilistic models [15] or integrating action parameters as part of learning forward models [16]. More
recently, various approaches started to explicitly focus on planning with neural networks. As an ex-
ample, Zhang et al. [17] propose to use user-defined attributes in environments to then learn policies
that enable transitioning between these features of interest.

Symbolic Planning and Movement Primitives: it has been recognized that abstract symbols can
serve as a meaningful representation to structure tasks [4] and to organize their often hierarchical
properties [14]. In the work of Ortehy et al. [18], motion primitives — represented as symbols — are
optimized on a geometric level to validate predictions. Garett et al. [19] combine symbolic planning



with heuristic search to efficiently perform tasks and motion planning while Muxfeldt et al. [20]
and Xu et al. [21] hierarchically decompose task into assembly operations and sub-task specifica-
tions. Movement primitives are another well-established approach to represent basic movements
(e.g. grasping) for completing tasks and a number of approaches exist that focus on the parallel
activation and the smooth blending of movement primitives [10, 22, 23, 24, 25].

Learning Skills: it has been shown that a single task can be represented by hand-crafted state
machines, where motion primitives allow us to transition between individual states [26, 27, 28].
While these approaches provide a powerful means to represent agent behavior, their specification
needs to be adapted manually for individual tasks, which prevents their use at scale. To address
this issue, there has a been a number of hierarchical imitation learning approaches [29, 30, 31, 32]
that focus on segmenting long-horizon tasks into subcomponents. As an alternative, reinforcement
learning approaches aim at learning policies in an end-to-end manner by obtaining task-relevant
features from example data [33]. Combined with deep neural networks, this has shown to be a
promising direction to learn object assembly [34] or more advanced motion models [35]. Another
direction is to learn policies for robot-object interaction from demonstrations with the goal to reduce
uncertainty with expert demonstrations [36, 37, 38, 39]. Despite these promising efforts, learning
policies from demonstrations that generalize to new tasks still is an open research problem.

Understanding agent-object interactions: understanding object motion and object-agent interac-
tions enables reliably learning agent behavior to manipulate objects. Object-centric representations,
also learned from visual data, can serve as a powerful means to understand physical agent and object
interactions [40, 41, 42, 3, 43]. As a recent example, Janner et al. [2] propose an object-oriented
prediction and planning approach to model physical object interactions for stacking tasks. However,
obtaining meaningful signals from visual data is often difficult in real-world settings due to cluttered
scenes and occlusions. Unlike existing work that mostly focuses on learning action symbols implic-
itly — e.g. as latent variables — we represent actions explicitly, which provides more semantics of a
task. Furthermore, we learn the action symbols directly from sequences of images. This facilitates
to infer the correct order of actions necessary to complete a task, while our method also allows us to
respond to changes in the environment. Each individual action is then executed with an individual
policy.

3 METHOD

Our main goal is to learn the sequential structure of tasks by factorizing them into task-relevant
actions. This is motivated by the observation that many tasks are as well combinatorial as they are
continuous. They are combinatorial in that an agent has to select among a discrete set of objects
to perform a task. For example, a stacking task requires to arrange a specific number of objects.
However, an agent has to also operate in a physical environment that requires to continuously interact
with objects.

Optimizing for both of the aforementioned factors to perform long-term planning is challenging due
to the uncertainty imposed by the actual scene. Therefore, to perform long-term planning, we first
factorize long-horizon tasks into a discrete set of task-relevant actions. These actions represent what
needs to happen to complete a sub-task, but at a very high-level of abstraction and without any no-
tion of how an agent has to perform the action. For example, an action might just be ‘move cup’. We
denote the combinatorial complexity of all possible actions to perform a task as interaction land-
scape. Second, once a task is structured into task-relevant actions we use expert policies obtained
from learned demonstrations to perform individual actions.

Similar to existing approaches [4, 14, 18], we propose to use a set of action symbols as an abstract
representation of sub-tasks. These symbols represent basic actions, such as ‘open door’, ‘move cup’,
‘put ball’, etc., and are defined for different tasks (Supplementary Material, Table 3). Sequences of
symbols are intended to provide an abstraction of the task that can be learned to be predicted and
then executed by a robot. The set of symbols is denoted as /. We use the action symbols to train
an encoder-decoder sequence-to-sequence model, that translates sequences of image embeddings to
sequences of action symbols. This allow us to predict the next action based on the current state of
the scene as well as according to which sub-tasks are already completed.

3.1 Action-centric Representation

To obtain a representation of the scene as well as of the ongoing actions we use a pretrained
ResNet50 [44], with one additional last layer (16 dimensions) trained as classifer against per frame



action symbols as labels. We use the resulting 16-dimensional embedding as a compact representa-
tion of image features for each frame of an input sequence.

We then employ sequence models [8, 9] to predict future action symbols given a history of image
embeddings. Given a sequence of image embeddings (E7, ..., E;) up to current time ¢, we predict
the next k action symbols (ayy1, ..., 0irk):

Att1y- -5 ek = SeqMod(Ey, ..., E).

We cast the above formulation as a ‘translation’ of image embeddings to action symbol sequence.
Therefore, we employ a sequence-to-sequence model [8], an established neural translation formula-
tion, where we map the embedding sequence to an action sequence. In more detail, the sequence-to-
sequence model consists of an encoder and decoder LSTM. The encoder consumes the input images
as sequence of embeddings and encodes it into a single vector, which is subsequently decoded into
an action symbol sequence by a second LSTM (Supplementary Material, Fig. 5). Using image
embeddings as high-dimensional continuous inputs is one of the major differences to the original
translation application of the above model.

Learning the sequential structure of tasks based on image embeddings and action symbols enables us
to perform tasks in varying combinations of sub-tasks and depending on a given scene configuration.
This (1) allows us to manage the combinatorial complexity caused by operating on a discrete number
of objects, while (2) it also enables us to operate a robot in a closed-loop setting, where the action
symbols are used to select policies for solving sub-tasks.

3.2 Performing Actions

To perform actions we model an action symbol as motion primitives [10]. A motion primitive
is a parameterized policy to perform an atomic action, such as grasping, placing, etc. Primitives
can be used as building blocks that can be composed to represent tasks. Our symbol prediction
network predicts sequences of action symbols from a history of image embeddings. This allows
us to respond to changes in the environment, while the symbols provide structure to perform long-
horizon planning. This is particularly useful if the next step of a task cannot be inferred from the
current scene state. For example, if an object is hidden a system only operating on image embeddings
may fail as the sought object is not available. Our approach instead also relies on the sequence of
previous action symbols to infer the next step.

We modeled each of our motion primitive as a dynamical systems policy (DSP) [45], which can be
trained from a few demonstrations. Given a target object pose, DSP drives the robot arm from its
initial pose to the target pose while executing similar motions as provided in the demonstrations. In
our setup we train each primitive based on five demonstrations captured through kinesthetic demon-
strations. The input to each DSP primitive is the current object and arm end-effector pose, and the
output is the next end-effector pose. Our robot is equipped with a perception system that performs
object detection and classification [46] and provides the Cartesian pose of each object with respect
to the robot frame. We use the object pose as parameter for the DSP primitives, which allows us to
reuse primitives for multiple objects.

Fig. 2 illustrates the overall architecture of our system. Once the sequential model determines the
next action, the corresponding primitive is called with the poses of relevant objects and the robot
starts executing the motion. Note that there are two loops in our system: (1) the DSP control loop
which runs at 20Hz and is in charge of moving the arm to the target location, and (2) the symbol
switching loop which runs at 2Hz and determines the next primitive that needs to be executed solely
based on the stream of images.

3.3 Network Architecture and Training

The sequence-to-sequence network is trained on sequences of image embeddings and action sym-
bols. Instead of training on the full sequences, we train the network on sub-sequences of a speci-
fied sequence length (SL). Specifically, we experimented with the sequence lengths 10, 20, and 30
(Tab. 1). The sub-sequences are generated as ‘sliding windows’ over an entire sequence. We train
the model so as to translate sequences of image embeddings to predict a sequence of action symbols.
However, the sequence of predicted action symbols are offset by k, where k represents the number
of steps we want to predict in the future. For our experiments we mostly relied on setting k£ = 1,
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Figure 2: Pipeline of our framework: we obtain image embeddings of an incoming sequence of
frames. A sequence of embeddings is used as the input of a sequence-to-sequence model that trans-
lates the embeddings to a sequence of action symbols. The sequence-to-sequence model is trained
to predict the next action symbol based on a sequence of previous image embeddings. The predicted
next action symbol is then passed to a low level controller that selects a corresponding policy to
perform the action. Policies are reusable for different objects and are parameterized by the pose of
individual objects that we identify through object detection.
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previous symbols

which means that we only predict the action one step ahead in the future. The encoder takes the
input frame embeddings and generates a state embedding vector from its last recurrent layer, which
encodes the information of all input elements. The decoder then takes this state embedding and con-
verts it back to action symbol sequences. The sequence-to-sequence model is trained with a latent
dimension of 256 and usually converges after 50 epochs. We train the adapted ResNet50 network on
single pairs of images and action symbols and randomly select these pairs from all sequences of our
training data. The network is trained until it converges, which usually happens after no more then
200 epochs for our datasets. For both networks we did not specifically finetune the hyperparameters.

4 DATASETS

To validate the usefulness of a symbol-based action prediction model for manipulation tasks we
defined two different datasets. The details for each are summarized in the Supplementary Material
(SP), Tab. 4.

Manipulation. For this dataset we defined object manipulation tasks, where the goal is to put a ball
in a cup. However, the cup and the ball can either be hidden in the cabinet or located somewhere in
front of it. Depending on the object configuration, the task then becomes to first open the cabinet,
to grasp the cup and the ball, to move them outside the cabinet, then to drop the ball into the cup,
and to move the cup with the ball back into the cabinet. Finally, the cabinet door needs to be closed.
The cabinet door has a handle and can be opened by a sliding mechanism. Given this setting we
define four different tasks: the easiest task is to just move a ball in a cup (Manipulation C). Here the
model only needs to predict the correct order of two symbols (G: approach cup, C: move ball into
cup). We then make this task gradually more complex by adding action symbols, e.g. to first move
ball and cup out of the cabinet before putting the ball in the cup (Manipulation ABC), by moving
the cup with the ball back to the cabinet after the other actions have been performed (Manipulation
ABCD), and finally, to also open and close the door of the cabinet (Manipulation ABCDEF). Please
note that for the tasks (ABC, ABCD, and ABCDEF), the order of the action symbols can vary. For
example, it is possible to first move the cup or the ball outside the cabinet. However, some actions
need to be executed before others: the door of the cabinet has to be open before the cup with the ball
can be moved into the cabinet.

A human operator places the objects into the scene and then performs one of the tasks with the robot
arm, controlled by a tele-operation system (SP, Fig. 8). Each sequence consists of 130 - 890 frames
and in total we captured 839 sequences. Across the sequences we define tasks with different levels
of complexity, going from just moving the ball into the cup, to the full range of actions described
above. We used a 80-10-10 split for training, validation, and test data. Possible actions are ‘move
cup’, ‘move ball’, ‘move ball to cup’, ‘move ball and cup’, ‘open door’, ‘close door’, and the
corresponding approach motions, e.g. ‘approach cup’, ‘approach to open’, etc. (SP, Tab. 3). Frames
of the captured sequences are manually labeled with the respective action symbols.

Block Stacking. For the second dataset we define a stacking task of five uniquely shaped blocks
(similar to Tetris blocks) of different colors. The goal is to generate an object arrangement of two
stacks and one single block. For each run the blocks are placed randomly on a table. An operator
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Figure 3: Manipulation of objects over long time horizons: the same task is performed in a different
order and with different subsets of actions. Which actions are necessary to achieve the goal (cup in
cabinet, closed cabinet) depends on the initial scene configuration. For the sequence (a)-(g) cup and
ball are initially outside the cabinet. For the sequence shown in (h)-(n) both objects (cup, ball) are
inside the cabinet and the only possible action is to first open the cabinet. Finally, for the sequence
(0)-(u) the cabinet door is initially open. The bars underneath the images illustrate the structure of
task-relevant actions; black bars indicate where in the sequence the shown frames were taken from.

then takes the blocks and stacks them into the specified configuration. The order in which the objects
are stacked is not defined. However, to generate the target configuration of objects only certain action
sequences are plausible. While the blue block can be placed any time during the task, the green and
the pink block require to first place the yellow and red block respectively. The example in Fig. 6
(SP) shows three initial and the target configuration of objects. We captured 289 sequences (150 -
450 frames) of this stacking task and used a 80-10-10 split for training, validation, and test data.

As the manual labeling of frames with action symbols is a laborious task we used IMU sensors
embedded in each block to automatically obtain action symbols (SP, Fig. 9). This is based on the
observation that to understand the structure of a task we only need to know the order in which
the objects where set in motion. To compute an action symbol we track the IMU signal for each
individual block by fusing the acceleration and orientation signal [47] of a single sensor. We then
set a flag for whether the corresponding object is set in motion. As the task requires to stack the
objects, multiple object motions may be detected. However, as we are not interested in tracking
multiple objects at the same time, we only consider the object with the larger changes of acceleration
and orientation. We use Bluetooth enabled IMU boards to automatically obtain action symbols for
multiple blocks simultaneously. Based on the available objects the possible actions for this task are
to move any of the available blocks (blue, red, yellow, pink, green) and ‘no action’ (SP, Tab. 4).

S EXPERIMENTS AND RESULTS

In this section we evaluate the performance of our framework on sequence prediction for manipula-
tion tasks. The goal is to predict sequences of action symbols that describe the sequential structure
of a task and thereby allow an agent to execute a task in the correct order. The sequence of action
symbols is predicted based on a sequence of frame embeddings. This allows us to reliably predict
the next action based on the current state of the scene.

5.1 Sequence Translation and Prediction

To evaluate the quality of the predicted sequences we use our sequence-to-sequence model to predict
the next action symbol based on a sequence of image embeddings and compare the result of a
whole predicted sequence with the ground truth sequence. We then measure three different errors
over these sequences. In Tab. 1 we report results for all metrics and for sequence lengths (SL) of



Table 1: Sequence Prediction Errors (Symbol, Structure, Edit Distance) for Seq2Seq and LSTM.

Symbol Structure Edit Distance
Method SLI0 | SL20 | SL30 SL10 | SL20 | SL30 SL10 | SL20 | SL30
o | Manipulation - ABCDEF | 7.84% | 6.62% | 6.23% | 21.42% | 18.02% | 28.14% | 6.52% | 5.82% | 6.62%
2 Manipulation - ABCD 7.33% | 598% | 6.71% | 20.02% | 14.26% | 15.38% | 5.85% | 5.21% | 5.26%
& | Manipulation - ABC 5.46% | 5.38% | 523% | 16.01% | 11.53% | 10.14% | 5.46% | 4.86% | 5.74%
8 Manipulation - C 323% | 401% | 457% | 1538% | 5.03% | 5.08% | 479% | 4.02% | 5.12%
“ [Blocks 8.82% | 7.65% | 8.15% | 29.28% | 13.03% | 26.54% | 7.15% | 8.46% | 9.03%
Manipulation - ABCDEF | 11.06% | 9.41% | 7.90% | 57.69% | 45.23% | 34.61% | 10.48% | 8.29% | 7.37%
s | Manipulation - ABCD 10.56% | 8.70% | 7.85% | 47.26% | 44.76% | 28.98% | 9.38% | 7.81% | 6.99%
£ | Manipulation - ABC 10.03% | 7.82% | 7.69% | 35.01% | 40.58% | 27.19% | 9.05% | 6.90% | 6.27%
— | Manipulation - C 880% | 7.39% | 6.92% | 25.92% | 29.62% | 25.93% | 7.27% | 6.81% | 5.92%
Blocks 12.44% | 10.31% | 10.85% | 38.57% | 51.14% | 44.28% | 10.48% | 9.03% | 9.37%

10, 20, and 30. First, the symbol-to-symbol error measures the overall accuracy of the predicted
sequences; each symbol is compared to its corresponding symbol in the ground truth sequence. This
error metric provides a way to measure the overall accuracy but it does not account for the impact
a wrongly predicted symbol may have for executing a sequence; i.e. if only a single symbol is
predicted wrongly, executing the task may fail. Example sequences for both task seutps are shown
in Figures 3 and 7, SP.

Therefore, we additionally compute the error of predicting the correct sequential structure of ac-
tions. For this we again predict an action symbol for each frame in a sequence and then shorten
the sequence of symbols to its compact representation; i.e. when the same symbol was predicted
repeatedly for consecutive frames we only use the symbol once (similar to Huffman coding). We
then compare the predicted sequence with the ground truth sequence in its compact encoding and
measure an error when there are any differences in the symbol patterns. The results for the sequences
of our datasets are shown in Tab. 1 (Structure). An example of shortened sequences is shown in the
SP, Tab. 3 (Compact Example). When computing the structure error on the compact representation,
irregularities in the sequential structure are accounted for. A single change of a symbol would create
a different compact encoding and the sequence would be labeled as wrongly predicted. Finally, we
use Levenshtein distance as a more common way to compare symbol sequences (Tab. 1, Edit Dist).
Here the error is measured as the number of edit operations necessary to convert the predicted se-
quence into the ground truth sequence. The resulting number of edits is normalized by the number
of symbols of the ground truth sequence.

Additionally, we compare the results of the sequence-to-sequence model with a many-to-many
LSTM and soft attention weighted annotation [48] (Tab. 1). The LSTM consists of a single layer
with a latent dimension of 256. Compared to the sequence-to-sequence model the LSTM performs
well on the symbol and edit distance metrics, which means that the overall distance of ground truth
and predicted sequences is small. However, it performs with significantly less accuracy on predicting
the structure of tasks.

5.2 Robotic Manipulation

To test our framework in a realistic setting, we use a real robot to perform the manipulation task
based on predicted motion primitives. Our robot is a 7-axis robotic arm equipped with an on-board
camera.

We setup a scene with randomly placed objects (cup, ball, open/closed door). We then generate
image embeddings of the incoming camera frames. After obtaining sequence length (SL) number
of frames (e.g. 10, 20 or 30) the sequence-to-sequence model starts predicting the next action.
With additional incoming frames the model keeps predicting the same symbol if no changes in
the scene occur. The predicted symbol is then passed to the low-level controller and the robot is
set in motion. If the scene changes, e.g. if the robot starts moving from its default position to
the cup, the model starts predicting new action symbols. A newly predicted action symbol is then
pushed to a queue if it is different from the previous symbol in the queue. The robot takes the next
action symbol from the queue, performs object detection to obtain the object poses, and runs the
motion primitive corresponding to the selected symbol. While the robot is performing the action,
the sequence prediction network predicts further action symbols that are added to the queue. When
the robot is done with an action, it proceeds to the next action symbol and continues the task. Once
all actions are completed successfully, the sequence model predicts the terminal symbol (#) and the
robot moves back to its default state.
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Figure 4: Dynamic interaction: the robot is executing the task of putting a ball in a cup. From an
initial object arrangement (a) it first fetches a ball (b), then continues to get the cup (c). A human
operator then puts the ball back inside the cabinet (d) and the robot dynamically adapts by changing
the plan to again fetch the ball (e). Finally, it completes the task by putting the ball in the cup and
both objects back into the cabinet (f).

To evaluate how well the robot is able to Table 2: Robot Task Execution Accuracy.

Method | #Success | #Recovered | #Failure | Accuracy
perform the tasks we measure how often  <gipufaton ABCDER 3 3 2 80.0%
it was able to successfully reach the goal =~ Manipulation ABCD 13 3 4 80.0%
. Manipulation ABC 12 5 3 85.0%
state of a given task. We ran every task 20\ i iagion 7 1 > 90.0%

times and counted the number of successes

and failures. Depending on the scene setup, some predicted symbol sequences are implausible and
their execution fails; we count these as failures. However, as our model relies on images embeddings
to predict the next action, for some of these sequences the model can recover. Here the model may
predict a wrong action symbol, but it then recovers and eventually predicts the correct sequence of
actions to arrive in the goal state; we consider these sequences successes. Successful, recovered,
and failed task completions are reported in Tab. 2.

5.3 Closed-loop Response

As shown in Fig. 2, our model works in a closed-loop setting — image embeddings are translated
to action symbols. Therefore, a robot can interactively adapt to changes in the environment to
successfully finish a task. In Fig. 4 we show the results of dynamic scene changes. While the
robot is working on a task, we interfere with the scene and move objects around. In the example
shown in Fig. 4 (d), the user puts the ball back into the cabinet while the robot is placing the cup
in front of the cabinet. The robot visually detects this change and retrieves the ball after placing
the cup. Here the adaptation is happening at two levels: first the sequence model detects the ball
misplacement through the image embeddings and again triggers the ‘grasp ball primitive‘, then the
primitive receives the new ball position through the perception system and thus adapts its motion in
order to grasp the ball. In Fig. 10 (SP) we show how our pipeline is able to recover from wrongly
predicted actions and in the accompanying video we show several live-action captures of our system
to showcase the capabilities of our framework.

6 CONCLUSION

We have introduced a framework for translating sequences of action symbols from image embed-
dings. Each symbol represents a task-relevant action that is necessary to accomplish a sub-task. We
have shown that symbols serve as a lightweight and abstract representation that not only enables
using sequential models — known from natural language processing — for the efficient learning of
task structure, but also to organize the execution of tasks with real robots. Learning to translate im-
age embeddings to action symbols allows us to execute tasks in closed-loop settings, which enables
robots to adapt to changing object configurations and scenes. We have demonstrated the usefulness
of our framework on two different datasets and evaluated our approach on two model architectures.
One limitation of our current setup is that we rely on ground truth labels for actions in the observed
sequences. We addressed this limitation by automatically capturing action symbols through IMU
sensors embedded in individual objects. Automatically obtaining these action labels at scale is not
trivial and an interesting avenue for future research. Another limitation is that we did not investigate
to condition the prediction of our model on the task, e.g. by providing a goal state. While this
limits our method in some scenarios, it seems plausible that a representation of the goal state can be
provided as an additional embedding to disambiguate the task or to enable learning multiple tasks
with the same model. Finally, in many situations it would be important to understand the sequential
structure of tasks over even longer time-horizons. Here it seems interesting to explore other model
architectures for sequence translation from image embeddings.
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Appendix

Encoder-Decoder Architecture

We use a sequence-to-sequence model [8] to translate image embeddings to action symbols. The
model is setup to predict a future action symbol given a history of image embeddings as illustrated
in Figure 5.

‘Approach Cup’  ‘Move Cup’ ‘Approach Ball'

A B C

Xewyos

State

W—Q ‘N
E, E E E E

Figure 5: Encoder-Decoder architecture of a sequence-to-sequence model: image embeddings (£;)
serve as input for the encoder. The encoder converts the embedding to a state vector (S). The decoder
uses the state vector and a symbol sequence to predict the output sequence one symbol ahead of the
current time step.

Encoder
189p029Q

Init _ A B

Action Symbols

For both tasks (manipulation, block stacking) task-relevant actions are assigned an action symbol
as shown in Tab. 3. Please note that for the block stacking tasks action symbols are automatically
obtained based on IMU sensors as described in Section 4 and shown in Fig. 9. We differentiate
between class symbols (Manipulation) and instance symbols (Block Stacking). For the manipulation
task we represent objects of the same class (e.g. cups) with the same symbol as we only operate on
one object of a specific class at a time. If the task requires to simultaneously operate on multiple
objects of the same class (e.g. blocks) symbols for individual instances are used.

Table 3: Action symbols and their meaning for both datasets.

Dataset | Action Integer | Action Symbol | Meaning
Manipulation 0 A Move cup
1 B Move ball
2 C Move ball into cup
3 D Move ball and cup
4 E Open door
5 F Close door
6 G Approach cup
7 H Approach ball
8 I Approach to open
9 J Approach to close
10 - No action
11 # Terminal/Done
Compact Example: EBACDF_
Block Stacking 0 B Move Blue
1 R Move Red
3 Y Move Yellow
3 G Move Green
4 P Move Pink
5 - No action
Compact Example: .Y B_.G.R_P_

Dataset Details
Table 4: Details of our two datasets.
Dataset | #Tasks | #Sequences | #Symbols | #Frames | Sequence Length
Manipulation 4 791 7 228K 90-600
Blocks 1 287 6 97K 136 - 445
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Block Stacking Task

Figures 6 and 7 show our block stacking setup and two variations of preforming this task.

Figure 6: For the block stacking task we randomly place the five blocks in the scene. The goal is to
then move them to a stacked configuration. From left to right: three initial configurations of objects
and the final configuration.

(@) (b) (c) (d) (e)

Sequence 1 (375 frames)

™ /"

() (9) (h) (i) 0]
Sequence 2 (333 frames)
[ I

®) (9) (h) (i) 0)
@ Move blue (B) @ Move red (R) @ Move pink (P) O Move yellow (Y) @ Move green (G) O No action (_)

Figure 7: Two example sequences of a blocks stacking task: we associate action symbols to every
frame of a sequence (a-e) and (f-j). An action symbol represents the action in an abstract way (e.g.
move red block). For the frames (a-e) and (f-j) we show where in the sequence this action was
performed. The order of actions can vary, but sequential dependencies exist.

Capturing Data with a Tele-op System

To train a model on image embeddings that can be used with real robots and scenes, we relied on a
tele-op system. This setup allows us to capture example sequences as training data, while observing
the scene from the perspective of the robot. Figure 8 shows examples of our tele-op system and the
perspective of the robot while capture data for our robotic manipulation task.

Figure 8: Human operator performing a task of grasping a ball, putting it into a cup, and closing a
cabinet door, performed with a teleop system.
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Automatically Capturing Action Symbols

We embed a IMU sensors' in each block to automatically obtain action symbols. Figure 9 shows an
example of a captured IMU signal along with an example object and the used IMU sensor board.

(a) Acceleration Orientation Quaternion Quantized Quaternion
a] . i ’—
s —— s ——| |

\

Frames Frames Frames

LA

Figure 9: Each IMU sensor provides us with an acceleration and orientation signal that can be fused
into a quaternion [47] (a). We quantize the quaternion and use the resulting signal to obtain an action
symbol for the video frames where the respective object is set in motion. An example object along
with the used IMU sensor board is shown in (b) and (c). IMU sensors allow us to track the motion
of individual objects (d).

Closed-loop Response: Recovering from Failure

Figure 10: Recovering from wrong predictions: depending on the scene setup predicted symbols can
be implausible or their execution may fail. For the scene shown in (a) a plausible action would be to
put the ball in the cup, but the system predicts to first move the cup (b) & (c). In (d) the gripper is
accidentally moving the cup while the arm reaches for the ball. In both cases our system can recover
from these failure states as we rely on image embeddings for predicting action symbols. Eventually
the robot is then able complete the task (e), (f).

'https://mbientlab.com/
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